

Biological and Water Quality Study of the Lower Little Miami River and Selected Tributaries 2022

Report citation:

Midwest Biodiversity Institute (MBI). 2023. Biological and Water Quality Assessment of the Lower Little Miami River and Selected Tributaries 2022. Greater Cincinnati MSD Service Area. Hamilton County, Ohio. Technical Report MBI/2023-6-12. Columbus, OH 43221-0561. 109 pp. + appendices. http://www.msdgc.org/initiatives/water_quality/index.html.

Biological and Water Quality Study of the Little Miami River and Selected Tributaries 2022

Greater Cincinnati MSD Service Area

Hamilton County, Ohio

Technical Report MBI/2023-6-12

June 30, 2023

Prepared for:

Metropolitan Sewer District of Greater Cincinnati 1081 Woodrow Street Cincinnati, OH 45204 Laura Boyd, MSDGC Project Manager laura.boyd@cincinnati-oh.gov

Submitted by:

Midwest Biodiversity Institute
P.O. Box 21561
Columbus, Ohio 43221-0561
Chris O. Yoder, MBI Project Manager
cyoder@mwbinst.com

TABLE OF CONTENTS

LIST OF TABLES LIST OF FIGURES ACKNOWLEDGEMENTS XFOREWORD 1 What is a Biological and Water Quality Survey? 1 Scope of the 2022 Lower Little Miami River and Selected Tributaries Biological and Water Quality Assessment 2 EXECUTIVE SUMMARY 5 Scope and Purpose 6 Highlighted Findings 7 Aquatic Life Use Attainability 7 Trajectories in Key Indicators 7 Aquatic Life Use Attainment Status 7 Recreational Use Status 7 Recommendations 7 Recommendations 7 Recommendations 7 RESIDLOGICAL AND WATER QUALITY STUDY OF THE LITTLE MIAMI RIVER AND SELECTED TRIBUTARIES 2022 11 Introduction 11 MSDGC Watershed Bioassessment Scope and Purpose 12 MONITORING Design 13 Biological and Water Quality Surveys 14 Biological Methods 15 Macroinvertebrate Assemblage Methods 26 Primary Headwater Habitat (PHWH) Methods 27 Area of Degradation and Attainment Values 28 Water Column Chemical Quality 29 Water Column Chemical Quality 20 Ediment Chemical Quality 20 Edime	TABLE OF CONTENTS	i
ACKNOWLEDGEMENTS	LIST OF TABLES	٠١
What is a Biological and Water Quality Survey?	LIST OF FIGURES	vi
What is a Biological and Water Quality Survey?	ACKNOWLEDGEMENTS	X
Scope of the 2022 Lower Little Miami River and Selected Tributaries Biological and Water Quality Assessment	FOREWORD	1
Quality Assessment	What is a Biological and Water Quality Survey?	1
Scope and Purpose	Scope of the 2022 Lower Little Miami River and Selected Tributaries Biological Quality Assessment	and Water
Highlighted Findings	EXECUTIVE SUMMARY	3
Aquatic Life Use Attainability 3 Trajectories in Key Indicators 4 Aquatic Life Use Attainment Status 5 Recreational Use Status 11 Recommendations 16 Designated Use Attainment Status 16 BIOLOGICAL AND WATER QUALITY STUDY OF THE LITTLE MIAMI RIVER AND SELECTED TRIBUTARIES 2022 17 Introduction 17 MSDGC Watershed Bioassessment Scope and Purpose 18 METHODS 19 Monitoring Design 19 Biological and Water Quality Surveys 19 Biological Methods 21 Fish Assemblage Methods 22 Macroinvertebrate Assemblage Methods 22 Primary Headwater Habitat (PHWH) Methods 22 Area of Degradation and Attainment Values 22 Habitat Assessment 22 Stream Nutrient Assessment Procedure (SNAP) 24 Chemical/Physical Methods 25 Water Column Chemical Quality 25	Scope and Purpose	3
Trajectories in Key Indicators	Highlighted Findings	3
Aquatic Life Use Attainment Status	Aquatic Life Use Attainability	3
Recreational Use Status	Trajectories in Key Indicators	∠
Recommendations	Aquatic Life Use Attainment Status	2
Designated Use Attainment Status 16 BIOLOGICAL AND WATER QUALITY STUDY OF THE LITTLE MIAMI RIVER AND SELECTED TRIBUTARIES 2022 17 Introduction 17 MSDGC Watershed Bioassessment Scope and Purpose 18 METHODS 19 Monitoring Design 19 Biological and Water Quality Surveys 19 Biological Methods 21 Fish Assemblage Methods 22 Fish Assemblage Methods 22 Primary Headwater Habitat (PHWH) Methods 22 Area of Degradation and Attainment Values 22 Habitat Assessment 22 Stream Nutrient Assessment Procedure (SNAP) 22 Chemical/Physical Methods 25 Water Column Chemical Quality 25	Recreational Use Status	11
BIOLOGICAL AND WATER QUALITY STUDY OF THE LITTLE MIAMI RIVER AND SELECTED TRIBUTARIES 2022 17 Introduction 17 MSDGC Watershed Bioassessment Scope and Purpose 18 METHODS 19 Monitoring Design 19 Biological and Water Quality Surveys 19 Biological Methods 21 Fish Assemblage Methods 21 Macroinvertebrate Assemblage Methods 22 Primary Headwater Habitat (PHWH) Methods 22 Area of Degradation and Attainment Values 22 Habitat Assessment 23 Stream Nutrient Assessment Procedure (SNAP) 24 Chemical/Physical Methods 25 Water Column Chemical Quality 25	Recommendations	16
Introduction	Designated Use Attainment Status	16
Introduction17MSDGC Watershed Bioassessment Scope and Purpose18METHODS19Monitoring Design19Biological and Water Quality Surveys19Biological Methods21Fish Assemblage Methods21Macroinvertebrate Assemblage Methods22Primary Headwater Habitat (PHWH) Methods22Area of Degradation and Attainment Values22Habitat Assessment23Stream Nutrient Assessment Procedure (SNAP)24Chemical/Physical Methods25Water Column Chemical Quality25		
MSDGC Watershed Bioassessment Scope and Purpose 18 METHODS 19 Monitoring Design 19 Biological and Water Quality Surveys 19 Biological Methods 21 Fish Assemblage Methods 22 Macroinvertebrate Assemblage Methods 22 Primary Headwater Habitat (PHWH) Methods 22 Area of Degradation and Attainment Values 22 Habitat Assessment 23 Stream Nutrient Assessment Procedure (SNAP) 22 Chemical/Physical Methods 25 Water Column Chemical Quality 25		
Monitoring Design19Biological and Water Quality Surveys19Biological Methods21Fish Assemblage Methods22Macroinvertebrate Assemblage Methods22Primary Headwater Habitat (PHWH) Methods22Area of Degradation and Attainment Values22Habitat Assessment23Stream Nutrient Assessment Procedure (SNAP)24Chemical/Physical Methods25Water Column Chemical Quality25		
Biological and Water Quality Surveys	METHODS	19
Biological Methods 21 Fish Assemblage Methods 22 Macroinvertebrate Assemblage Methods 22 Primary Headwater Habitat (PHWH) Methods 22 Area of Degradation and Attainment Values 22 Habitat Assessment 23 Stream Nutrient Assessment Procedure (SNAP) 24 Chemical/Physical Methods 25 Water Column Chemical Quality 25	Monitoring Design	19
Fish Assemblage Methods21Macroinvertebrate Assemblage Methods22Primary Headwater Habitat (PHWH) Methods22Area of Degradation and Attainment Values22Habitat Assessment23Stream Nutrient Assessment Procedure (SNAP)24Chemical/Physical Methods25Water Column Chemical Quality25	Biological and Water Quality Surveys	19
Macroinvertebrate Assemblage Methods22Primary Headwater Habitat (PHWH) Methods22Area of Degradation and Attainment Values22Habitat Assessment23Stream Nutrient Assessment Procedure (SNAP)24Chemical/Physical Methods25Water Column Chemical Quality25	Biological Methods	21
Primary Headwater Habitat (PHWH) Methods 22 Area of Degradation and Attainment Values 22 Habitat Assessment 23 Stream Nutrient Assessment Procedure (SNAP) 24 Chemical/Physical Methods 25 Water Column Chemical Quality 25	Fish Assemblage Methods	21
Area of Degradation and Attainment Values	Macroinvertebrate Assemblage Methods	22
Habitat Assessment	Primary Headwater Habitat (PHWH) Methods	22
Habitat Assessment	Area of Dearadation and Attainment Values	22
Chemical/Physical Methods		
Water Column Chemical Quality25		
·	Chemical/Physical Methods	25
Sediment Chemical Quality26	Water Column Chemical Quality	25
•		

Determining Use Attainment Status	26
Aquatic Life	26
Recreation	27
Determining Use Attainability	28
Determining Causal Associations	28
Hierarchy of Water Indicators	29
STUDY AREA DESCRIPTION	31
Geographic Setting	31
Subecoregion Characteristics	31
Description of Pollution Sources and Other Stressors	31
Point Sources	31
Wet Weather Sources	35
RESULTS – CHEMICAL PHYSICAL WATER QUALITY	37
Flow Regime	37
Water Column Chemistry	37
Water Quality Criteria Exceedances	39
Aquatic Life Criteria Exceedances	39
Exceedances of Biological Effect Thresholds	
Conventional, Demand, and Nutrient Parameters - Little Miami River Mainster	
Dissolved Oxygen (D.O.)	42
Temperature (°C)	45
pH (S.U.)	45
Ammonia-N	45
Total Kjeldahl Nitrogen (TKN)	45
Fecal Bacteria (E. coli)	50
Total Phosphorus	51
Total Nitrate-N	51
Chlorophyll a	51
Nutrient Effects Assessment	54
Urban Parameters - Little Miami River Mainstem	
Chlorides	57
Specific Conductance and Total Dissolved Solids (TSS)	57
Suspended sediment Concentration (SSC)	
Other Urban Parameters	

Sediment Chemistry	61
Conventional, Demand, and Nutrient Parameters - Tributary Subwatersheds	65
Dissolved Oxygen (D.O.)	65
Temperature ($^{oldsymbol{lpha}}$)	67
pH (S.U.)	67
Ammonia-N	67
Nitrate-N	67
Total Kjeldahl Nitrogen (TKN)	67
Fecal Bacteria (E. coli)	68
Total Phosphorus	73
Chlorophyll a	73
Nutrient Effects (SNAP)	73
Urban Parameters – Tributary Subwatersheds	75
Specific Conductance	75
Total Dissolved Solids (TDS)	78
Chloride	79
Suspended Sediment Concentration (SSC)	79
Other Urban Parameters	79
Sediment Chemistry	80
Physical Habitat for Aquatic Life	80
Little Miami River Mainstem	81
Little Miami River Tributary Subwatersheds	83
Biological Assemblages	89
Fish Assemblage Results	89
Macroinvertebrate Assemblage Results	94
Synthesis of Results	99
REFERENCES	105
APPENDIX A: Little Miami River 2022 Fish Assemblage Data	
APPENDIX C: Little Miami River 2022 Habitat Data	C-1
APPENDIX D: Little Miami River 2022 Primary Headwater Habitat Data	
APPENDIX E: Little Miami River 2022 Chemical Water Quality Data	E-1

LIST OF TABLES

Table 1. Summary of current and recommended (yellow shaded) aquatic life uses (AQLU) based on use attainability analyses from the 2012 and 2017 Little Miami River biological and water quality assessments by site sampled in 2022. Other color shading distinguishes the mainstem and three tributary subwatersheds in the 2022 survey
fish and macroinvertebrate index scores, QHEI, weighted causes of impairment for impaired sites (very poor – red; poor – orange, fair – yellow), and threats to attaining sites (light blue)are listed for each site. The Ohio biological criteria and acronyms/abbreviations used in the table are in the footnotes
Table 3. E. coli criteria for Ohio streams and rivers (OAC 3745-1-07).12Table 4. Status of recreational use attainment in the 2022 Little Miami River study area asattaining or impaired based on the E. coli geometric mean and statistical thresholdcriteria at 38 sites assessed in 2022. PCR – Primary Contact Use; SCR – SecondaryContact Use.
Table 5.Level IV subregions of the Little Miami River watersheds watershed and their keyattributes (from Woods et al. 1995).32
Table 6 . Major pollution sources in and adjacent to the 2022 Little Miami River study area 33 Table 7 . Exceedances of Ohio water quality criteria recorded by grab and continuous sampling in the Lower Little Miami River study area in 2022 with aquatic life attainment status shown for comparative purposes
Table 8 . Ammonia-N and nutrient related parameter median and mean values at 14 sites in the Lower Little Miami River mainstem in 2022. Color shading corresponds to IPS and other thresholds for each parameter listed in the legend below the table
Table 9 . Nutrient assessment thresholds for nutrient and related parameters and indicators developed by Miltner (2018), Ohio EPA (2015b), and Ohio EPA (2018) for assigning eutrophication status to Ohio large rivers as acceptable, enriched, and over-enriched and as used to assess the status of sites in the Lower Little Miami River mainstem in 2022.
Table 10 . Results of applying the Ohio Large River nutrient assessment and box model to 14 sites in the 2022 Lower Little Miami River mainstem study area. Thresholds for how each parameter reflects the degree of nutrient enrichment effects and are in Table 9 and at the bottom of the matrix.
Table 11. Urban source related parameter median and mean values at 14 sites in the Lower Little Miami River mainstem in 2022. Color shading corresponds to IPS and other thresholds for each parameter listed in the legend below the table. The corresponding chronic water quality criteria at 300 mg/L hardness for metals parameters are listed with the good IPS thresholds
Table 12 . Sediment metals concentrations (mg/kg) for parameters with values >detection in the Little Miami River study area in October 2022. Values above the MacDonald et al. (2000) Threshold Effect Concentration (TEL) and Probable Effect Concentration (PEC)

thresholds or above Ohio Sediment Reference Values (SRVs) are shaded in accordance with the color-code key at bottom. BD — below detection
Table 13 . Sediment PAH and selected organic chemical parameter concentrations (μg/kg) in the
Little Miami River mainstem in October 2022. Values above the MacDonald et al.
(2000) TEC and PEC and Persaud et al. (1993) SEL and LEL thresholds are shaded in
accordance with the color-code key at the bottom of the table. BD – below detection;
AD – above detection 6
Table 14 . Ammonia-N and nutrient related parameter median and mean values at 24 Little
Miami River tributary sites in 2022. Color shading corresponds to wadeable and
headwater site IPS and other thresholds for each parameter listed in the legend at the
bottom of the table7
Table 15. The results of the Ohio EPA Stream Nutrient Assessment Procedure (SNAP) for 16 Little
Miami River tributary sites with sufficient data in 2022. Color shading is explained in
the legend at the bottom of the table (na – not applicable; ns – nonsignificant
exceedance). Exceedances are asterisked, poor and very poor values are underlined. 7
Table 16 . Urban source related parameter median and mean values at 24 sites in the Little
Miami River tributaries in 2022. Color shading corresponds to IPS and other thresholds
for each parameter listed in the legend below the table. The corresponding chronic
water quality criteria at 300 mg/L hardness for metals parameters are listed with the
good IPS thresholds for wadeable and headwater sites. Exceedances of the Ohio OMZA
average criteria for metals is denoted by an asterisk7
Table 17. Sediment metals concentrations (mg/kg) for parameters with values >detection in the
Little Miami River tributary subwatersheds in October 2022. Values above the
MacDonald et al. (2000) Threshold Effect Concentration (TEL) and Probable Effect
Concentration (PEC) thresholds or above Ohio Sediment Reference Values (SRVs) are
shaded in accordance with the color-code key at bottom. BD – below detection 8
Table 18 . Sediment PAH and organic chemical concentrations (μg/kg) in the Little Miami River
tributary subwatersheds in October 2022. Values above the MacDonald et al. (2000)
TEC and PEC and Persaud et al. (1993) SEL and LEL thresholds are shaded in
accordance with the color-code key at the bottom of the table. BD – below detection;
AD – above detection 8
Table 19 . Qualitative Habitat Evaluation Index (QHEI) matrix for the Little Miami River
mainstem showing good ($lacksquare$) and modified ($lacksquare$ and $lacksquare$) habitat attributes at 14 sites in
2022. Ranges of excellent to very poor quality for the number of good and modified
attributes are shown in the footnotes at the bottom of the table
Table 20 . Qualitative Habitat Evaluation Index (QHEI) matrix for the Little Miami River tributary
subwatersheds showing good (┛) and modified (◐ and ◐) habitat attributes at 14 site
in 2022. Ranges of excellent to very poor quality for the number of good and modified
attributes are shown in the footnotes at the bottom of the table
Table 21 . Selected fish assemblage attributes at 14 sites Little Miami River mainstem sampled in
the 2020. Color shading in the cells indicates the narrative quality of the index or
attribute value in accordance with the thresholds in the footnotes at the bottom of the
table (ns – nonsignificant departure: exceedances are asterisked)

Table 22 . Selected fish assemblage attributes at 22 sites Little Miami River tributary subwatersheds sampled in the 2020. Color shading in the cells indicates the narrative quality of the index or attribute value in accordance with the thresholds in the footnotes at the bottom of the table (ns – nonsignificant departure; exceedances are asterisked).
Table 23. A comparison in the numerical ranking of fish species in the Little Miami River mainstem between 2017 and 2022 using the catch-per-unit-effort (CPUE) and proportion of the assemblage (% numbers). The Ohio tolerance classification is included for intolerant (I and R), moderately intolerant (M), moderately tolerant (p), and highly tolerant (T). Species with a blank are intermediate
Table 25 . Selected macroinvertebrate assemblage attributes at 22 sites in Little Miami River tributary subwatersheds sampled in the 2022. Color shading in the cells indicates the narrative quality of the index or attribute value in accordance with the thresholds in the footnotes at the bottom of the table (ns – nonsignificant departure; exceedances are asterisked)
Table 26. Key chemical, physical, and biological response indicators of impairment observed at each site in the Little Miami River study area in 2020. The causes associated with biological impairments are drawn from analyses of habitat, nutrient effects, chemical IPS, and other threshold exceedances, and biological response signatures. Causes of impairment are classified as fair, poor, or very poor in accordance with the exceedance of corresponding thresholds. Threats to attainment are listed for attaining sites. See footnotes for table references and biological, physical, and chemical thresholds ((ns – nonsignificant departure; exceedances are asterisked)
LIST OF FIGURES
Figure 1. Area of Degradation (ADV) and Area of Attainment (AAV) values for the IBI (upper left), MIwb (upper right), and ICI (lower right) in the Little Miami River mainstem between 1983 and 2022. The miles of full and non-attainment are depicted in the lower right panel (AQLU – Aquatic Life Use Attainment)
Figure 2. Area of Degradation (ADV) and Area of Attainment (AAV) values for the IBI (upper left), ICI (upper right) in the Duck Creek mainstem between 2012, 2017, and 2022. The miles of full and non-attainment are depicted for the current LRW and WWH use designations (lower left) and against a WWH baseline (lower right)
Figure 3. Aquatic life use attainment status in the Little Miami River study area during 2022 (blue circles – full attainment of EWH; green circles – full attainment of WWH; yellow – partial attainment; red – non-attainment; grey outfall symbols – CSO locations). Site descriptions and site codes appear in Table 6. Sites evaluated as PHWH sites appear as

	triangles with their classification results (blue – PHW Class 3AI; orange – PHWH Class 2; yellow – PHW Class 1)
Figure 4.	Categorical threats to full EWH attainment in the Little Miami River mainstem as derived from the SW Ohio IPS threat and susceptibility thresholds for land use, chemical, and habitat stressors in 2022.
Figure 5.	Weighted categorical causes of aquatic life use impairment in the Duck Creek subwatershed and the Sycamore Creek, Polk Run, and Clough Creek partial subwatersheds in 2022.
Figure 6.	Maps of recreational use attainment status for the Primary Contact Recreational and Secondary Contact uses in the 2022 Little Miami River study area expressed as degrees of attainment (blue or green) or non-attainment (orange or red) based on mean (left) and maximum (right) E. coli values. MSDGC CSO locations appear as outfall symbols. 15
Figure 7.	The 2022 Little Miami River study area showing sampling locations by site code (see Table 6) and the occurrence of CSO locations in Duck and Sycamore Creeks and WWTP discharges to the Little Miami River mainstem
-	Hierarchy of administrative and environmental indicators which can be used for water quality management activities such as monitoring and assessment, reporting, and the evaluation of overall program effectiveness. This is patterned after a model developed by U.S. EPA (1995a,b) and further enhanced by Karr and Yoder (2004)
Figure 9.	Flow measured at the USGS gauge at Milford (RM) during May 1-October 31 depicted as a hydrograph in 2007, 2012, 2017, and 2022 (upper) and a frequency box plot for each year (lower). The median, 80th%, 10th%, and Q _{7,10} flows are indicated on each hydrograph
Figure 10	9 . Median, maximum, and minimum D.O. values from daytime grab samples in 2022 (upper) and median D.O. values in 1983, 2007, 2012, 2017, and 2022 (lower). The EWH and WWH average and minimum criteria are shown as each applies to the L. Miami R. mainstem. Major discharges and tributaries are indicated across the top
Figure 12	1. Box-and-whisker plots of continuous D.O from Datasonde continuous recorders at 14 sites in the Little Miami River mainstem during August 1-4 and 8-11, 2022. The EWH and WWH daily average and minimum criteria are indicated by gray shaded bars, solid and dashed lines, and the maximum D.O. indicative of excessive diel swings is indicated by a black dashed line. Major discharges and tributaries are indicated across the top.
Figure 12	2 . Box-and-whisker plots of continuous temperature (C°) and pH (S.U.)from Datasonde continuous recorders at 14 sites in the Little Miami River mainstem during August 1-4 and 8-11, 2022. The period average and maximum temperature criteria are indicated by solid and dashed lines (upper) and the pH criteria by solid and dashed lines (lower). Major discharges and tributaries are indicated across the top
Figure 13	3. Median, maximum, and minimum ammonia-N values in 2022 (upper) and median ammonia-N values in 1983, 2007, 2012, 2017, and 2022 (lower). The IPS thresholds are depicted by the solid colored lines. Major discharges and tributaries are indicated across the top

the top of the graph (green — WWH; light green — WWH recommended; ord LRW)	
Figure 24. Median, maximum, and minimum E. coli values in Duck Creek in 2022. The recreation criteria are depicted by the solid colored lines with the level asso human sewage as the primary source added. The LRW (orange shaded) and (green shaded) designated reaches are indicated across the top	e contact ociated with d WWH
Figure 25. Box-and-whisker plots of continuous specific conductivity (μS/cm) from Doc continuous recorders at 13 sites in Duck Creek, Sycamore Creek, Polk Run, Creek during August 11-15, 15-18, and 25-29, 2022. The range of EWH, WV LRW IPS thresholds are indicated by shaded bars and labels. The applicable designation is shown as a colored bar across the top of the graph (green – orange – LRW)	and Clough WH, and e use WWH;
Figure 26. Qualitative Habitat Evaluation Index (QHEI) scores in the Little Miami Rive in 1983, 2007, 2012, 2017 and 2022 with QHEI narrative ranges as colored	er mainstem ' solid lines.
Figure 27. A modified site in Duck Creek at Erie Ave. (LM75; upper) and QHEI scores in 2007, 2012, 2017, and 2022 in the Duck Creek mainstem with QHEI narration colored solid lines.	in 1994, ive ranges as
Figure 28. Index of Biotic Integrity (IBI) results for the Little Miami River mainstem in 2007, 2012, 2017, and 2020. The EWH and WWH biocriteria are depicted a areas between the biocriterion and the non-significant departure with major sources and tributaries along the top of the graph.	n 1983, ns shaded for pollution
Figure 29. Modified Index of Well-Being (MIwb) results for the Little Miami River ma 1983, 2007, 2012, 2017, and 2022. The EWH and WWH biocriteria are depi shaded areas between the biocriterion and the non-significant departure w pollution sources and tributaries along the top of the graph	icted as vith major
Figure 30. Index of Biotic Integrity (IBI) results for the Duck Creek mainstem in 1983, 2017, and 2022. The WWH and LRW biocriteria are depicted as a shaded be colored line. The LRW (orange) and WWH (green) designated reaches are in along the top of the graph.	ar and a Indicated
Figure 31. Invertebrate Community Index (ICI) results for the Little Miami River main 1983, 2007, 2012, 2017, and 2022. The EWH and WWH biocriteria are depid shaded areas between the biocriterion and the non-significant departure we pollution sources and tributaries along the top of the graph	nstem in icted as vith major
Figure 32. Invertebrate Community Index (ICI) results for the Duck Creek mainstem in 2007, 2012, 2017, and 2020. The WWH and LRW biocriteria are depicted as bar and a colored line. The LRW (orange) and WWH (green) designated real indicated along the top of the graph.	n 1983, s a shaded aches are

ACKNOWLEDGEMENTS

Chris O. Yoder, MBI, served as the report editor and project manager. Contributions to the report and the analyses included Edward T. Rankin, Vickie L. Gordon, Matt A. Sarver, and Martin J. Knapp of MBI. Database management and data analysis was provided by Vickie L. Gordon and Edward T. Rankin, MBI. Field crew leaders were Matt Sarver (fish assemblage), Alex Roller-Knapp and Ashley Smith (macroinvertebrate assemblage), and Wesley Hall (Datasondes and chemical assessment). Field sampling assistance was provided by Marty Knapp and Jack Freda (macroinvertebrates), Amanda Bias (water sampling), and Grace Brubaker and Madeline Moates (fish assemblage). Logistical support at MBI was provided by Allison Boehler and Chelsea Dingess. Chemical analysis was provided by MSDGC laboratory under the direction of Reese Johnson and sample receiving and analysis coordinated by Wanda Harney and Thomas Fritz. Overall MSDGC project management was provided by Chris Hall and Laura Boyd. The draft report was reviewed and edited by Laura Boyd, Alaina Morman, and Scott Bessler of MSDGC and Carrie Turner of Limnotech.

Glossary of Terms

Ambient Monitoring Sampling and evaluation of receiving waters not

necessarily associated with episodic perturbations.

Aquatic Assemblage An association of interacting populations of organisms

in a given waterbody, for example, the fish assemblage

or the benthic macroinvertebrate assemblage.

Aquatic Community An association of interacting assemblages in a given

waterbody, the biotic component of an ecosystem.

Aquatic Life Use (ALU) A beneficial use designation in which the waterbody

provides suitable habitat for survival and reproduction of desirable fish, shellfish, and other aquatic organisms; classifications specified in State water quality standards relating to the level of protection afforded to the resident biological community by the

custodial State agency.

Assemblage Refers to all of the various species of a particular

taxonomic grouping (e.g., fish, macroinvertebrates, algae, submergent aquatic plants, etc.) that exist in a particular habitat. Operationally this term is useful for defining biological assessment methods and their attendant assessment mechanisms, i.e., indices of biotic integrity (IBI), O/E models, or fuzzy set models.

Attainment Status The state of condition of a waterbody as measured by

chemical, physical, and biological indicators. Full attainment is the point at which measured indicators signify that a water quality standard has been met and it signifies that the designated use is both attained and protected. Non-attainment is when the designated use

is not attained based on one or more of these indicators being below the required condition or state

for that measure or parameter.

Attribute A measurable part or process of a biological system.

Beneficial Uses Desirable uses that acceptable water quality should

support. Examples are drinking water supply, primary contact recreation (such as swimming), and aquatic life

support.

Benthic Macroinvertebrates

Animals without backbones, living in or on the substrates, of a size large enough to be seen by the unaided eye, and which can be retained by a U.S. Standard No. 30 sieve (0.595 mm openings). Also referred to as benthos, infauna, or macrobenthos.

Best Management Practice

An engineered structure or management activity, or combination of these that eliminates or reduces an adverse environmental effect of a pollutant, pollution, or stressor effect.

Biological Assessment

An evaluation of the biological condition of a waterbody using surveys of the structure and function of a community of resident biota; also known as bioassessment. It also includes the interdisciplinary process of determining condition and relating that condition to chemical, physical, and biological factors that are measured along with the biological sampling.

Biological Criteria (Biocriteria)

<u>Scientific meaning</u>: quantified values representing the biological condition of a waterbody as measured by structure and function of the aquatic communities typically at reference condition; also known as biocriteria.

Regulatory meaning: narrative descriptions or numerical values of the structure and function of aquatic communities in a waterbody necessary to protect a designated aquatic life use, implemented in, or through state water quality standards.

Biological Condition Gradient

A scientific model that describes the biological responses within an aquatic ecosystem to the increasing effects of stressors.

Biological Diversity

Refers to the variety and variability among living organisms and the ecological complexes in which they occur. Diversity can be defined as the number of different taxa and their relative frequencies. For biological diversity, these taxa are organized at many levels, ranging from complete ecosystems to the biochemical structures that are the molecular basis of heredity. Thus, the term encompasses different

ecosystems, species, and genes; also known as biodiversity.

Biological Indicator

An organism, species, assemblage, or community characteristic of a particular habitat, or indicative of a particular set of environmental conditions; also known as a bioindicator.

Biological Integrity

The ability of an aquatic ecosystem to support and maintain a balanced, adaptive community of organisms having a species composition, diversity, and functional organization comparable to that of natural habitats within a region (after Karr and Dudley 1981).

Biological Monitoring

The use of a biological entity (taxon, species, assemblage) as a detector and its response as a measure of response to determine environmental conditions. Ambient biological surveys and toxicity tests are common biological monitoring methods; also known as biomonitoring.

Biological Survey

The collection, processing, and analysis of a representative portion of the resident aquatic community to determine its structural and/or functional characteristics and hence its condition using standardized methods.

Clean Water Act (CWA)

An act passed by the U.S. Congress to control water pollution (formally referred to as the Federal Water Pollution Control Act of 1972). Public Law 92-500, as amended. 33 U.S.C. 1251 et seq.; referred to herein as the CWA.

CWA Section 303(d)

This section of the Act requires States, territories, and authorized Tribes to develop lists of impaired waters for which applicable water quality standards are not being met, even after point sources of pollution have installed the minimum required levels of pollution control technology. The law requires that these jurisdictions establish priority rankings for waters on the lists and develop TMDLs for these waters. States, territories, and authorized Tribes are to submit their list of waters on April 1 in every even-numbered year.

CWA Section 305(b)

Biennial reporting required by the Act to describe the quality of the Nation's surface waters, to serve as an evaluation of progress made in maintaining and restoring water quality, and describe the extent of remaining problems.

Criteria

Limits on a particular pollutant or condition of a waterbody presumed to support or protect the designated use or uses of a waterbody. Criteria may be narrative or numeric and are commonly expressed as a chemical concentration, a physical parameter, or a biological assemblage endpoint.

DELT Anomalies

The percentage of Deformities, Erosions (e.g., fins, barbels), Lesions and Tumors on fish assemblages (DELT). An important fish assemblage attribute that is a commonly employed metric in fish IBIs.

Designated Uses

Those uses specified in state water quality standards for each waterbody or segment whether or not they are being attained.

Disturbance

Any activity of natural or human causes that alters the natural state of the environment and its attributes and which can occur at or across many spatial and temporal scales.

Ecological integrity

The summation of chemical, physical, and biological integrity capable of supporting and maintaining a balanced, integrated adaptive community of organisms having a species composition, diversity, and functional organization comparable to that of natural habitats in the region.

Ecoregion

A relatively homogeneous geographical area defined by a similarity of climate, landform, soil, potential natural vegetation, hydrology, or other ecologically relevant variables; ecoregions are portioned at increasing levels of spatial detail from level I to level IV.

Existing Use

A use that was actually attained in a waterbody on or after November 28, 1975, whether or not they are included in the state water quality standards (November 28, 1975 is the date on which U.S. EPA

promulgated its first water quality standards regulation in 40CFR Part 131). Existing uses must be maintained and cannot be removed.

Index of Biotic Integrity (IBI)

An integrative expression of site condition across multiple metrics comprised of attributes of a biological assemblage. It refers to the index developed by Karr (1981) and explained by Karr et al. (1986). It has been used to express the condition of fish, macroinvertebrate, algal, and terrestrial assemblages throughout the U.S. and in each of five major continents.

MIwb

The Modified Index of Well-Being (MIwb) is based on fish assemblage measures including numbers, biomass, and two diversity indices (Shannon Index) based on numbers and biomass. The numbers and biomass metrics exclude highly tolerant species. It reflects the overall productivity and diversity of the fish assemblage and it frequently responds before the IBI to improvements in water quality and habitat.

Metric

A calculated term or enumeration representing an attribute of a biological assemblage, usually a structural aspect, that changes in a predictable manner with an increased effect of human disturbance.

Monitoring and Assessment

The entire process of collecting data from the aquatic environment using standardized methods and protocols, managing that data, analyzing that data to make assessments in support of multiple program objectives, and disseminating the assessments to stakeholders and the public.

Multimetric Index

An index that combines assemblage attributes, or metrics, into a single index value. Each metric is tested and calibrated to a scale and transformed into a unitless score prior to being aggregated into a multimetric index. Both the index and metrics are useful in assessing and diagnosing ecological condition.

Narrative Biocriteria

Written statements describing the narrative attributes of the structure and function of aquatic communities

in a waterbody necessary to protect a designated aquatic life use.

Natural Condition

This includes the multiplicity of factors that determine the physical, chemical, or biological conditions that would exist in a waterbody in the absence of measurable impacts from human activity or influence.

Numeric Biocriteria

Specific quantitative and numeric measures of the structure and function of aquatic communities in a waterbody necessary to protect a designated aquatic life use.

Qualitative Habitat Evaluation Index

A qualitative habitat evaluation assessment tool that is applied to streams and rivers in Ohio and which is used to identify habitat variables that are important to attainment of the Ohio biological criteria.

Reference Condition

The condition that approximates natural, unimpacted, or best attainable conditions (biological, chemical, physical, etc.) for a waterbody. Reference condition is best determined by collecting measurements at a number of sites in a similar waterbody class or region under minimally or least disturbed conditions (by human activity), if they exist. Since undisturbed or minimally disturbed conditions may be difficult or impossible to find in some states, least disturbed conditions, combined with historical information, models or other methods may be used to approximate reference condition as long as the departure from natural or ideal is comprehended. Reference condition is used as a benchmark to establish numeric biocriteria.

Reference Site

A site selected to represent an approximation of reference condition and by comparison to other sites being assessed. For the purpose of assessing the ecological condition of other sites, a reference site is a specific locality on a waterbody that is minimally or least disturbed and is representative of the expected ecological condition of other localities on the same waterbody or nearby waterbodies.

Regional Reference Condition

A description of the chemical, physical, or biological condition based on an aggregation of data from reference sites that are representative of a waterbody type in an ecoregion, subregion, bioregion, or major drainage unit.

Stressors

Physical, chemical, and biological factors that can adversely affect aquatic organisms. The effect of stressors is apparent in the biological responses.

Use Attainability Analysis (UAA)

A structured scientific assessment of the physical, chemical, biological or economic factors affecting attainment of the uses of waterbodies.

Use Classes

A broad capture of a designated use for general purposes such as recreation, water supply, and aquatic life.

Use Subclasses

A subcategorization of use classes into discrete and meaningful descriptions. For aquatic life this would include a hierarchy of warmwater and cold water uses and additional stratification provided by different levels of warmwater uses and further stratification by waterbody types.

TALU Based Approach

This approach includes tiered aquatic life uses (TALU) based on numeric biological criteria and implementation via an adequate monitoring and assessment program that includes biological, chemical, and physical measures, parameters, indicators and a process for stressor identification.

Tiered Aquatic Life Uses (TALUs)

As defined: The structure of designated aquatic life uses that incorporates a hierarchy of use subclasses and stratification by natural divisions that pertain to geographical and waterbody class strata. TALUs are based on representative ecological attributes and these should be reflected in the narrative description of each TALU tier and be embodied in the measurements that extend to expressions of that narrative through numeric biocriteria and by extension to chemical and physical indictors and criteria.

As used: TALUs are assigned to water bodies based on the protection and restoration of ecological potential. This means that the assignment of a TALU tier to a specific waterbody is done with regard to reasonable restoration or protection expectations and attainability. Hence knowledge of the current condition of a waterbody and an accompanying and adequate assessment of stressors affecting that waterbody are needed to make these assignments.

Total Maximum Daily Load (TMDL)

The maximum amount of a pollutant that a body of water can receive while still meeting water quality standards. Alternatively, a TMDL is an allocation of a water pollutant deemed acceptable to attain the designated use assigned to the receiving water.

Water Quality Standards (WQS)

A law or regulation that consists of the designated use or uses of a waterbody, the narrative or numerical water quality criteria (including biocriteria) that are necessary to protect the use or uses of that particular waterbody, and an antidegradation policy.

Water Quality Management

A collection of management programs relevant to a water resource protection that includes problem identification, the need for and placement of best management practices, pollution abatement actions, and measuring the effectiveness of management actions.

List of Acronyms

ALU Aquatic Life Use

BCG Biological Condition Gradient

CWA Clean Water Act

DELT Deformities, Erosions, Lesions, and Tumors

EWH Exceptional Warmwater Habitat

EPT Ephemeroptera, Plecoptera, Trichoptera

IBI Index of Biotic Integrity for fish assemblages

ICI Invertebrate Community Index

LRW Limited Resource Water

M&A Monitoring and Assessment

NPDES National Pollutant Discharge Elimination System

OEPA Ohio Environmental Protection Agency

PHWH Primary Headwater Habitat

QHEI Qualitative Habitat Evaluation Index

SNAP Stream Nutrient Assessment Procedure

TALU Tiered Aquatic Life Use

TMDL Total Maximum Daily Load

UAA Use Attainability Analysis

WLA Waste Load Allocation

WQS Water Quality Standards

WWH Warmwater Habitat

WWTP Wastewater Treatment Plant

FOREWORD

What is a Biological and Water Quality Survey?

A biological and water quality survey, or "biosurvey", is an interdisciplinary monitoring effort coordinated on a specific waterbody or watershed scale. This may involve a relatively simple setting focusing on one or two small streams, one or two principal stressors, and a handful of sampling sites or a much more complex effort including entire drainage basins, multiple and overlapping stressors, and tens of sites. The latter is the case with this study in that Little Miami represents a watershed of 1,170 square miles in drainage area with a mix of overlapping stressors and sources in a highly urbanized and legacy industrial landscape. The 2022 assessment is a follow-up to previous surveys of the Lower Little Miami River and Selected Tributaries performed by MBI in 2012, 2013 (partial survey), and 2017 (MBI 2013, 2018) and Ohio EPA in 1983, 1993, 1998, and 2007 (Ohio EPA 1995, 2000, 2009).

Scope of the 2022 Lower Little Miami River and Selected Tributaries Biological and Water Quality Assessment

The scope of the MSDGC 2022 Lower Little Miami River and Selected Tributaries biological and water quality assessment was the same as in 2017 (MBI 2018) which included the mainstem and all or parts of four tributary subwatersheds. This compares to the full watershed scope of the 2012 survey (MBI 2013) that included the lower mainstem, the lower East Fork mainstem, and all the tributary subwatersheds. In addition to supporting the instream monitoring requirement of the MSDGC Combined Sewer Overflow (CSO) National Pollutant Discharge Elimination System (NPDES) permit (1PX00022*ED) the overall objectives remained the same:

- 1. Assess the attainability of the existing aquatic life use designations codified in the Ohio Water Quality Standards (WQS) and make recommendations for any changes as revealed by the survey data and analysis;
- Determine the extent to which biological assemblages are impaired (using Ohio EPA methods and criteria);
- 3. Determine the extent of recreational use impairments using *E. coli* as the sole indicator and criteria in the Ohio WQS;
- 4. Determine the categorical stressors and sources that are associated with those impairments; and,
- Add to the broader databases for the Little Miami River study area to track and understand changes over time that occur as the result of MSDGC abatement actions or other factors.

The data presented herein were processed, evaluated, and synthesized as a biological and water quality assessment of aquatic life and recreational use support status. The assessment of the mainstem is directly comparable to those accomplished previously in 1983, 1989, 1993, 1998, and 2007 by Ohio EPA and 2012, 2013, and 2017 by MBI, such that trends in status can be examined, and causes and sources of impairment can be confirmed, appended, or removed.

This study includes an assessment of chemical and physical stressors related to biological assemblages. It is not the purpose of this study to identify specific remedial actions on a site specific or subwatershed basis. However, the data produced by this study contributes to the maintenance and use of the Integrated Prioritization System (IPS; MBI 2015) that was developed to determine and prioritize remedial projects for the MSDGC service area and adjoining watersheds.

EXECUTIVE SUMMARY

Scope and Purpose

In 2010 MSDGC and MBI developed a four-year rotational watershed assessment approach that is documented in the *Watershed Monitoring and Bioassessment Plan for the MSD Greater Cincinnati Service Area, Hamilton County, Ohio; Technical Report MBI/5-11-3* (MBI 2011). Initiated in 2011, it has provided biological and water quality monitoring data that has assisted MSDGC and area stakeholders in better understanding current water quality, trends through time, and considerations for capital planning and implementation of Project Groundwork to further improve water quality. The 2022 bioassessment of the Little Miami River study area is the third survey in series of baseline and follow-up surveys that are conducted primarily in support of the instream monitoring requirement of the CSO NPDES permit. The sampling and analysis in 2022 was performed by Level 3 Qualified Data Collectors and under a Project Study Plan (PSP) approved by Ohio EPA under the specifications of the Ohio Credible Data Law and Regulations.

An intensive pollution survey design that employs a high density of sampling sites and biological, chemical, and physical indicators and parameters was followed. The principal objectives of biological assessments are to assess current conditions, verify existing aquatic life and recreational use designations, assign uses to unlisted streams and stream segments, make recommendations for any changes to use designations, report attainment status following the Ohio WQS and Ohio EPA practices, and determine associated causes and sources of impairment. The determination of associated causes and sources of impairments to aquatic life and recreational uses followed practices similar to that employed by Ohio EPA. As such, these determinations are mostly categorical, but can include the identification of specific pollutants. The results of this study will be incorporated in an ongoing assessment of stressors and their root causes and sources throughout the MSDGC service area via the Integrated Prioritization System (IPS; MBI 2015). The IPS includes more detailed analyses of regional patterns in stressors by relating them to the chemical, physical, and biological data generated by the surveys to land use data available in GIS coverages.

Highlighted Findings

Aquatic Life Use Attainability

The key indicator of overall condition in terms of aquatic life is the status of the attainment of aquatic life use designations based on attainment of the Ohio biological criteria. The status of use attainment is portrayed as full, partial, or non-attainment at each site. The 2022 assessment of the Little Miami River mainstem, the Duck Creek watershed, and parts of Sycamore Creek provided an opportunity to update use attainment status and to gauge the effectiveness of prior and ongoing attempts to improve water quality and overall conditions by comparing the results to prior assessments. The 2012, 2013 (fish/habitat only), and 2017 surveys by MBI and the 1983, 1993, 1998, and 2007 surveys by Ohio EPA provide the most

consistent basis for comparisons in terms of spatial coverage and between indicators and parameters for the 2022 survey results.

Of the 41 sites that were assessed in the 2022 Little Miami River bioassessment, 13 sites were evaluated against the Exceptional Warmwater Habitat (EWH) use, 18 sites were evaluated against the Warmwater Habitat (WWH) use, six (6) sites against the Limited Resource Waters (LRW) use, and four (4) for the Primary Headwater Habitat (PHWH) classification consisting of one (1) PHW3A, two (2) PHW2, and one (1) PHW1 (Table 1). Recommendations for aquatic life use changes were originally made as part of the larger in scope 2012 bioassessment (MBI 2013) and again by the 2017 bioassessment (MBI 2018). All except one of the recommendations were eventually adopted into the Ohio WQS. These confirmed and recommended uses were used to gauge attainment status in 2017 and again in 2022.

The lower reach of the East Fork of Duck Creek was recommended for the WWH use in lieu of the designated LRW use in 2017 (MBI 2018). This recommendation was not accepted by Ohio EPA for the most recent WQS revisions for the Little Miami River basin. The 2022 results show that the potential for WWH still exists at the lowermost two sites, LM 84 (RM 2.20) and LM 85 (RM 1.30), based on QHEI scores of 62.5 and 65.0, respectively. The biological results revealed impairment with fair macroinvertebrate narratives and IBI scores of 22 (poor) and 28 (fair) with causes including very poor and poor urban land use and urban pollutant impacts. The biological performance, while impaired for WWH, was well above that expected for a LRW designated stream. The basis of the recommendation was on habitat despite the presence of urban impacts. This is consistent with how WWH designations have been recommended by MBI since 2011 and subsequently adopted by Ohio EPA throughout the MSDGC Service Area.

Trajectories in Key Indicators

Developing an understanding of the temporal trajectory of the different indicators and parameters that are provided by a spatially adequate monitoring design is important feedback to MSDGC, Ohio EPA, and stakeholders in the Little Miami River study area. The study area has a complex mosaic of watershed level and site-specific impacts. The complexity of which makes being able to understand and then develop management responses to impairments challenging. The documentation of incremental improvements as opposed to a singular focus on the full restoration of impairments allows program effectiveness to receive credit short of achieving full restoration. Furthermore, failing to recognize if waters are improving and on a positive trajectory can lead to erroneous conclusions about the attainability of Clean Water Act (CWA) goals and the viability of restoration efforts. Simply put, a selective focus on individual or selected pollutants is insufficient in a complex setting like the Little Miami River study area. It is for these reasons that being able to detect, measure, and express incremental improvements in key biological indicators is vital. Showing incremental progress not only provides confirmation that restoration efforts are working, but it also provides important feedback for those programs which, because of uncertainties about their control, must be adaptive in order to make progress. As such, the type of monitoring and assessment that was employed in this survey was designed to provide results that could be used to demonstrate the degree and direction of incremental change.

Table 1. Summary of current and recommended (yellow shaded) aquatic life uses (AQLU) based on use attainability analyses from the 2012 and 2017 Little Miami River biological and water quality assessments by site sampled in 2022. Other color shading distinguishes the mainstem and three tributary subwatersheds in the 2022 survey.

									Recom-	
	Bas	in-		Drain.		Current			mended	
Site	Stre			Area		AQL	Year	Verified	AQL	
ID	Co	-	River_Stream Name	(mi. ²)	RM	Use ¹	Verified	Ву	Use ²	Location Description
LM01	11		Little Miami River	1140		EWH	1983	OEPA	EWH	Dst. U.S. Rt. 22/St. Rt. 3 - L. Miami State Park
LM02	11	001	Little Miami River (RF06)	1145	24.10	EWH	1983	OEPA	EWH	Ust. O'Bannon Cr.
LM03	11	001	Little Miami River	1150	22.30	EWH	1983	OEPA	EWH	Ust. Polk Run WWTP
LM05	11	001	Little Miami River	1160	21.50	EWH	1983	OEPA	EWH	Hopewell Rd. (Bridge Street)
LM07	11	001	Little Miami River	1187	18.50	EWH	1983	OEPA	EWH	Camargo Rd.
LM08	11	001	Little Miami River	1190	17.70	EWH	1983	OEPA	EWH	Canoe access dst. St. Rt. 126
LM09	11	001	Little Miami River	1203	13.10	EWH	1983	OEPA	EWH	Wooster Pike - Milford
LM11	11	001	Little Miami River	1707	10.90	EWH	1983	OEPA	EWH	Intersection of Mt. Carmel & Round Bottom Rd.
LM12	11	001	Little Miami River	1710	8.10	EWH	1983	OEPA	EWH	Newtown Rd.
LM13	11	001	Little Miami River	1720	6.83	EWH	1983	OEPA	EWH	R.R. Trestle/Mariemont
LM15	11	001	Little Miami River	1740	4.10	EWH	1983	OEPA	EWH	Ust. Duck Creek
LM16A	11	001	Little Miami River	1752	3.70	EWH	1983	OEPA	EWH	Dst. Duck Creek/Ust. Beechmont Ave.
LM16	11	001	Little Miami River	1752	3.50	EWH	1983	OEPA	EWH	Beechmont Ave. dst. Duck Cr., ust. Clough Cr.
LM17	11	001	Little Miami River	1754	1.60	WWH	1983	OEPA	WWH	Kellog Ave.
LM50	11	007	Sycamore Creek	12.5	1.10	WWH	1983	OEPA	WWH	Loveland Rd.
LM51	11	007	Sycamore Creek	24.0	0.50	WWH	1983	OEPA	WWH	Dst. N. Fork
LM52	11	007	Sycamore Creek	24.0	0.10	WWH	1983	OEPA	WWH	Dst. Sycamore Cr. WWTP
LM54	11	086	U.T. @1.82 to U.T. Sycamore Cr. @1.12	1.58	0.40	PHW2	2012	MBI	PHW3A	Behind house on Pepperell Rd.
LM55	11	049	Un. Trib to Sycamore Cr. @1.12	4.22	1.20	WWH	2012	MBI	WWH	Upstream Blome Rd bridge
LM56	11	049	Un. Trib to Sycamore Cr. @1.12	5.61	0.20	WWH	2012	MBI	WWH	Nearest 8174 Loveland Maderia Dr
LM40	11	009	Polk Run	10.80	0.30	WWH	1983	OEPA	WWH	East Kemper Rd.
LM71	11	004	Duck Creek	0.29	6.10	LRW	2012	MBI	LRW	Norwood/Harris Ave
LM72	11	004	Duck Creek	1.80	5.14	LRW	2012	MBI	LRW	Duck Creek Road
LM73	11	004	Duck Creek	1.91	4.58	LRW	2012	MBI	LRW	Steel Place
LM74	11	004	Duck Creek	9.56	3.90	LRW	2007	OEPA	LRW	Dst. E. Fork Duck Creek
LM75	11	004	Duck Creek	10.20	3.40	LRW	2007	OEPA	LRW	Erie Avenue
LM76	11	004	Duck Creek	11.60	2.80	WWH	2007	OEPA	WWH	Red Bank Rd. and Fair Ln.
LM77	11	004	Duck Creek	14.40	2.00	WWH	2007	OEPA	WWH	Wooster Rd.
LM79	11	004	Duck Creek	14.70	0.90	WWH	2007	OEPA	WWH	Ust. Wooster Rd.
LM80	11	075	Un. Trib. to Duck Cr. @4.80	1.40	5.00	LRW	2012	MBI	LRW	Kennedy Avenue
LM83	11	075	Un. Trib. to Duck Cr.k @4.80	1.20	0.80	PHW2	2012	MBI	PHW2	Behind Home Depot
LM82	11	077	Un. Trib. to L. Duck Cr. @4.42	1.40	0.20	PHW3	2012	MBI	PHW3A	At baseball field
LM81	11	004	East Fork Duck Creek	0.29	2.30	LRW	2007	OEPA	PHW1	End of Tamworth Dr.
LM84	11	051	East Fork Duck Creek	2.20	0.70	LRW	2007	OEPA	WWH	Behind John P. Parker School
LM85	11	051	East Fork Duck Creek	1.30	2.00	LRW	2007	OEPA	WWH	Stewart Ave.
LM86	11	076	Little Duck Creek	0.22	2.40	WWH	2012	MBI	WWH	Camargo Road
LM87	11	076	Little Duck Creek	0.50	1.90	WWH	2012	MBI	WWH	Plainville Road
LM90	11	076	Little Duck Creek	0.55	1.00	WWH	2012	MBI	WWH	Settle Street
LM92	11	076	Little Duck Creek	1.68	0.49	WWH	2012	MBI	WWH	Wooster Rd. @Red Bank
LM95	11		Clough Creek	2.10	3.20	WWH	2007	OEPA	WWH	Clough Pike and Bridges Rd.
LM98										
Footnote	Footnotes: Current AQL use listed in OAC 3745-1-18 (November 2022 version); Verified or recommended AQL use based on 2022 results.									

The results of the bioassessment using the primary indices that comprise the Ohio biocriteria were used to quantify the degree to which overall aquatic life conditions have improved through time up to and including the 2017 survey. The Area of Degradation (ADV) and Area of Attainment (AAV) methodology (Yoder et al. 2005) was used to illustrate the degree of change between the Ohio EPA surveys of 1983, 1993, 1998, and 2007 and the 2012, 2013, and 2017 MBI surveys of the mainstem of Little Miami. The ADV/AAV term is an expression of the degree to which one of the biological index values is either above or below the applicable biocriterion and the distance of the mainstem over which it occurs. As such it is a quantification of the

Figure 1. Area of Degradation (ADV) and Area of Attainment (AAV) values for the IBI (upper left), MIwb (upper right), and ICI (lower right) in the Little Miami River mainstem between 1983 and 2022. The miles of full and non-attainment are depicted in the lower right panel (AQLU – Aquatic Life Use Attainment).

"quantity" of biological attainment and impairment. When normalized to a standard distance (e.g., per mile) it can be an effective indicator of the degree of change taking place over time.

Little Miami River Mainstem

ADV/AAV results for the fish Index of Biotic Integrity (IBI), the Modified Index of Well-Being (Mlwb), and the macroinvertebrate Invertebrate Community Index (ICI) were available from the series of Ohio EPA surveys in 1983, 1993, 1998, and 2007 and the 2012, 2013 (fish only), 2017 and 2022 MSDGC surveys of the lower Little Miami River mainstem. When this was assessed after the initial 2012 MSDGC survey (MBI 2013), a substantial decline was observed between the zenith of recovery documented by Ohio EPA in 2007 and the 2012 results especially for the fish IBI (Figure 1). Ohio EPA (2010) had credited the near complete recovery in 2007 from the impaired conditions in 1998 to improved WWTP treatment and phosphorus removal at selected WWTPs along the mainstem. The 2012 results showed a return to the impaired conditions of 1998 which prompted follow-up sampling in 2013 by Ohio EPA and MSDGC. The decline was the most severe in the fish IBI which was also evident in reduced AAVs for the fish MIwb and the ICI in 2012. Follow-up sampling for fish in 2013 showed a reduction in the degree of impairment, but recovery remained incomplete. The 2013 MSDGC sampling was extended upstream into Warren County to upstream from the confluence with Caesar Creek at RM 51.2 and included 24 sites downstream through the 2012 study area. IBI scores exceeded full attainment of the EWH IBI biocriterion with scores >52 downstream to RM 36.0 upstream from Lebanon. Between RM 36.0 to RM 17.7 at Miamiville, most scores declined marginally, either just meeting the EWH biocriterion of 48 or in non-significant departure. Scores declined to 40 or less at the remaining seven sites downstream from RM 12.7 at Milford. While inconclusive about a specific cause of the decline observed in 2012, the 2013 follow-up results better delineated the reaches of decline and impairment. The 2017 results demonstrated a near complete return to the full attainment of EWH in the reach of the mainstem downstream from RM 27.9 to the WWH reach at Beechmont Ave. (RM 3.0). The AAV for the fish IBI was just shy of the 2007 value and for the fish MIwb and macroinvertebrate ICI were slightly higher than in 2007. The 2022 results were essentially the same as in 2017, but with slightly lower AAVs which reflected more sites in non-significant departure of the fish IBI EWH biocriterion especially. The MIwb and ICI were likewise slightly lower in 2022 compared to 2017. The non and partial attainment of EWH and new site LM16A and the downstream most EWH site at LM16 showed impairment of EWH for the first time since 1998.

Duck Creek

Sufficient data was available from 2012, 2017, and 2022 to conduct a trend evaluation for the Duck Creek mainstem using the ADV/AAV methodology (Figure 2). Insufficient sites were sampled by Ohio EPA in 1983, 1994, or 2007 to include in this analysis, but an examination of those scant results indicates that conditions were likely the same or worse than in 2012. Both the fish IBI and macroinvertebrate ICI results demonstrated reduced ADVs and increased AAVs between 2012, 2017, and 2022 with the largest improvement in the macroinvertebrates. Aquatic life use status between 2012 and 2022 improved only slightly gaining perhaps one mile of full attainment and this considering the Limited Resource Waters (LRW) designation of the

Figure 2. Area of Degradation (ADV) and Area of Attainment (AAV) values for the IBI (upper left), ICI (upper right) in the Duck Creek mainstem between 2012, 2017, and 2022. The miles of full and non-attainment are depicted for the current LRW and WWH use designations (lower left) and against a WWH baseline (lower right).

upper two-thirds of Duck Creek. As such the improved ADV/AAVs for the fish IBI and macroinvertebrate ICI show an incremental improvement not revealed by the attainment status. The fish assemblage is the limiting factor in the use attainment results and an indication that the highly modified habitat of Duck Creek is a major limiting factor in Duck Creek along with multiple water quality impacts. The positive improvement in the macroinvertebrate assemblage between 2012 and 2017 was more likely associated with a lessening of chemical impacts, but this improvement trajectory leveled off in 2022 as well.

Aquatic Life Use Attainment Status

The aquatic life use attainment status for 2022 is depicted in Table 2 and Figures 1 and 2. Table 2 also lists causes of impairment and threats to fully attaining sites. The determination of causes and sources of aquatic life use impairment was accomplished by associating the occurrence of sampling results that exceeded various chemical and physical thresholds that are

known to adversely affect aquatic organisms. These distinctions may include multiple or specific types of effects and mechanisms. Some are parameter specific (e.g., low dissolved oxygen) since the data are collected at that level. Yet others are at the categorical level (e.g., nutrient enrichment, toxicity) that can include multiple parameters. In addition, certain stressors can be proxies for a wider range of specific causes or can mask causes that eventually emerge with changing conditions. Sources are also necessarily categorical and some are broader in their inclusion of specific activities than others. The causes and sources that are listed along with the biological impairments appear in the determination of aquatic life use attainment status (Table 2) and are summarized as weighted causes for impaired sites in the 2022 survey area. A summary description of attainment status and causes of impairment and threats to full attainment for each of the Little Miami River mainstem, Duck Creek, Sycamore Creek, and Clough Creek subwatersheds follows:

Little Miami River Mainstem – Overall Results

- The 2022 results showed full attainment of the Exceptional Warmwater Habitat (EWH) use at 11 of the 13 sites in the EWH designated reach.
- The 2022 results were similar to 2017 which was then a marked improvement over the near complete non-attainment of EWH that was observed in 2012 and nearly equivalent to or in excess of the 2007 results obtained by Ohio EPA. Of the nine (9) sites that fully attained EWH, seven (7) had one or two of the biocriteria indices in the non-significant departure range, six (6) for the IBI and two each for the MIwb and ICI. This compares to only three (3) such instances in 2017, each of which were for the IBI only. This also resulted in lower AAV/mile values for all three indices in 2022 compared to 2017 and 2007 that signifies a noticeable weakening of the EWH attainment in 2022.
- IPS derived threats to full EWH attainment included high urban land use in the catchment and buffer at all mainstem sites (48.6%) followed by organic and nutrient enrichment stressors (29.7%), urban related parameters (10.8%), low D.O. (8.1%), and toxic impacts (2.7%; Figure 4). Of the latter, zinc and lead levels also served as indicators of urban runoff and while low, pose a potential threat to the exceptional biota. Macrohabitat related threats were zero.
- The Ohio EPA large rivers nutrient effects assessment indicated no imminent issues or threats from nutrient enrichment as all sites evaluated were in the acceptable category. However, given the predominance of treated wastewater flows in proportion to low flow thresholds this poses a threat especially under any increases in such flows.
- There are no recommendations for any revisions to the existing aquatic life use designations for the Lower Little Miami River mainstem.
- A new site, LM16A downstream from Duck Creek, and two long term sites LM16 (RM 3.50) downstream from Beechmont Ave. and LM17 (RM 1.70) in the Ohio River influenced lower reach, were impaired as follows:
 - The status at LM16A was non-attainment of EWH with all three biological indices failing to meet the EWH biocriteria.
 - The status at LM16 was partial attainment due to only the IBI failing to meet the EWH biocriterion.

Table 2. Aquatic life use attainment status at 41 sites in the Lower Little Miami River mainstem, the Duck Creek subwatershed, and other partial subwatersheds in Hamilton Co. in 2022. Site IDs, river miles, drainage area, designated/recommended aquatic life use, fish and macroinvertebrate index scores, QHEI, weighted causes of impairment for impaired sites (very poor – red; poor – orange, fair – yellow), and threats to attaining sites (light blue)are listed for each site. The Ohio biological criteria and acronyms/abbreviations used in the table are in the footnotes.

		D									1							
		Drain-																
		age																
	River Mile	Area	Aquatic				Aq. Life											
Site ID	Fish/Macros	(sq. mi.)	Life Use	IBI	MIwb	ICI	Status	QHEI	Very Poor		Poor		Fair					
Little Miami River (EWH Aquatic Life Use –Existing)																		
LM01	27.90/27.80		EWH	50	10.3	42 ^{ns}	Full	89.5	H. Urb (Cat); H. Urb (Buff); Chloride; TDS; Nitrate	e; Cond; Lea	d;							
LM02	24.10/23.90	1090	EWH	52	10.9	50	Full	91.0	TDS; H. Urb (Cat); H. Urb (Buff); Nitrate; Cond; L	_ead;								
LM03	22.30/22.20	1150	EWH	47 ^{ns}	9.5 ^{ns}	52	Full	84.5	H. Urb (Cat); H. Urb (Buff); Nitrate; Lead;									
LM05	21.50/20.90	1160	EWH	47 ^{ns}	10.3	52	Full	89.5	H. Urb (Cat); H. Urb (Buff); Nitrate; Lead;									
LM07	18.50/18.50	1190	EWH	51	10.3	48	Full	89.5	H. Urb (Cat); H. Urb (Buff); Nitrate; Lead;									
LM08	17.70/16.90	1190	EWH	52	10.2	50	Full	85.5	H. Urb (Cat); H. Urb (Buff); Nitrate; Chloride; Lea	ad:								
LM09	13.10/13.10	1200	EWH	48	10.0	52	Full		H. Urb (Cat); H. Urb (Buff); BOD; Nitrate; Lead;									
LM11	10.90/10.90	1710	EWH	44 ^{ns}	9.8	42 ^{ns}	Full	85.0	H. Urb (Cat); H. Urb (Buff); Nitrate; Lead;									
LM12	8.10/8.00	1710	EWH	44 ^{ns}	9.3 ^{ns}	56	Full	89.3	H. Urb (Cat); H. Urb (Buff); Nitrate; Lead;									
LM13	6.83/7.30	1720	EWH	46 ^{ns}	9.8	54	Full	87.0	H. Urb (Cat); H. Urb (Buff); Nitrate; Lead;									
LM15	4.10/4.10	1730	EWH	44 ^{ns}	10.1	58	Full	87.5	H. Urb (Cat); H. Urb (Buff); BOD; Nitrate; Lead;									
LM16A	3.70/3.70	1740	EWH	30*	8.8*	40*	Non	65.0	H. Urb (Cat); H. Urb (Buff); Mod. Attr.			C	hannel; BOD; Org., Enrich; Lead;					
LM16	3.50/3.50	1750	EWH	41*	9.2 ^{ns}	42 ^{ns}	Partial		H. Urb (Cat); H. Urb (Buff);				ead:					
LIVITO	3.30/3.30	1730	EVVII	41	9.2	42	Partial	84.0		india a l		Le	edu,					
LM17	1.60/1.40	1760	wwn	36 ^{ns}	7.8*		Partial	62.0	Little Miami River (WWH Aquatic Life Use – Exi	suny)		C	hannel: Lead(18.2)					
LIVII/	1.60/1.40	1760	VVVV⊓	30	7.8		Partial	62.0	H. Urb (Cat);	4 (m. m.)			nannel; Lead(18.2)					
	4.40/4.00	42.5	140401	24*		46		70.0	Sycamore Creek (WWH Aquatic Life Use - Exis	ting)	CLL 11 DOD TOC TA	I	(A) C					
LM50	1.10/1.00	12.5	WWH	<u>24</u> *	NA = =ns	46	Non	70.0	H. Urb (Cat); H. Urb (Buff);		Chloride; BOD; TDS; TAmm;		KN; Cond; Lead; High Mod. Attr.					
LM51	0.50/0.24	22.8	WWH	49	7.7 ^{ns}	48	Full	61.5	H. Urb (Cat); H. Urb (Buff); Chloride; Channel; TD									
LM52	0.10/0.10	23.3	WWH	47	7.8 ^{ns}	38	Full		Chloride; pH; Nitrate; H. Urb (Cat); H. Urb (Buff)	· · · · · ·								
						Unna		itary at F	M 1.82 Unnamed Tributary to Sycamore Cr. at	RM 1.12 (PI	HW3A Existing Use)							
LM54	2.40/2.40	1.58	PHW3	12	NA		PHW3A		QHEI; Substr; Channel; H. Urb (Cat); Org. Enrich									
							Unno	med Tri	outary to Sycamore Cr. at RM 1.12 (WWH Aquat	tic Life Use -	Existing)							
LM55	1.20/1.00	5.32	WWH	<u>26</u> *	NA	G	Non	60.8	Chloride; TDS; H. Urb (Cat);		Cond;	A	ttr.					
LM56	0.20/0.20	5.61	WWH	28*	NA	36	Partial	63.0	QHEI; Substr; Channel; H. Urb (Cat);		Chloride;	0	rg. Enrich					
									Polk Run (WWH Aquatic Life Use - Existing	1)								
LM40	0.30/0.30	9.97	WWH	52	NA	50	Full	63.0	Chloride; H. Urb (Cat); H. Urb (Buff); TDS; Zinc(25)	5.0); Channe	el; Cond;							
	Biological Crite	ria – Interi	or Plateau E	coregion		AQLU	Status	Narrative		Gloss	ary of Acronyms and Abbreviations							
	Index	EWH	WWH	MWH	LRW	EWH	Full	>75	Acronym Description	Acronym	Description	Acronym	Description					
	3I – Boat	48	38	26	16.0	EWH	Partial	60-74	H. Urb (Cat) Urban land use in HUC12 catchment		Substrate condition from QHEI	TDS	Total dissolved solids					
	- Wading	50	40	28	18.0	EWH	Non	46-59	Dev-WS Developed land HUC12	NPS Mod. Attr.	Nonpoint source Modified QHEI Attributes	Conduct	Specific conductance					
	BI - HW	50	40	28	18.0	WWH	Full	30-45	H. Urb. (Buff) Urban land use in the 30 meter buffer	Mod. Attr. PAH		TKN TP	Total Kjeldahl nitrogen					
M	wb - Boat	9.6	8.7	6.4	5.0	WWH	Partial	<30	Imperv-30C Imprevious surface 30 m buffer clipped		Polycyclic aromatic hydrocarbons		Total phosphorus					
MIw	b – Wading	9.4	8.1	5.9	4.5	WWH	Non		Imperv-500 Impervious surface 500 meter buffer WC Metals Metals concentration in water column BOD Biochemical oxygen demand OHEI Qualitative Habitat Evaluation Index (OHEI) D.O. Dissolved oxygen Max. Maximum									
	ICI	46	30	14	8.0	WWH	Non		QHEI Qualitative Habitat Evaluation Index (QHEI) D.O. Dissolved oxygen Max. Maximum Chan Channel condition from QHEI SSC Suspended Sediment Concentration Org. Enrich. Organic Enrichment									
ICI	Narrative	Е	G	F	Р	LRW	Full		Chair Chainer Condition Holli Quei	330	Suspended Sediment Concentration	org. Enition.	Torganic chirchinent					

Table 2. continued.

i abie .	2. continued	<u>. </u>														
		Drain-														
		age														
	River Mile	Area	Aquatic				Aq. Life									
Site ID	Fish/Macros	(sq. mi.)	Life Use	IBI	MIwb	ICI	Status	QHEI	Very Poo	r	Poor		Fair			
	Duck Creek (LRW Aquatic Life Use – Existing)															
LM71	6.10/6.00	2.24	LRW	<u>12</u> *	NA	VP*	Non	26.0								
LM72	5.14/4.60	5.05	LRW	24	NA	Р	Full	54.5	H. Urb (Cat); H. Urb (Buff); Chloride	; TDS; QHEI; Channel; Co	nd; Org. Enrich					
LM73	4.58/4.40	5.84	LRW	12*	NA	F	Non	16.0	QHEI; Substr; H. Urb (Cat); H. Urb (I	Buff);	Chloride; TDS;	CI	nannel; Cond; Lead;			
LM74	3.90/3.90	9.59	LRW	28	NA	F	Full	63.0	H. Urb (Cat); H. Urb (Buff); Chloride	; Channel; TDS; Cond; Le	ead;					
LM75	3.40/3.30	11.5	LRW	<u>12</u> *	NA	F	Non	15.0	QHEI; Substr; Chloride; TDS; H. Urb		Cond: Lead	C	hannel;			
LM76	2.80/2.90	11.7	LRW	24	NA	26	Full	66.0	Chloride; TDS; H. Urb (Cat); H. Urb (el: Lead:	,				
									Duck Creek (WWH Aquatic Life		-,,					
LM77	2.00/1.80	14.3	wwn	36 ^{ns}	NA	32	Full	67.0	Chloride; TDS; H. Urb (Cat); H. Urb (ead:					
LM79	0.50/0.90	14.6	wwn	26*	NA	38	Non	68.8	H. Urb (Cat); H. Urb (Buff);		Chloride; TDS;	C	ond; Lead;			
	,								med Tributary to Duck Creek at RM	4.8 (PHW2 Existing Use						
LM83	0.00/0.80	1.20	PHW2	12	NA		PHW2		QHEI; Substr; Channel; H. Urb (Cat)		,					
LM80	0.10/0.20	1.42	PHW2	12	NA	Р	PHW2	34.5	Chloride; BOD; TDS; pH; Cond; H. U		HEI: Substr: Channel: TKN: Org. Enri	ch. Lead.				
	0.120, 0.20				101			0 1.5	East Fork Duck Creek (LRW Aquation		inely substity enamiely many sign emit	cii, zeau,				
LM81	2.30/2.30	0.29	PHW1		NA		PHW1			•	ry - no samples					
								Eas	t Fork Duck Creek (WWH Aquatic Lij		.,					
LM85	2.00/1.50	1.31	wwn	22*	NA	F	Non	62.5	TDS; H. Urb (Cat); H. Urb (Buff);		Chloride; Cond;	N	lod. Atttr.			
LM84	0.50/0.60	1.99	WWH	28*	NA	F	Non	65.0	Chloride; TDS; Cond; H. Urb (Cat); H	I. Urb (Buff):			nannel; Org. Enrich; Lead;			
	100,000		<u>_</u>						Little Duck Creek (WWH Ex				,			
LM86	2.40/2.70	0.22	wwn	32*	NA	MG	Partial	56.5	H. Urb (Cat);	3 -	Chloride: TDS:	N	lod. Attr.			
LM87	1.90/2.60	0.45	WWH	32*	NA	G	Partial	61.0	H. Urb (Cat);		Chloride: TDS: Mod. Attr.		nannel; Cond; Org Enrich			
LM90	1.00/2.30	0.55	WWH	32*	NA	G	Partial	61.0	H. Urb (Cat); H. Urb (Buff);		Chloride; TDS; Cond;		nannel; Org Enrich			
LM92	0.49/0.49	1.68	WWH	12*	NA		Non	66.5	H. Urb (Cat); H. Urb (Buff);		TDS; Lead;		nloride; Cond;			
352	25, 075	2.00							Tributary to Little Duck Creek at RI	M 4.42 (PHW3A Fxisting						
LM82	0.20/0.10	0.59	PHW3A	28	NA		PHW3A	50.5	H. Urb (Cat); TDS; QHEI; Channel; TI		•					
	0.20, 0.10	0.55	1		1.0.1		1111071	30.3	Clough Creek (WWH Aquatic Life	· · · · · · · · · · · · · · · · · · ·	,					
LM95	3.20/3.20	1.95	WWH	30*	NA	MG	Partial	59.0	Chloride; pH; H. Urb (Cat); H. Urb (E		TDS:	lo	HEI; Channel; Cond; Lead			
LM98	0.60/0.40	7.81	WWH	38 ^{ns}	NA	G	Full	59.5	H. Urb (Cat); H. Urb (Buff); Chloride		- /					
	Biological Crite					AQLU	Status	Narrative	the state of the s		ary of Acronyms and Abbreviations					
	Index	EWH	WWH	MWH	LRW	EWH	Full	>75	Acronym Description	Acronym	Description	Acronym	Description			
II	BI – Boat	48	38	26	16.0	EWH	Partial	60-74	H. Urb (Cat) Urban land use in HUC12 catch		Substrate condition from QHEI	TDS	Total dissolved solids			
	-Wading	50	40	28	18.0	EWH	Non	46-59					Specific conductance			
	IBI - HW	50	40	28	18.0	WWH	Full	30-45	Imperv-30C Imprevious surface 30 m buff	Urb. (Buff) Urban land use in the 30 meter buffer Mod. Attr. Modified QHEI Attributes TKN Total Kjeldahl nitrogen nperv-30C Imprevious surface 30 m buffer clipped PAH Polycyclic aromatic hydrocarbons TP Total phosphorus						
	lwb - Boat	9.6	8.7	6.4	5.0	WWH	Partial	<30	Imperv-500 Impervious surface 500 meter		Metals concentration in water column	BOD	Biochemical oxygen demand			
MIw	b – Wading	9.4	8.1	5.9	4.5	WWH	Non		QHEI Qualitative Habitat Evaluation		Dissolved oxygen	Max.	Maximum			
	ICI	46	30	14	8.0	WWH	Non		Chan Channel condition from QHEI		Suspended Sediment Concentration	Org. Enrich.	Organic Enrichment			
I ICI	Narrative	F	G	F	P	LRW	Full	Ī								

Figure 3. Aquatic life use attainment status in the Little Miami River study area during 2022 (blue circles – full attainment of EWH; green circles – full attainment of WWH; yellow – partial attainment; red – non-attainment; grey outfall symbols – CSO locations). Site descriptions and site codes appear in Table 6. Sites evaluated as PHWH sites appear as triangles with their classification results (blue – PHW Class 3AI; orange – PHWH Class 2; yellow – PHW Class 1).

Little Miami River Mainstem Threats

Figure 4. Categorical threats to full EWH attainment in the Little Miami River mainstem as derived from the SW Ohio IPS threat and susceptibility thresholds for land use, chemical, and habitat stressors in 2022.

 The status at LM17 was in partial attainment of WWH due to the MIwb failing to meet the WWH biocriterion.

Little Miami River - Site 16A

- The cause of the non-attainment at LM16A was related to its close proximity to Duck Creek as evidenced by the sharp decline in all three biological indices related to the nearest upstream site at LM15 that was in full EWH attainment. Duck Creek receives discharges from numerous CSOs and urban stormwater. In addition, the severely modified habitat in the middle and upper subwatershed reduces the assimilative capacity allowing it to function as a conduit for CSO and urban related pollutants. The most striking evidence of serious organic enrichment is the *E. coli* mean of 1,100 cfu/mL and a maximum of 241,960 cfu/mL measured at LM16A compared to a lower mean of 129 cfu/100 mL and maximum of 1,414 cfu/100 mL at closest upstream site LM15 (RM 4.10).
- The 2022 IBI and MIwb were considerably lower than values obtained by MBI at this same location in 2019 that was sampled as part of another project. The IBI score declined from

- an average of 41 in 2019 to 30 in 2022 and the MIwb declined from 10.1 to 8.9, respectively. The total number of individuals and number of fish species also declined.
- DELT anomalies on fish at LM16A were elevated at 2.6% in August and 6.0% in September 2022, an increase over values of 0 and 0.6% in 2019, thus reflecting an increased sublethal stress response that is likely related to the comparatively low D.O. values that exceeded the EWH criteria in 2022 combined with low level toxicity. The declining results in these indicators between August and September reflects a longer-term response as opposed to an episodic, short term event.

The macroinvertebrate assemblage likewise reflected an impact similar to the fish assemblage with an ICI score of 40 at LM16A compared to an ICI score of 58 at LM15. The %Mayflies metric was dramatically reduced to 4.8% at LM16A compared to 23.8% at LM15, a response that is typical of low D.O., organic enrichment, and urban related impacts.

Little Miami River - Site 16

• The partial attainment at LM16 was likely the result of the temporal impacts from the coffer dam constructed for the Beechmont bicycle path addition to the Beechmont Ave. bridge in 2021-22. There was a decline between 2019 and 2022 in the number of species and individuals that resulted in a decline in the average IBI from 46 (meets EWH) to 41 (fails EWH) and a decline in the MIwb from 9.8 to 9.2. The coffer dam was in place during the first fish pass in 2022, but was removed before the second pass. There was an increase in the number of darters from the first to second pass with only Greenside Darter collected during the first sampling event, while Variegate, Greenside, Rainbow, Banded, and Fantail Darter were all collected post-cofferdam removal that allowed the riffle at this site to reform. Stonecat Madtom and Gravel Chub also reappeared in the post dam removal sample.

Little Miami River – Site 17

• The single site in the lower three-mile long WWH designated reach at LM17 (RM 1.60) was in partial attainment of WWH due to the failure of the MIwb to meet the WWH biocriterion. This site is impounded by the Ohio River which effectively modifies the habitat, but it is also subject to impacts from urban runoff.

Duck Creek Subwatershed

- The status of aquatic life use attainment had improved slightly between 2012 and 2017 with a gain of approximately one mile in full attainment in the existing Limited Resource Waters designated segment (LRW; upstream Red Bank Rd., RM 2.4). Another incremental gain was observed in 2022 with a gain of 0.9 miles in full attainment.
- No appreciable change was observed in the WWH segment downstream to the Little Miami River between 2012 and 2017, but full attainment was observed in 2022 at LM77 (RM 2.00). The downstream most site was in non-attainment due to the poor performance of the IBI, but only slightly below the partial attainment in 2017.
- Of the eight (8) sites assessed in the mainstem in 2022, three (3) were in full attainment of LRW, three (3) in non-attainment of LRW, one (1) in non-attainment of WWH (poor fish assemblage limited), and one (1) in full attainment of WWH.

- Improvements in the fish IBI and macroinvertebrate ICI (or narrative equivalents) occurred in the Duck Creek mainstem between 2012 and 2017 and again between 2017 and 2022, but with some leveling off of the trajectory of improvement in 2022. These differences were evident in reduced ADVs and increased AAVs demonstrating a detectable and incremental improvement in conditions for aquatic life. At some point the extent to which improvements can continue to occur will be limited by the severely altered habitat in the LRW reach even though two sites had QHEI values consistent with WWH attainability.
- The fish assemblage was the more limited of the two biological assemblages and an indication that the controlling factors remain those directly and indirectly associated with the highly modified habitat.
- Of the 10 sites located in Duck Creek tributaries none were in full attainment of WWH (a decline from 2017); three (3) were in partial attainment of WWH (fish assemblage limited), three (3) sites in were non-attainment of WWH (two showed incremental improvements since 2012), one (1) LRW site was evaluated as PHW1, two (2) sites were classified as Primary Headwater Habitat Class 2, and one (1) site was classified as Primary Headwater Habitat Class 3A (equivalent to WWH). The result at the upstream most site in the headwaters of the East Fork is a return to the PHWH Class 1 in 2012, a decline from PHW2 in 2017.
- The primary causes associated with the partial and non-attainment included high urban land use in the HUC12 catchment (7 sites), organic enrichment (4 sites), chlorides (7 sites), and TDS (6 sites). Weighted causes in the Duck Creek subwatershed (Figure 5) were predominated by macrohabitat related causes (36.2%) and urban related causes (34.9%) that included urban pollutants such as chlorides and TDS. The remainder included urban land use (11.1%), organic enrichment and nutrients (8.9%), and D.O. related effects (8.9%). The were no toxic effect related causes.
- Nutrient effects were evaluated using the Ohio EPA Stream Nutrient Assessment
 Procedure (SNAP) at sites with continuous D.O. data. Out of 10 sites that had sufficient
 data to make a SNAP determination Duck Creek had three (3) sites that attained LRW that
 were threatened by nutrients and two (2) sites that were impaired for LRW with nutrients
 as a likely cause. Five (5) sites were impaired for WWH, but with causes other than
 nutrients that included altered habitat and urban related causes.
- One use change recommendation is to designate the lower reach of the East Fork of Duck Creek as WWH in lieu of the existing LRW. This is a repeat recommendation from 2017.
 One (1) site was classified as PHW3A which is an improvement from 2017, but Ohio EPA is not currently acting on any PHW recommendations.

Sycamore Creek/Polk Run/Clough Creek Partial Subwatersheds

Of the nine (9) sites assessed in the Sycamore Creek, Polk Run, and Clough Creek subwatersheds in 2022, four (4) were in full attainment of WWH (an improvement since 2012), two (2) in were in partial attainment of WWH (fish assemblage limited), two (2) sites were in non-attainment, and one (1) site was classified as a PHWH Class 3A (an improvement over the PWH2 in 2017). The single site in lower Polk Run had exceptional IBI and ICI scores making it the highest quality tributary sampled in 2022. The principal

Duck Creek Weighted Causes

Sycamore Polk Clough Creek Weighted Causes

Figure 5. Weighted categorical causes of aquatic life use impairment in the Duck Creek subwatershed and the Sycamore Creek, Polk Run, and Clough Creek partial subwatersheds in 2022.

causes associated with the partial and non-attainment status included urban land use in the HUC12 catchment and buffer, chlorides, TDS, and organic enrichment. Weighted causes in these partial subwatersheds (Figure 4) were predominated by macrohabitat

- related causes (40.6%), urban related causes (25.0%) that included urban pollutants such as chlorides and TDS, and organic enrichment and nutrients (18.8%). The remainder included D.O. related (9.4%), urban land uses (3.1%), and toxic effects (3.1%).
- Nutrient effects were evaluated using the Ohio EPA SNAP at sites with continuous D.O. data. Out of six (6) sites that had sufficient data for a SNAP determination only two sites, Polk Run (LM 40; RM 0.40) and Clough Creek (LM98; RM 0.60) attained WWH with no threat from nutrient enrichment. Two (2) sites in Sycamore Creek (LM 51 and LM52) attained WWH, but were threatened by nutrient enrichment. These were downstream from another site in Sycamore Creek (LM50; RM 1.10) that was non-attaining for WWH with nutrients as a likely cause.
- Weighted causes in the partial subwatersheds combined included macrohabitat related causes (40.6%), urban related pollutants (25.0%), organic and nutrient enrichment related causes (18.8%), low D.O. (9.4%), urban land use (3.1%), and toxic related causes (3.1%; Figure 5)
- There are no recommendations for any revisions to the existing aquatic life use designations for the Sycamore Creek/Polk Run/Clough Creek Subwatersheds. While one site classified as PHW3A which is an improvement from 2017, Ohio EPA is not currently acting on any PHWH recommendations.

Recreational Use Status

Impairment of the Primary Contact Recreation (PCR) recreational use in the 2022 Little Miami study area was judged by the Escherichia coli (E. coli) bacterial criteria in the Ohio WQS (OAC 3745-1-07; Table 7-13). E. coli bacteria are normally present in the feces and intestinal tracts of humans and other warm-blooded animals typically comprising 97 percent of the fecal coliform bacteria in humans (Dufour 1977). There is currently no practical way to quantitatively differentiate between human and animal sources of coliform bacteria in surface waters, although methodologies for this type of analysis have been developed including recent research supported by MSDGC. E. coli enters surface waters via direct discharges of human and animal wastes, and in runoff from land surfaces where wastes have been deposited. Pathogenic (disease-causing) organisms are typically present in the environment in such small amounts that it is impractical to directly monitor each one. Fecal indicator bacteria by themselves, including E. coli, are usually not pathogenic. However, some strains of E. coli can be pathogenic, capable of causing serious illness. Although not necessarily agents of disease, fecal indicator bacteria such as E. coli may signal the potential presence of pathogenic organisms that enter the environment via the same pathways. When E. coli are present in extremely high numbers (i.e., >10,000 cfu/100 mL) in a water sample, it invariably means the water has received a dose of fecal matter from one or more sources including untreated sewage.

The Ohio WQS for recreational uses were revised in early 2016 to reflect a more rigid adherence to equalizing all forms of human contact with surface waters as ensuing the same level of risk. This replaced the former framework that was stratified to account for the degree of contact with three levels of the PCR use as PCR-A, PCR-B, and PCR-C. Those subcategories are

now merged into a single use. This action also obviated the recommendations made in the 2011-14 watershed assessments for the redesignation of certain streams to one of the three former subcategories. The application of the Secondary Contact Recreational (SCR) use was also changed to a more restrictive interpretation of the potential for human contact with surface waters. Existing SCR designations made prior to 2011 remain, but could potentially be reviewed and revised to PCR by Ohio EPA at any time. Any new SCR recommendations would need to document that there is virtually no human contact that is possible due to physical restrictions that preclude humans from accessing surface water. As a result, the evaluation of the recreational uses in the 2022 Little Miami River study area were done in accordance with the existing designations of PCR and SCR and with the 2016 criteria as applicable.

Rivers and streams in the 2022 study area are designated as PCR and/or SCR in the Ohio WQS (OAC 3745-1-30). Water bodies with a designated recreation use of PCR "... are suitable for one or more full-body contact recreation activities such as, but not limited to, wading, swimming, boating, water skiing, canoeing, kayaking, and scuba diving" (OAC 3745-1-07(B)(4)(b)). Secondary Contact includes waters that "... result in minimal exposure potential to water borne pathogens because the waters are rarely used for water based recreation such as, but not limited to, wading; situated in remote, sparsely populated areas; have restricted access points; and have insufficient depth to provide full body immersion, thereby greatly limiting the potential for water based recreation activities." The E. coli criterion that applies to PCR is expressed as a 90-day geometric mean of ≤126 colony forming units (cfu)/100 ml with a

Statistical Threshold Value (STV) of 410 cfu/100 ml. The criterion that applies to SCR streams is ≤1,030 cfu/100 ml for both the 90-day geometric mean and the STV (Table 3). Per Ohio EPA practice, the seasonal geometric mean can be evaluated by the arithmetic mean of two or more samples and is used as the basis for determining the attainment status of the PCR use in this assessment. Maximum values are used to assess against the STV criterion.

Widespread impairment of the PCR and SCR based on *E. coli* results persisted in the Little Miami River mainstem and the Duck Creek and Sycamore Creek/Polk Run/Clough Creek partial subwatersheds in

Table 3. E. coli criteria for Ohio streams and rivers (OAC 3745-1-07).

E. coli Counts							
	(cfu/100 ml)						
	Seasonal Statistical						
Recreation	Geometric	Threshold					
Use	Mean	Value ¹					
PCR	126	410					
SCR	1,030	1,030					

¹These criteria shall not be exceeded in more than 10 percent of the samples taken during any 90-day period.

2022. However, direct comparisons of changes in attainment status between 2012 and 2017 and 2022 are complicated by changes to the recreation uses and criteria in early 2016. Recreational use attainment for each of the 38 sites sampled for *E. coli* in 2022 appears in Table 4 and on Figure 6. A narrative summary of the major portions of the 2022 study area follows:

Little Miami River Mainstem

• In 2017, only four of 13 sites were impaired for the PCR use, and these were insignificant exceedances of the STV – all geometric means were below that criterion. This was a significant improvement over the 2012 results when 14 of 16 sites were impaired for the

Table 4. Status of recreational use attainment in the 2022 Little Miami River study area as attaining or impaired based on the E. coli geometric mean and statistical threshold criteria at 38 sites assessed in 2022. PCR – Primary Contact Use; SCR – Secondary Contact Use.

Contact ose.								
Site ID	River Mile	Drainage Area (Sq. mi.)	Samples	Recreation Use	Minimum	Mean	Maximum	
Site ID	River iville	(34. 1111.)		liami River	IVIIIIIIIIIIIII	ivicali	IVIAXIIIIUIII	
1.0401	27.00	1000.0		ı	75	209	727	
LM01	27.90	1069.0	6	PCR	75		727	
LM02	24.10	1085.0	6	PCR	47	156	548	
LM03	22.30	1148.0	6	PCR	55	186	866	
LM05	21.50	1160.0	6	PCR	36	128	613	
LM07	18.50	1187.0	6	PCR	47	164	1120	
LM08	17.70	1190.0	6	PCR	34	121	727	
LM09	13.10	1203.0	6	PCR	31	229	4140	
LM11	10.90	1707.0	6	PCR	74	175	1730	
LM12	8.10	1710.0	6	PCR	39	151	2420	
LM13	6.83	1720.0	6	PCR	73	174	2420	
LM15	4.10	1730.0	6	PCR	20	129	1414	
LM16a	3.70	1752.0	6	PCR	214	1011	241960	
LM16	3.50	1752.0	6	PCR	28	140	1414	
LM17	1.60	1754.0	6	PCR	38	229	2420	
			Sycamore Cree	k (LMR RM 19	0.2)			
LM50	1.10	14.7	4	PCR	51	376	7440	
LM51	0.50	24.0	4	PCR	119	296	649	
LM52	0.10	24.0	4	PCR	23	68	172	
			Tributary to S	Sycamore Cree				
LM55	1.20	5.3	2	PCR	67	106	167	
LM56	0.20	5.6	2	PCR	67	71	75	
211130	0.20	3.0		MR RM 21.55)			,,,	
LM40	0.30	10.8	4	PCR	248	338	411	
EIVITO	0.30	10.0		(LMR RM 3.87)			122	
LM71	6.10	2.2	4	SCR	1	2	7	
LM72	5.14	5.1	4	SCR	411	2461	61310	
LM73	4.58	5.8	4	SCR	411	1372	4710	
LM74	3.90	9.6	4	SCR	411	488	687	
LM75	3.40	7.3	4	SCR	186	383	649	
LM76	2.80	11.8	4	PCR	365	454	579	
LM77	2.00	14.3	4	PCR	126	401	770	
LM79	0.50	14.6	4	PCR	82	204	411	
	I -			to Duck Creek				
LM80	0.10	1.4	4	PCR	770	6592	68670	
				an criterion of 126 etric mean criterior				
			, , ,	etric mean criterior	•			
			· '	ximum criterion of				

Table 4. continued.

		Drainage Area		Recreation						
Site ID	River Mile	(Sq. mi.)	Samples	Use	Minimum	Mean	Maximum			
	East Fork Duck Creek									
LM85	2.00	1.3	4	PCR	548	778	1414			
LM84	0.50	2.4	4	PCR	260	495	770			
			Little D	uck Creek						
LM86	2.40	0.5	2	PCR	548	669	816			
LM87	1.90	0.5	2	PCR	228	306	411			
LM90	1.00	1.1	2	PCR	144	178	219			
LM92	0.49	1.7	1	PCR	248	248	248			
		Unname	d Tributarty to	Little Duck C	reek at 4.42					
LM82	0.20	0.3	3	PCR	105	194	345			
			Clough Cree	k (LMR RM 2.9	9)					
LM95	3.20	2.1	2	PCR	57	63	69			
LM98	0.60	7.8	2	PCR	122	138	155			
	Meets Primary Contact Recreation (PCR) geometric mean criterion of 126 cfu/mL.									
	exccedance of Pri	mary Contact Rec	reation (PCR) geom	etric mean criterio	n of 126 cfu/mL.					
	exccedance of PC	R Statistical Maxi	mum Value (STN) cr	riterion of 410 cfu/r	mL.					
	exccedance of Sec	condary Contact R	ecreation (SCR) ma	ximum criterion of	1030 cfu/mL.					

PCR-A subcategory. These would translate to exceedances of both the geometric mean and STV values under the revised PCR criteria. In 2022 all 14 mainstem sites were impaired for the PCR use and while most were only modest exceedances of the PCR Geometric Mean, some of the STV were well above the PCR criterion (Table 4). STVs ranged from 1,120 cfu/100 mL to 2,420 cfu/100 mL at and downstream from LM07 (RM 18.50) which is downstream from Sycamore Creek. The highest value measured at any site was 214,960 cfu/100 mL that occurred at LM16A immediately downstream from Duck Creek on September 12, 2022. The mean at this same site was 1,011 cfu/100 mL and it had the highest minimum value of 214 cfu/100 mL.

Duck Creek Subwatershed

- Of the 16 sites assessed in the Duck Creek subwatershed, five (5) were evaluated against the SCR criterion and the remainder against the PCR criteria. In the mainstem two sites (LM72 and 73) had maximum values that exceeded the STV with one site at 61,310 cfu/100 mL. The two PCR designated sites were impaired for the Geometric Mean and STV. The upstream most site (LM 71) had extremely low *E. coli* values with a mean of 2 cfu/100 mL and a maximum of 7 cfu/100 mL.
- All of the tributary sites exceeded the Geometric Mean and all except two sites in lower Little Duck Creek (LM 90 and LM92) exceeded the STV. The Unnamed Tributary at RM 4.8 (LM80) had a maximum value of 68,670 cfu/100 mL.

Sycamore Creek/Polk Run/Clough Creek Partial Subwatersheds

Of the six (6) sites assessed in the Sycamore Creek subwatershed in 2017, three (3)

Figure 6. Maps of recreational use attainment status for the Primary Contact Recreational and Secondary Contact uses in the 2022 Little Miami River study area expressed as degrees of attainment (blue or green) or non-attainment (orange or red) based on mean (left) and maximum (right) E. coli values. MSDGC CSO locations appear as outfall symbols.

attained the SCR use criteria and three (3) PCR sites were impaired. The three latter sites had maximum *E. coli* values of >2,420 cfu/100 ml which contributed to the impaired status. In 2022, eight (8) sites were assessed and four (4) moderately exceeded the Geometric Mean. Only a single site exceeded the STV, LM50 in upper Sycamore Creek had a value of 7,440 cfu/100 mL. LM52 in Sycamore Creek and LM95 in Clough Creek fully attained PCR recreational use.

Recommendations

Designated Use Attainment Status

An original objective of the MSDGC service area watershed bioassessment plan was to evaluate existing aquatic life and recreational use designations and to recommend new uses for undesignated/unverified streams and changes to existing uses as necessary based on the series of 2011-14 baseline and 2016-2018 follow-up watershed assessments. Ohio EPA had last reviewed the aquatic life and recreational designations in the Little Miami River study area in 2007 (Ohio EPA 2010). Now, Ohio EPA has either adopted or is in the process of adopting the use designation recommendations from the 2012 and 2017 MSDGC surveys¹. As such, that objective has been largely satisfied, but a rejected recommendation from 2017 is repeated herein for the East Fork of Duck Creek based on the 2022 results.

The MSDGC instream monitoring scope shifted to a more focused approach in 2016-18 and 2021-23 to document status, trends, and potential causes/sources of impairments related to pollution control efforts by Project Groundwork and related wet weather improvement efforts by MSD. A continued focus on documenting status and trends will inform decisions on Project Groundwork and document wet weather improvements primarily on the major mainstem rivers and streams and some of their tributaries. The methodology can identify and track causes and sources of impairment allowing informed decisions about the allocation of capital improvement resources by MSD. The 2017 Little Miami River and Selected Tributaries assessment represented the first follow-up survey five years after the 2012 Little Miami Basin baseline survey and it revealed some positive trends; some of which are related to MSDGC CSO abatement efforts in the Duck Creek subwatershed. Further incremental improvements were observed in 2022. However, there are no detailed analyses about which CSOs (or clusters of CSOs that have been eliminated or otherwise abated) to which the instream improvements can be quantitatively related. This should be addressed in the forthcoming work planned for the Southwest Ohio IPS (MBI 2015) by adding a more focused assessment that relates CSO/SSO abatements to instream changes both positive or negative. It should also include a more detailed analysis of the source of the impairment of the EWH use observed at LM16A, which is a new site that was first sampled in support of the pre-construction assessment for the Beechmont Ave. bicycle bridge in 2019. Given that this site fully attained EWH in 2019, the 2022 results indicate a localized, but significant impact that emanates from Duck Creek.

¹ The 2012 and 2017 MSDGC bioassessments are found at: http://www.msdgc.org/initiatives/water-quality/index.html.

BIOLOGICAL AND WATER QUALITY STUDY OF THE LITTLE MIAMI RIVER AND SELECTED TRIBUTARIES 2022

Introduction

The 2022 Little Miami River and Tributaries biological and water quality assessment covered more than 40 CSOs and SSOs, nine (9) municipal WWTPs, and numerous minor discharges providing the basis for documenting incremental changes against the previous 39 years of standardized monitoring of the Little Miami mainstem and major tributaries by Ohio EPA and MSDGC. The spatial and temporal sampling design and the biological, chemical, and physical indicators and parameters that were collected at each sampling site are described in the Watershed Monitoring and Bioassessment Plan for the MSD Greater Cincinnati Service Area, Hamilton County, Ohio; Technical Report MBI/5-11-3 (MBI 2011). Biological sampling methods for fish and macroinvertebrate assemblages and habitat assessment are supported by chemical and physical measures and ancillary information about pollution sources and other stressors for the overall biological assessment. The assessment employed a targeted-intensive pollution survey design which documents changes in a longitudinal manner as the effects of multiple pollution sources accumulate in a downstream direction.

MSDGC intends to use the results and analysis of the monitoring and bioassessment program to accomplish the following:

- 1. Determine the status of service area rivers and streams in quantitative terms, i.e., not only if the waterbody is impaired but the spatial extent and severity of the impairment;
- 2. Determine the proximate stressors that contribute to the observed impairments for the purpose of targeting management actions to those stressors;
- 3. Evaluate the appropriateness of existing aquatic life and recreational use designations and make recommendations for any changes to those designations; and,
- 4. Continue the development of the Integrated Prioritization System (IPS) for a variety of purposes. Among its many uses, the IPS will assist MSDGC in making decisions about how to prioritize and design pollution abatement projects and measure their effectiveness.

To meet these objectives all data was generated by methods and implementation in conformance with the provisions of the Ohio Credible Data Law (ORC 6111.51). Under the regulations that govern the Credible Data program at Ohio EPA, data collection and analyses must be collected and performed under the direction of Level 3 Qualified Data Collectors (OAC 3745-4). MSDGC has used the data to evaluate the attainability of aquatic life and recreational uses and determine the status of service area rivers and streams since 2011. As such, the sampling and analysis of the biological and physical condition conducted herein conforms to these provisions by the development and submittal of annual Level 3 Project Study Plans (PSP).

MSDGC Watershed Bioassessment Scope and Purpose

The MSDGC watershed bioassessment project domain consists of eleven subwatersheds, three mainstem rivers, and the Ohio River mainstem within Hamilton County and parts of adjoining counties. These watersheds are impacted by a variety of stressors including municipal and industrial point source discharges of wastewater, habitat modifications in the form of modified stream channels, run-of-river low head dams, riparian encroachment, and channelization, and nonpoint source runoff from widely differing degrees of landscape modifications from rural to suburban to intensive urban development. The urban stressor gradient is the strongest in Lower and Middle Mill Creek lessening somewhat across the Little Miami and Great Miami River subwatersheds. In the 2022 survey area, combined sewer overflows (CSOs) are the most numerous in Duck Creek and some have subsumed historical streams. Major wastewater treatment plants discharge to the Little Miami River mainstem and lower Sycamore Creek.

2022 Little Miami River and Tributaries Assessment Scope and Purpose

The 2022 Little Miami assessment included the lower mainstem of Little Miami R., the Duck Creek subwatershed, portions of the Sycamore Creek subwatershed, Polk Run, and Clough Creek within the scope of the MSDGC service area watershed monitoring plan (MBI 2011). In addition to the baseline purposes of the MSDGC monitoring plan, specific assessment issues in the 2017 Little Miami River study area include a high density of CSO and SSO outfalls in Duck Creek, the EWH status of the lower Little Miami, and other pollution sources including direct discharges and runoff from industrial operations, urban stormwater, and permitted municipal point sources.

Cincinnati has the fifth highest volume of CSOs in the U.S. (MSDGC 2011a). As a result, water quality has been significantly impacted in the Little Miami subwatershed. MSDGC is working to remediate these issues under a Consent Decree with the U.S. Dept. of Justice and U.S. EPA to reduce CSO volume by two billion gallons by 2019. To resolve the public health and water quality issues, MSDGC has implemented Project Groundwork under a Consent Decree with the U.S. Dept. of Justice and U.S. EPA, a multi-year and multi-billion dollar initiative that includes hundreds of sewer improvements and stormwater control projects (MSDGC 2011b). To date, MSDGC has reduced CSO discharges by 6 billion gallons, from 14 billion gallons at the start of Project Groundwork to 8 billion gallons at present with CSO mitigation efforts continuing. The role of the watershed monitoring program is to support these initiatives by providing current information about baseline conditions, provide feedback about the effectiveness of new and past remediation efforts via trend assessment, and to assure that restoration resources are targeted to the actions and places that have the greatest return on investment. As such the 2022 Little Miami River bioassessment is a continuation of that process. The 2022 Little Miami River biological and water quality assessment also fulfills the MSDGC NPDES CSO permit reporting requirements.

METHODS

Monitoring Design

An intensive pollution survey design that employs a high density of sampling sites and biological, chemical, and physical indicators and parameters was followed in 2022. The principal objectives of the biological assessment are to report aquatic life and recreational use attainment status, following the Ohio WQS and Ohio EPA practices, and determine associated causes and sources of impairment. To accomplish this sites were positioned upstream and downstream from major discharges, sources of potential releases and contamination, and major physical modifications to provide a "pollution profile" along the Little Miami River mainstem and within the Duck and Sycamore Creek watersheds. The result was a design that included chemical, physical, and biological sampling at a total of 41 sites in the 2022 study area. Each site was assigned a unique site code as depicted in Figure 7 and Appendix Table E-1.

Biological and Water Quality Surveys

A biological and water quality survey, or "biosurvey", is an interdisciplinary monitoring effort coordinated on a water body specific or watershed scale. Biological, chemical, and physical monitoring and assessment techniques are employed in biosurveys to meet three major objectives:

- Determine the extent to which use designations assigned in the state Water Quality Standards (WQS) or equivalent policies or procedures are either attained or not attained;
- 2. Determine if use designations and/or goals set for or assigned to a given water body are appropriate and attainable; and,
- 3. Determine if any changes in key ambient biological, chemical, or physical indicators have taken place over time, particularly before and after the implementation of point source pollution controls or best management practices.

Measuring Incremental Changes

Incremental change is defined here to represent a measurable and technically defensible, change in the condition of a water body within which it has been measured. Most commonly this is termed "incremental improvement" in which the condition of a water body that does not yet fully meet all applicable water quality standards (WQS) can be tracked as to the direction of any changes. The general principles of incremental change are defined as follows (after Yoder and Rankin 2008):

• **measurement of incremental change** can be accomplished in different ways, provided the measurement method is scientifically sound, appropriately used, and sufficiently sensitive enough to generate data from which signal can be discerned from noise;

Figure 7. The 2022 Little Miami River study area showing sampling locations by site code (see Table 6) and the occurrence of CSO locations in Duck and Sycamore Creeks and WWTP discharges to the Little Miami River mainstem.

- measurable parameters and indicators of incremental change include biological, chemical, and physical properties or attributes of an aquatic ecosystem that can be used to reliably indicate a change in condition; and,
- a positive change in condition means a measurable improvement that is related to a reduction in a specific pollutant load, a reduction in the number of impairment causes, a reduction in an accepted non-pollutant measure of degradation, or an increase in an accepted measure of waterbody condition relevant to designated use support.

This was accomplished for this study by comparing the results of prior, comparable assessments. In this case there has been a series of bioassessments beginning in 1983 by Ohio EPA which serves as the baseline against which subsequent results were compared to assess incremental changes in key parameters and indicators. Subsequent to 1983, sufficient data was available from 1993 (Ohio EPA 1995), 1998 (Ohio EPA 2000), 2007 (Ohio EPA 2009), 2012 (MBI 2013), 2013 (MBI partial assessment only), 2017 (MBI 2018), and 2022 (MBI, this study) to inform the trend analyses.

Biological Methods

All biological sampling methods are defined by the applicable protocols published by the Ohio EPA (1987a,b; 1989a,b; 2015 a). These meet the specifications of the Ohio WQS and are used to assess aquatic life and recreational use designations, to determine the extent and severity of impairments, and to document incremental changes that result from pollution abatement actions.

Fish Assemblage Methods

Methods for the collection of fish at wadeable sites was performed using a tow-barge or long-line pulsed D.C. electrofishing equipment based on a T&J 1736 DCV electrofishing unit described by Ohio EPA (1989a). A Wisconsin DNR battery powered backpack electrofishing unit was used as an alternative to the long line in the smallest streams and in accordance with the restrictions described by Ohio EPA (1989a). A three-person crew carried out the sampling protocol for each type of wading equipment. Sampling effort was indexed to lineal distance and ranged from 150- 200 meters in length. Non-wadeable mainstem sites were sampled with a raft-mounted pulsed D.C. electrofishing device. A Smith-Root 5.0 GPP unit was mounted on a 15.5' Wing raft with an electrode array in keeping with Ohio EPA (1989a) electrofishing design specifications. Sampling effort for this method was 500 meters and was conducted during a June 16-October 15 seasonal index period once or twice at all sites. Variably high flows in September and October precluded a second pass at several mainstem sites. A more detailed summary of the key aspects of each method appears in the *Watershed Monitoring and Bioassessment Plan for the MSD Greater Cincinnati Service Area, Hamilton County, Ohio; Technical Report MBI/5-11-3* (MBI 2011).

Macroinvertebrate Assemblage Methods

Macroinvertebrates were sampled using modified Hester-Dendy artificial substrate samplers (quantitative sample) and a qualitative dip net/hand pick method in accordance with Ohio EPA macroinvertebrate assessment procedures (Ohio EPA 1989a, 2015a). The artificial substrates were exposed for a colonization period of six weeks between July 12 and September 14 and placed to ensure adequate stream flow over the substrates, but in general samplers should be set where flow is 0.3 feet/second over the plates. A qualitative sample using a triangular frame dip net and hand picking was collected at the time of substrate retrieval. All samples were initially preserved in a 10% solution of formaldehyde. Substrates were then transferred to the laboratory, disassembled, sieved (standard no. 30 and 40), and transferred to 70% ethyl alcohol. Laboratory sample processing of both the quantitative and qualitative samples included an initial scan and pre-pick for large and rare taxa followed by subsampling procedures in accordance with Ohio EPA (1989a, 2015a). Identifications were performed to the lowest taxonomic resolution possible for the commonly encountered orders and families, which is genus/species for most organisms. From these results, the density of macroinvertebrates per square foot is determined as well as a taxonomic richness and an Invertebrate Community Index (ICI; Ohio EPA 1987b; DeShon 1995) score for the quantitative samples and a narrative assessment for the standalone qualitative samples. A more detailed summary of the key aspects of the methods appears in the Watershed Monitoring and Bioassessment Plan for the MSD Greater Cincinnati Service Area, Hamilton County, Ohio; Technical Report MBI/5-11-3 (MBI 2011).

Primary Headwater Habitat (PHWH) Methods

PHWH methods were simultaneously applied to all sites draining <2.5 mi.² to allow for a data driven determination of the existing use designation. Stream sites that were completely dry during any of the sampling visits were evaluated with the HHEI at a minimum. Methods for the collection of macroinvertebrates and salamanders at PHWH candidate sites followed the qualitative macroinvertebrate collection techniques used by the Ohio EPA for all stream types (Ohio EPA 1989a, 2015a) and in accordance with the most recent PHWH manual (Ohio EPA 2020). Salamander collections were made in two 30 feet subsections of the 200 feet stream reach assessed for a PHWH evaluation. Each subsection was chosen where an optimal number and size of cobble type microhabitat substrates are present. A minimum of 30 minutes was spent searching for salamanders. At least five larvae and two juvenile-adults of each species type were preserved. Adult and juvenile salamanders were placed into plastic bags with moist leaf litter. The larva were transported in stream water and placed in a cooler and returned to the lab for preparation of voucher specimens and verifications.

Area of Degradation and Attainment Values

The ADV (Yoder and Rankin 1995; Yoder et al. 2005) was originally developed to quantify the extent and severity of departures from biocriterion within a defined river reach. For reaches that exceed a biocriterion it is expressed as an Area of Attainment Value (AAV) that quantifies the extent to which minimum attainment criteria are surpassed. The ADV/AAV correspond to the area of the polygon formed by the longitudinal profile of IBI scores and the straight line

boundary formed by a criterion, the ADV below and the AAV above. The computational formula (after Yoder et al. 2005) is:

 $ADV/AAV = \sum [(alBla + alBlb) - (plBla + plBlb)] *(RMa - RMb), for a = 1 to n, where;$

alBla = actual IBI at river mile a, alBlb = actual IBI at river mile b, plBla = IBI biocriterion at river mile a, plBlb = IBI biocriterion at river mile b, RMa = upstream most river mile, RMb = downstream most river mile, and n = number of samples.

The average of two contiguous sampling sites is assumed to integrate biological assemblage status for the distance between the points. The intensive pollution survey design typically positions sites in close enough proximity to sources of stress and along probable zones of impact and recovery so that meaningful changes are adequately captured. We have observed biological assemblages as portrayed by their respective indices to change predictably in proximity to major sources and types of pollution in numerous instances (Ohio EPA1987a; Yoder and Rankin 1995; Yoder and Smith 1999; Yoder et al. 2005). Thus, the longitudinal connection of contiguous sampling points produces a reasonably accurate portrayal of the extent and severity of impairment in a specified river reach as reflected by the indices (Yoder and Rankin 1995). The total ADV/AAV for a specified river segment is normalized to ADV/AAV units/mile for making comparisons between years and rivers. The ADV is calculated as a negative (below the biocriterion) expression; the AAV is calculated as a positive (above the biocriterion) expression. Each depicts the extent and degree of impairment (ADV) and attainment (AAV) of a biological criterion, which provides a more quantitative depiction of quality than do pass/fail descriptions. It also allows the visualization of incremental changes in condition that may not alter the pass/fail status, but are nonetheless meaningful in terms of incremental change over space and time. In these analyses, the Exceptional Warmwater Habitat (WWH) biocriterion for the fish and macroinvertebrate indices were used as the threshold for calculating the ADV and AAV for the Little Miami mainstem. The WWH biocriterion was used for Duck Creek as it represents the minimum goal required by the Clean Water Act (CWA) for the protection and propagation of aquatic life, thus it was used as a standard benchmark for the ADV/AAV analysis.

Habitat Assessment

Physical habitat was evaluated using the Qualitative Habitat Evaluation Index (QHEI) developed by the Ohio EPA for streams and rivers in Ohio (Rankin 1989, 1995; Ohio EPA 2006). Various attributes of the habitat are scored based on the overall importance of each to the maintenance of viable, diverse, and functional aquatic faunas. The type(s) and quality of substrates, amount and quality of instream cover, channel morphology, extent and quality of riparian vegetation, pool, run, and riffle development and quality, and gradient are some of the

metrics used to determine the QHEI score which generally ranges from 20 to less than 100. The QHEI is used to evaluate the characteristics of a stream segment, as opposed to the characteristics of a single sampling site. As such, individual sites may have poorer physical habitat due to a localized disturbance yet still support aquatic communities closely resembling those sampled at adjacent sites with better habitat, provided water quality conditions are similar. QHEI scores from hundreds of segments around the state have indicated that values greater than 60 are generally conducive to the existence of warmwater faunas whereas scores less than 45 generally cannot support a warmwater assemblage consistent with baseline Clean Water Act goal expectations (e.g., the WWH in the Ohio WQS).

Physical habitat was simultaneously evaluated at sites draining <2.5 mi.² using the Headwater Habitat Evaluation Index (HHEI) developed by Ohio EPA (2013). The HHEI scores various attributes of the physical habitat that have been found to be statistically important determinants of biological community structure in primary headwater streams. Statistical analysis of a large number of physical habitat measurements showed that three QHEI habitat variables (channel substrate composition, bank full width, and maximum pool depth) are sufficient in distinguishing the physical habitat of primary headwater streams using the HHEI. The characterization of the channel substrate includes a visual assessment of a 200 feet stream reach using a reasonably detailed evaluation of both the dominant types of substrate and the total number of substrate types. Bank full width is a morphological characteristic of streams that is determined by the energy dynamics related to flow and has been found to be a strong discriminator of the three classes of primary headwater streams in Ohio. The bank full width is the average of 3-4 separate bank full measurements along the stream reach. The maximum pool depth within the stream reach is important since it is a key indicator of whether the stream can support a WWH fish assemblage. Streams with pools less than 20 cm in depth during the low flow periods of the year are less likely to have WWH fish assemblages and thus more likely to have viable populations of lungless salamanders, which replace fish as the key vertebrate indicator in primary headwater streams.

Stream Nutrient Assessment Procedure (SNAP)

A SNAP assessment includes an evaluation of the status of the applicable biological criteria (IBI, ICI), the 24-hour diel D.O. swing, and the concentration of benthic chlorophyll a to determine the nutrient enrichment status of a site. The SNAP matrix yields one of the following findings:

- 1. Attaining aquatic life use and not threatened;
- 2. Attaining aquatic life use, but aquatic life use may be threatened;
- 3. Impaired aquatic life use, but from cause(s) other than nutrients;
- 4. Impaired aquatic life use, nutrient enrichment is a likely cause; or
- 5. Impaired aquatic life use, nutrient enrichment is a material cause.

The overall result is determined by a combined analysis of all indicators, but full attainment of aquatic life supersedes exceedances of nutrient thresholds for N and P alone. The SNAP matrix and flow chart used to determine impairment or threat by nutrients appears in Appendix F.

Chemical/Physical Methods

Chemical/physical assessment for the MSDGC service area includes the collection and analysis of water samples for chemical/physical and bacterial analysis and sediment samples for determining sediment chemical quality. Methods for the collection of water column chemical/physical and bacterial samples followed the procedures of Ohio EPA (2019a) and MSDGC (2011c). Sediment chemical sampling followed that described by Ohio EPA (2019b). All laboratory analysis was performed and/or overseen by MSDGC.

Water Column Chemical Quality

Water column chemical quality was determined by the collection and analysis of grab water samples, instantaneous measurements recorded with a water quality meter, and continuous measurements recorded at 3-4 day intervals in the mainstem and larger tributary sites.

Grab Sampling

Grab samples of water were collected with a stainless steel bucket from a location as close to the center point of the stream channel as possible by MBI sampling crews. Samples were collected from the upper 12-24" of the surface and then transferred to sample containers in accordance with MSDGC procedures (MSDGC 2011c) and delivered to MSDGC Mill Creek Lab for analysis. Sampling was conducted between mid-June and mid-October and under "normal" summer-fall low flows — highly elevated flows following precipitation events were avoided and sampling was delayed until flows subsided to "normal" levels. The frequency of sampling ranged from six times per season at most sites to two times per season at the smallest headwater sites. Water samples were collected provided there was sufficient water depth to collect a sample without disturbing the substrates. Instantaneous values for temperature (°C), conductivity (μ S/cm2), pH (S.U.), and dissolved oxygen (D.O.; mg/l) were recorded with a YSI Model 664 meter at the time of grab sample collection.

Continuous Recordings

Continuous readings of temperature (°C), conductivity (μ S/cm), pH (S.U.), and dissolved oxygen (D.O.; mg/L) were recorded with a YSI 6920 V2 Sonde ("Datasonde") instrument at mainstem and major tributary locations. The Datasondes were deployed in an accessible part of the stream channel in a PVC enclosure that ensured no contact with the stream bottom or other solid objects. The Datasondes were positioned vertically where depth allowed by driving steel fence posts into the bottom and positioning the PVC enclosure in an upright position. Where the depth was too shallow the PVC enclosure was secured in a horizontal position in an area of the stream channel with continuous flow. All Datasondes were secured against theft or vandalism as much as possible. Datasondes were deployed for a 3-4 day continuous interval during periods of maximum summer temperatures and normal summer flows. Readings were taken at 15 minute intervals. At the time of retrieval data was downloaded to a YSI Model 650 Instrument with high memory capacity and then transferred to a PC for storage and later analysis.

Sediment Chemical Quality

Fine grain sediment samples were collected in the upper 4 inches of bottom material at each sampling location using decontaminated stainless steel spoons and excavated using nitrile gloves. Decontamination of sediment sampling equipment followed the procedures outlined in the Ohio EPA sediment sampling guidance manual (Ohio EPA 2019c).

Sediment grab samples were homogenized in stainless steel pans (material for VOC analysis was not homogenized), transferred into glass jars with Teflon® lined lids, placed on ice (to maintain 4°C) in a cooler, and delivered to MSDGC Mill Creek Lab. Sediment data is reported on a dry weight basis. Sediment samples were analyzed for total analyte list inorganics (metals), nutrients, volatile organic compounds, semivolatile organic compounds, PCBs, total petroleum hydrocarbons, and cyanide.

Determining Use Attainment Status

Use attainment status is a term which describes the degree to which environmental parameters or indicators are either above or below criteria specified by the Ohio Water Quality Standards (WQS; Ohio Administrative Code 3745-1). For the 2022 Little Miami River and Tributaries assessment two use designations were evaluated, aquatic life and recreation in and on the water by humans. Hence the process herein is referred to as the determination of aquatic life and recreational status for each sampling site. This process is applied to data collected by ambient assessments and applies to rivers and streams outside of point source discharge mixing zones.

Aquatic Life

Aquatic life use attainment status is determined by the Ohio EPA biological criteria (OAC 3745-1-07; Table 7-1). Numerical biological criteria are based on multimetric biological indices which include the Index of Biotic Integrity (IBI) and modified Index of Well-Being (MIwb), which indicate the response of the fish assemblage, and the Invertebrate Community Index (ICI), which indicates the response of the macroinvertebrate assemblage. The IBI and ICI are multimetric indices patterned after an original IBI described by Karr (1981) and Fausch et al. (1984) and subsequently modified by Ohio EPA (1987b) for application to Ohio rivers and streams. The ICI was developed by Ohio EPA (1987b) and is further described by DeShon (1995). The MIwb is a measure of fish community abundance and diversity using numbers and weight information and is a modification of the original Index of Well-Being originally applied to fish community information (Gammon 1976; Gammon et al. 1981). Numerical biocriteria are stratified by ecoregion, use designation, and stream or river size. Three attainment status results are possible at each sampling location - full, partial, or non-attainment. Full attainment means that all of the indices meet the applicable biocriteria. Partial attainment means that one or more of the indices fails to meet the applicable biocriteria. Non-attainment means that none of the indices meet the applicable biocriteria or one of the organism groups reflects poor or very poor quality. An aquatic life use attainment table (see Table 2) is constructed based on the sampling results and is arranged from upstream to downstream and includes the sampling locations indicated by river mile, the applicable biological indices, the use attainment status

(i.e., full, partial, or non), the Qualitative Habitat Evaluation Index (QHEI), and causes of non or partial attainment or threats to full attainment at each sampling location. The use attainment table is further organized by Ohio EPA Waterbody Assessment Unit so that the results can be used by Ohio EPA for assessment purposes.

Recreation

Water quality criteria for determining attainment of recreational uses are established in the Ohio Water Quality Standards (OAC 3745-1-07; Table 7-13) based upon the quantities of bacterial indicators (Escherichia coli) present in the water column. Escherichia coli (E. coli) bacteria are microscopic organisms that are normally present in the feces and intestinal tracts of humans and other warm-blooded animals. E. coli typically comprises approximately 97 percent of the organisms found in the fecal coliform bacteria of human feces (Dufour 1977). There is currently no simple way to differentiate between human and animal sources of coliform bacteria in surface waters, although methodologies for this type of analysis are being developed including recent research supported by MSDGC. These microorganisms can enter water bodies where there is a direct discharge of human and animal wastes, or may enter water bodies along with runoff from soils where wastes have been deposited. Pathogenic (disease-causing) organisms are typically present in the environment in such small amounts that it is impractical to directly monitor each type of pathogen. Fecal indicator bacteria by themselves, including E. coli, are usually not pathogenic. However, some strains of E. coli can be pathogenic, capable of causing serious illness. Although not necessarily agents of disease, fecal indicator bacteria such as E. coli may signal the potential presence of pathogenic organisms that enter the environment via the same pathways. When E. coli are present in extremely high numbers in a water sample, it invariably means the water has received fecal matter from one or more sources.

The Ohio WQS for recreational uses were revised in early 2016 to reflect a more rigid adherence to any form of contact with surface waters as ensuing the same level of risk. This replaced the former framework that was stratified to account for the degree of bodily contact with three subcategories of the Primary Contact Recreational (PCR) use as PCR-A, PCR-B, and PCR-C. Those subcategories were essentially merged into a single use category. This action also obviated the recommendations made in the 2011-14 watershed assessments for assignment certain streams to one of the three former subcategories. The application of the Secondary Contact Recreational (SCR) use was also changed to a more restrictive interpretation of the potential for human contact with surface waters. Existing SCR designations remain, but could potentially be reviewed and revised to PCR by Ohio EPA. Any new SCR recommendations would need to document that there is no human contact possible due to physical restrictions to access a surface water. As a result the evaluation of the recreational uses in the 2022 Little Miami study were done in accordance with the existing designations of PCR and SCR where the latter remains applicable.

Streams in the Little Miami watershed are designated as primary contact recreation (PCR) and/or secondary contact recreation (SCR) use in the Ohio WQS (OAC 3745-1-30). Water bodies with a designated recreation use of PCR "... are suitable for one or more full-body

contact recreation activities such as, but not limited to, wading, swimming, boating, water skiing, canoeing, kayaking, and scuba diving" (OAC 3745-1- 07(B)(4)(b)). Secondary Contact includes waters that ". . . result in minimal exposure potential to water borne pathogens because the waters are: rarely used for water based recreation such as, but not limited to, wading; situated in remote, sparsely populated areas; have restricted access points; and have insufficient depth to provide full body immersion, thereby greatly limiting the potential for water based recreation activities."

The *E. coli* criterion that applies to PCR is expressed as a 90-day geometric mean of ≤126 colony forming units (cfu)/100 ml with a Statistical Threshold Value of 410 cfu/100 ml². The criterion that applies to SCR streams is ≤1,030 cfu/100 ml for both the 90 day geometric mean and the STV. The geometric mean can be assessed using an arithmetic mean of two or more samples and the STV is assessed by the maximum value. Both are used as the basis for determining the attainment status of the PCR use.

Determining Use Attainability

Use designation reviews and recommendations for revisions, when necessary, were a major product of the series of 2011-14 watershed assessments conducted throughout the MSDGC service area. Since the 2022 Little Miami River and Tributaries survey is a reassessment of a portion of the larger 2012 study area we did not expect to have many use change recommendations. The details of the 2011-14 use recommendations are available in each watershed assessment report³. Given the status of the 2011-14 data as Level 3 credible data it is eligible to be used by Ohio EPA to revise aquatic life use designations. All of the use recommendations made for the Warmwater Habitat suite of uses were either adopted or are in the process of being adopted by Ohio EPA into the Ohio WQS. None of the recreational use recommendations were accepted because of the subsequent revision to the recreational uses and criteria and how these are assigned to individual stream segments. None of the Primary Headwater Habitat (PHWH) use recommendations were adopted because Ohio EPA has not yet adopted PHWH as a distinct use tier. For the interim, MSDGC is assuming such streams will receive protections equivalent to WWH.

Determining Causal Associations

Using the results, conclusions, and recommendations of this report requires an understanding of the methodology used to determine biological status (i.e., unimpaired or impaired, narrative ratings of quality) and assigning associated causes and sources of impairment utilizing the accompanying chemical/physical data and source information (e.g., point source loadings, land use). The identification of impairment in rivers and streams is straightforward - the numerical biological indices are the principal arbiter of aquatic life use attainment and impairment following the guidelines of Ohio EPA (1987). The rationale for using the biological results in the

² These criteria shall not be exceeded in more than ten per cent of the samples taken during any ninety-day period.

³ http://www.msdgc.org/initiatives/water_quality/index.html

role as the principal arbiter within a weight of evidence framework has been extensively discussed elsewhere (Karr et al. 1986; Karr 1991; Ohio EPA 1987a,b; Yoder 1991; Yoder 1995).

Describing the causes and sources associated with observed biological impairments relies on an interpretation of multiple lines of evidence including the water chemistry data, sediment chemistry data, habitat data, effluent data, land use data, and biological response signatures (Yoder and Rankin 1995; Yoder and DeShon 2003). Thus the assignment of associated causes and sources of biological impairment in this report represents the association of impairments (based on response indicators) with stressor and exposure indicators using linkages to the bioassessment data based on previous experiences within the strata of analogous situations and impacts. For example, exceedances of established chemical thresholds such as chronic and acute water quality criteria or sediment effect thresholds are grounds for listing such categories of parameters to include individual pollutants provided that they co-occur with a biological impairment. Biological effect thresholds in the recently completed Integrated Prioritization System (IPS) Documentation and Atlas of Biological Stressor Relationships for Southwest Ohio (Technical Report MBI/2015-12-15, MBI 2015) were also used to support causal assignments. These were used either as primary or supplemental screenings for the interpretation of biological impairments consistent with the WQS for the application of biological criteria in Ohio⁴.

Hierarchy of Water Indicators

A carefully conceived ambient monitoring approach, using cost-effective indicators comprised of ecological, chemical, and toxicological measures, can ensure that all pollution sources are judged objectively on the basis of environmental results. A tiered approach that links the results of administrative actions with true environmental measures was employed in our analyses and within the limitations of the data that is currently available for certain sources. This integrated approach is outlined in Figure 8 and includes a hierarchical continuum from administrative to true environmental indicators. The six "levels" of indicators include:

- 1. Actions taken by regulatory agencies (permitting, enforcement, grants);
- 2. Responses by the regulated community (treatment works, pollution prevention);
- 3. Changes in discharged quantities (pollutant loadings);
- 4. Changes in ambient conditions (water quality, habitat);
- Changes in uptake and/or assimilation (tissue contamination, biomarkers, assimilative capacity); and, changes in health, ecology, or other effects (ecological condition, pathogens).

In this process the results of administrative activities (levels 1 and 2) can be linked to efforts to improve water quality (levels 3, 4, and 5) which should translate into the environmental "results" (level 6). An example is the aggregate effect of billions of dollars spent on water pollution control since the early 1970s that have been determined with quantifiable measures of environmental condition (Yoder et al. 2005). Superimposed on this hierarchy is the concept

⁴OAC 3745-1-07(A)(6)(a) for full attainment and (A)(6)(b) for non-attainment.

Completing the Cycle of WQ Management: Assessing and Guiding Management Actions with Integrated Environmental Assessment

Indicator Levels

1: Management actions
| Administrative Indicators | [permits, plans, grants, enforcement, abatements]

3: Stressor abatement Stressor Indicators [pollutant loadings, land use practices]

4: Ambient conditions

5: Assimilation and uptake

6: Biological response

Exposure Indicators [pollutant levels, habitat quality, ecosystem process, fate & transport]

Response Indicators [biological metrics, multimetric indices]

Ecological "Health" Endpoint

Figure 8. Hierarchy of administrative and environmental indicators which can be used for water quality management activities such as monitoring and assessment, reporting, and the evaluation of overall program effectiveness. This is patterned after a model developed by U.S. EPA (1995a,b) and further enhanced by Karr and Yoder (2004).

of stressor, exposure, and response indicators. *Stressor* indicators generally include activities which have the potential to degrade the aquatic environment such as pollutant discharges (permitted and unpermitted), land use effects, and habitat modifications. *Exposure* indicators are those which measure the effects of stressors and can include whole effluent toxicity tests, tissue residues, and biomarkers, each of which provides evidence of biological exposure to a stressor or bioaccumulative agent. *Response* indicators are generally composite measures of the cumulative effects of stress and exposure and include the more direct measures of community and population response that are represented here by the biological indices which comprise the Ohio EPA biological endpoints. Other response indicators can include target bacterial levels that serve as surrogates for the recreational uses. These indicators represent assemblages, *i.e.*, rare, threatened, endangered, special status, and declining species or the essential technical elements for watershed-based management approaches. The key, however, is to use the different indicators *within* the roles which are most appropriate for each (Yoder and Rankin 1998).

STUDY AREA DESCRIPTION

Geographic Setting

The Little Miami River basin lies within the Interior Plateau Ecoregion of southwest Ohio and is bounded by the Great Miami River basin to the northwest, Mill Creek to the west and southwest, the Scioto River basin to the north and east, Whiteoak Creek to the southeast, and the Ohio River and direct tributary watersheds to the south. The Little Miami River mainstem flows southward for 111 miles from the headwaters in Clark County through Greene, Warren, and Clermont Counties to its confluence with the Ohio River in Hamilton County draining 1757 mi2. The study area is located in the Eastern Corn Belt Plains and Interior Plateau ecoregions (see Figure 5). Along its course the stream has an average gradient of 6.35 feet per mile (ODNR 1960). Major tributaries within the 2012 and 2017 Little Miami River study area include O'Bannon Creek, Polk Run, Sycamore Creek, Dry Creek, Duck Creek, Clough Creek, and the East Fork of the Little Miami River. These tributaries enter the Little Miami River mainstem from the hillsides that characterize the watershed. The upper portion of Little Miami River mainstem located in Warren County is mostly rural, but increased suburban development has occurred over the past 3 decades. The lower portion of Little Miami River is more urban and some tributary subwatersheds are almost completely developed.

Subecoregion Characteristics

The 2022 Little Miami River study area lies within two Level III ecoregions, the Interior Plateau (IP) and the Eastern Corn Belt Plains (ECBP; Omernik 1987). Subsequent delineations of Level IV subregions provide more detail for the four components of ecoregions - surficial geology, soils, potential natural vegetation, and land use (Woods et al. 1995). The lower Little Miami River study area and much of the East Fork of the Little Miami River lie entirely within the Northern Bluegrass subregion (71d) of the Interior Plateau. The remainder of the study area lies within the Pre-Wisconsinan Drift Plains subregion (55d) of the Eastern Corn Belt Plains ecoregion. The southernmost portion of the study area overlies the Wisconsinan Drift Plains subregion (55d) and the northern portions and the East Fork of the Little Miami River lie within the Loamy Highlime Till Plains subregion (55b) of the ECBP ecoregion. The characteristics of each subregion appear in Table 5.

Description of Pollution Sources and Other Stressors

Pollution sources and general stressors are numerous in the Little Miami River watersheds subwatersheds. These sources include permitted discharges of municipal and industrial process wastewater, discharges from combined and sanitary sewer overflows (CSO and SSO), runoff and releases from industrial facilities, urban runoff and its associated chemical pollution and hydrological alterations, and direct and indirect habitat alterations. These are described in the following discussions and many are included in Table 6.

Point Sources

There are 24 point source discharges in the lower Little Miami River that hold NPDES permits

Table 5. Level IV subregions of the Little Miami River watersheds watershed and their key attributes (from Woods et al. 1995).

Level IV Subregion	Physiography Geology		Soils	Potential Natural Vegetation	Land Use/Land Cover
Loamy, High Lime Till Plains (55b)	Glaciated; level to rolling glacial till plain with low gradient streams; also end moraines and glacial outwash landforms.	Loamy, high lime, late-Wisconsinan glacial till and also glacial outwash and scattered loess overlie Paleozoic carbonates and shale.	Alfisols (Hapludalfs, Epiaqualfs, Endoaqualfs), Mollisols (Argiaquolls, Endoaquolls, Argiudolls), Entisols (Fluvaquents)	Mostly beech forest; also, oak- sugar maple forest, elm-ash swamp forest on poorly- drained valley bottoms and ground moraines.	Extensive corn, soybean, and livestock farming; also scattered beechmaple, pin oakswamp, white oak woodlands. Urban-industrial activity in municipal areas.
Pre-Wisconsinan Drift Plains (55d)	Glaciated. Dissected glacial till plain with low to medium gradient streams.	Deeply leached, acidic pre- Wisconsinan clay- loam glacial till and thin loess overlie Paleozoic carbonates.	Alfisols (Fragiudalfs, Hapludalfs, Fragiaqualfs, Glossaqualfs), Entisols (Fluvaquents)	Mostly beech forest, elm-ash swamp forest; also oak-sugar maple forest.	Soybean, livestock, corn, general, and tobacco farming; where poorly- drained or rugged, pin oak- swamp, white oak flatwoods, and beech- maple woodlands.
Northern Bluegrass (71d)	Unglaciated and glaciated; dissected plains and hills with medium gradient, gravel bottom streams. Steep slopes, high relief near Ohio River.	Discontinuous loess and leached pre-Wisconsinan glacial till deposits. Ordovician limestone and shale.	Alfisols (Hapludalfs, Fragiudalfs), Mollisols (Hapludolls)	Mixed meso-phytic forest, mixed oak forest, oak-sugar maple forest; along Ohio River, bottomland hardwoods.	Mosaic of forest, agriculture, and urban-industrial activity near Cincinnati and elsewhere along Ohio River. Wooded where steep

(Table 6). Of these, 11 are considered to be major discharges and all are municipal wastewater treatment plants. A total of 54.4 MGD of capacity is shared by the seven WWTPs that directly impact the Lower Little Miami River mainstem. Another 17.4 MGD of capacity is shared by three WWTPs on the lower East Fork of the Little Miami River. All of these WWTPs operate at what may be termed "advanced treatment" levels for oxygen demanding substances and ammonia removal, which is typical for WWTPs with permits based on meeting the Ohio WQS. Following the 1998 bioassessment of the Little Miami River in which Ohio EPA found significant impairment of the fish assemblages in particular, upgrades to WWTPs followed and some of these included phosphorus removal, mostly in the upper one-half of the mainstem. The results

Table 6. Major pollution sources in and adjacent to the 2022 Little Miami River study area.

	Drainage		Confluence			Major (M)	NPDES
Receiving Stream	Area (mi²)	River Mile	River Mile	2022 Site Code/RM	Facility Name or Discharge Number/Description	Minor (m)	Permit No.
Little Miami	1036	32.10			Lebanon WWTP	M	1PC00003
Little Miami	1036	31.95		LM01/27.9	Mason WWTP	M	1PC00004
Little Miami	1057	30.70		LM02/24.1	Deerfield-Hamilton WTP	m	1IY00162
Little Miami	1069	28.14			Lower Little Miami WWTP	M	1PK00018
O'Bannon Creek	59.1	2.57	24.00	LM03/22.3	O'Bannon Creek Regional WWTP	M	1PK00017
Polk Run	10.2	0.10	21.55	LM05/21.5	Polk Run WWTP	M	1PK00019
Little Miami	1160	21.00			Arrowhead Park WWTP	m	1PH00014
Sycamore Creek	12.5	1.10	19.20	LM50/1.1; LM51/0.5	SSO 1008, 579	M	1PX00022
Sycamore Creek	20.9	0.26	19.20	LM52/0.10; LM07/18.5	Sycamore Creek WWTP	M	1PK00005
U.T. Sycamore Cr. @RM	5.32	1.20	1.12	LM55/1.20; LM56/0.2	SSO 705, 647	M	1PX00022
Little Miami	1186	18.80		LM08/17.7	Lake Remington MHP	m	1PV00101
Little Miami	1190	16.80			MGS Water Sub District	m	1IX00030
Little Miami	1194	16.10			Wards Corner Regional WWTP	m	1PK00021
Little Miami	1200	14.20			Villiage of Indian Hill WWTP	m	1IX00050
Little Miami	1203	13.30		LM09/13.1	Milford Waterworks	m	1IW00110
East Fork Little Miami	360	20.50			US DOA William H Harsha Lake	m	1PN00000
East Fork Little Miami	364	13.50			City of Batavia WWTP	m	1PB00001
East Fork Little Miami	373	12.60	11.28	LM11/10.9	Clermont Co. Middle East Fork Regional WWTP	M	1PK00010
East Fork Little Miami	490	4.90	11.20	LIVIII/10.9	Clermont Co. Lower East Fork Regional WWTP	M	1PK00009
East Fork Little Miami	490	4.90			U.S. EPA Experimental Stream Facility	m	1IN00116
East Fork Little Miami	498	1.60			Milford WWTP	М	1PC00005
Little Miami	1711	10.00		LM12/8.10	Evans Landscaping Inc	m	1IN00298
Little Miami	1730	5.90			Cincinnati Steel Treating Co.	m	1IN00237
Little Miami	1730	5.90			Keebler and Co.	m	1IH00022
Little Miami	1735	4.45		LM15/4.10	CSO 656	М	1PX00022

Table 6. continued.

	Drainage		Confluence			Major (M)	NPDES
Receiving Stream	Area (mi ²)	River Mile	River Mile	2022 Site Code/RM	Facility Name or Discharge Number/Description	Minor (m)	Permit No.
Duck Creek	2.24	6.10		LM71/6.1	CSO 170, 500, 501	М	1PX00022
Duck Creek	5.05	5.14		LM72/5.14	CSOs: 043, 054, 135, 170, 187, 214, 500, 501, 549,	М	1PX00022
Duck Creek	5.84	4.58	3.87	LM73/4.58	CSOs: 043, 061, 188	М	1PX00022
Duck Creek	10.0	3.98	3.67	LM74/3.9	CSOs: 064, 066, 068, 188, 205, 554, 555, 556	М	1PX00022
Duck Creek	11.5	3.38		LM75/3.4	CSOs: 080, 084, 0.83, 136, 199, 205	М	1PX00022
Duck Creek	11.7	2.40		LM77/2.00	CSOs: 083, 084, 085, 086, 199, 503, via L. Duck Creek	М	1PX00022
U.T Duck Cr. @RM 4.8	1.2	0.80	4.80	LM83/0.8	CSO 554, 555, 556	М	1PX00022
East Fork Duck Creek	1.31	2.00	4.60	LM85/2.0	CSO 554, 555, 556	М	1PX00022
Little Duck Creek	1.71	2.40		LM86/2.40	SSO 1014, 1057	М	1PX00022
Little Duck Creek	0.45	1.90	1.95	LM87/1.90	CSO 071	М	1PX00022
Little Duck Creek	0.8	1.70	1.95		CSOs: 069, 071, 072, 074, 075, 076	М	1PX00022
Little Duck Creek	1.1	1.15		LM90/1.00	CSOs: 069, 071, 072, 078, 079	М	1PX00022
Little Miami	1740	3.70		LM16A/3.70	CSOs: 085, 086, 470, 471 , 476, Duck Creek	М	1PX00022
Little Miami	1750	3.50		LM16/3.5	CSOs: 085, 086, 470, 471 , 476, Duck Creek	М	1PX00022
Clough Creek	6.01	2.50	2.90	LM98/0.60	CSO 182, 476; SSO 588, 589	М	1PX00022
Little Miami	1757	0.80		LM17/1.6	GCWW Richard Miller WTP	m	1IV00040

Lower L. Miami and Tributaries Bioassessment 2022

quote the 2010 Ohio EPA report:

"... the overall turnaround of the Little Miami River's biotic integrity can be attributed to improved treatment and operations at several Wastewater Treatment Plants (WWTPs) in the watershed. Many facilities that were previously operating at or over capacity since the last survey in 1998 were upgraded, while others began actively removing phosphorus from treated effluent. These improvements, in turn, allowed for the rebound of the fish community, which has historically borne the brunt of impacts from nutrient over-enrichment in the river."

The MSDGC survey of 2012 showed a decline specifically with the mainstem fish assemblage similar to 1998 levels of impairment. Follow-up surveys by MBI in 2013 showed partial improvements in this status and that the impairment emanated upstream from Hamilton Co. The 2017 survey showed a recovery that was a virtual return to 2007 full attainment conditions. The 2022 results essentially confirmed the improvement observed in 2017.

Wet Weather Sources

Wet weather sources merit description since they are prominent in the Duck Creek subbasin and some of the other Lower Little Miami River tributary subwatersheds (Table 6). The two major sources of wet weather related pollution in the 2022 study area emanate from untreated sources (CSOs, SSOs, and urban stormwater). The CSOs and SSOs occur because the volume of sanitary wastewater and stormwater entering the MSDGC sewer system during precipitation events (i.e., during "wet weather") exceeds the capacity of the collection system. There are two types of pipes that carry wastewater in Hamilton County, "combined sewers" and "sanitary sewers." Combined sewers collect and transport both sewage and stormwater, while sanitary sewers collect and transport only sewage. Wastewater discharges that are released to the environment from sanitary sewer systems before they reach a treatment plant are known as "sanitary sewer overflows," or SSOs. The term SSO can also refer to a sanitary sewer overflow structure or outfall. Discharges that are comprised of sanitary sewage and storm water are known as "combined sewer overflows," or CSOs. Approximately one-third of the sewers in the MSDGC service area are combined and the remainder are sanitary sewers (MSDGC 2006). CSOs and SSOs in the Little Miami study area are listed in Table 6 along with the CSO permit number and classified as a major discharge.

In the MSDGC collection system, the primary cause of SSOs is a lack of system capacity, blockages, and ineffective maintenance. This happens when the sewer system receives increased flows as a result of "infiltration and inflow," or I/I, which is the entry of "clean" rain water into the sewer system through leaks in the system caused by deteriorating pipes and tree roots growing into the sewers ("infiltration"), as well as through roof drains, manhole covers and yard drains ("inflow"), thus exacerbating the lack of hydraulic capacity. As a result, during periods of rainfall or snowmelt, wastewater is frequently discharged from overflow structures into area rivers and streams. The MSDGC system has approximately 80 such overflow points, which discharge wastewater when the pipes become too full. These SSO structures were constructed many years ago, consistent with the then-acceptable approach for addressing

overloaded sanitary sewer systems. In contrast, a combined sewer system is designed to transport both sewage and storm water. These systems are largely an "artifact" of an earlier way of building sewers and have not been newly constructed in the United States for decades. Combined sewers are generally not designed to be big enough to carry wastewater plus all of the rainfall from the area's larger storms. Thus, combined sewers are designed to discharge from combined sewer overflow points, or "CSOs." MSDGC has approximately 200 CSO discharge points in its collection system (MSDGC 2006). To remedy SSOs and CSOs, the County and City signed Consent Decrees in 2002 and 2003 with U.S. EPA, Ohio EPA, and ORSANCO that establish a judicially enforceable framework for ensuring that MSDGC develops and implements sophisticated, long-term plans for remedying the overflows resulting from the aging sewer system. The decrees also require MSDGC to implement millions of dollars of interim measures to ameliorate these problems while developing and implementing the long-term remedial measures.

RESULTS – CHEMICAL PHYSICAL WATER QUALITY

Chemical/physical water quality in the 2022 Little Miami study area was characterized by grab sample data collected from the water column two to six times at each site during base flows and within a June 16-October 15 seasonal index period. Continuous measurements were made with Datasondes over 3-4 consecutive day periods at selected mainstem and tributary sites in late July and early August. Sediment chemistry was determined from samples collected at all mainstem and selected tributaries in mid-October. The results were evaluated by assessing exceedances of criteria in the Ohio WQS, exceedances of regionally derived biological effect thresholds (MBI 2015) for parameters that lack formal criteria in the WQS, and by exceedances of consensus based probable and threshold effect levels for sediment chemistry (Persaud et al. 1993; MacDonald et al. 2000). The chemical/physical results also serve as indicators of exposure and stress and in support of using the biological data for assessing the attainment of aquatic life uses and assigning associated causes and sources for impairments. Bacteria data were collected by grab samples at all sites and used primarily to determine the status of recreational uses in accordance with the Ohio WQS. Recently revised Ohio EPA protocols for determining attainment of the applicable designated recreational uses were followed.

Flow Regime

The flow regime in the Little Miami mainstem during the period May 1 – October 31 is depicted in Figure 8 for the years 2007, 2012, 2017, and 2022 based on the gauge operated by the U.S. Geological Survey at Milford (RM 10.0) as a seasonal hydrograph and a frequency plot. These are the most recent years with bioassessment data in the Little Miami River mainstem and each represents a slightly different periodicity of both high and low flows. The consistently lowest flows occurred in 2007 and 2012 with multiple daily values at or less than the Q_{7.10} critical low flow and nearly one-half below the 80% duration flow for the May 1-October 31 period. The flows in each year were well below what are referred to herein as normal summer-fall flows that are approximated by the range between statistical median (50th percentile) and 80th percentile flows. All sampling was confined to normal seasonal flows avoiding high flow events and sampling was not resumed until normal base flows returned. The difference between 2007 and 2012 was more frequent spates of elevated flows in 2012 above the median and some above the 10th percentile (Figure 8 box plot). Flows in 2017 and again in 2022 were consistently at or above the 80th percentile flows and within the normal range less than one-half the time. Sampling for fish was delayed on more than one occasion to avoid high flows and allow them to return to normal. Peak flows generally occurred in May-June following significant precipitation events, but were evident as low level events in June, July, and August and a larger event in September 2022. Each year had flows that were well above the 10th percentile flow as evidenced by the number of outliers in the frequency plots for 2017 and 2022.

Water Column Chemistry

Water quality was assessed by grab samples collected during the summer-fall index period. Parameter groupings included field, demand, ionic strength, nutrients, heavy metals, and

Figure 9. Flow measured at the USGS gauge at Milford (RM) during May 1-October 31 depicted as a hydrograph in 2007, 2012, 2017, and 2022 (upper) and a frequency box plot for each year (lower). The median, 80th%, 10th%, and Q_{7,10} flows are indicated on each hydrograph. **38** | Page

organic compounds. Continuous measurements over 3-4 consecutive day periods were made at all mainstem sites (excepting the downstream most sites influenced by the Ohio River) for D.O. (mg/l), pH (S.U.), conductivity (μ S/cm), and temperature (°C) using YSI Datasonde continuous recorders during August 1-4 and August 8-11, 2022.

Water Quality Criteria Exceedances

Assessing exceedances of water quality criteria was done for parameters that have formal criteria codified in the Ohio WQS. For the 2022 Little Miami River survey this included criteria for the protection of aquatic life and for recreational uses.

Aquatic Life Criteria Exceedances

Measured exceedances of aquatic life water quality criteria in the Ohio WQS were limited mostly to continuous and grab D.O. and scattered exceedances for temperature, pH, copper, and lead (Table 7). D.O. exceedances occurred in continuous data samples at two sites in the Little Miami River mainstem. A minor exceedance of the EWH 5.0 mg/L minimum occurred at LM01 (RM 27.90). More serious exceedances occurred at LM16A (RM 3.70) of both the 6.0 mg/L average and the 5.0 mg/L minimum over the four-day deployment. D.O. exceedances in the Duck Creek subwatershed included an exceedance of the 2.0 mg/L LRW minimum at LM73 (RM 4.58) and four exceedances of the WWH minimum of 4.0 mg/L at LM80 (RM 0.10), LM 85 (RM 2.00), LM92 (RM 0.49), and LM82 (RM 0.20). Four exceedances of the WWH minimum of 4.0 mg/L were recorded in grab samples, two in Sycamore Creek (LM50 and LM51) and the Unnamed Tributary at RM 1.12 (LM55 and LM56). A single exceedance of the chronic criterion for ammonia-N occurred in the upper Sycamore Creek site at LM50. Modest temperature criteria exceedances of the applicable maximum criterion of 29.4°C occurred in the mainstem at LM05 (RM 21.50) and in Clough Creek at LM98 (RM 0.60). The exceedances corresponded almost equally across attaining and non-attaining (one partial attainment) sites, but were more serious or severe departures at the non-attaining sites and what amounted to insignificant exceedances at the attaining sites. The exceedances in 2022 were only slightly more frequent than in 2017 and involved mostly exceedances of D.O. criteria in the tributaries, but were much less frequent than those observed in 2012 that included more numerous D.O. exceedances in the mainstem and more frequent exceedances of urban pollutants such as lead, copper, and ammonia-N.

Exceedances of Biological Effect Thresholds

Biological effect thresholds were employed for parameters that do and do not have formal criteria codified in the Ohio WQS to determine the risks of any exceedances to the attainment of aquatic life uses. The thresholds developed as part of the *Integrated Prioritization System (IPS) Documentation and Atlas of Biological Stressor Relationships for Southwest Ohio* (Technical Report MBI/2015-12-15, MBI 2015) were used to assess conventional, ionic strength, heavy metals, and nutrient parameters. These "IPS thresholds" were used in lieu of the Ohio EPA (1999) *Appendices to Association Between Nutrients and the Aquatic Biota of Ohio River and Streams* the thresholds from which were employed in a similar fashion in the 2011-14

Table 7. Exceedances of Ohio water quality criteria recorded by grab and continuous sampling in the Lower Little Miami River study area in 2022 with aquatic life attainment status shown for comparative purposes.

	River Mile	Drainage	Aquatic	Attainment	Parameters (Values) Exceeding Ohio Aquatic						
Site ID	Fish/Macros		Life Use	Status	Life Criteria						
	Little Miami River (EWH Aquatic Life Use –Existing)										
10404	27.00/27.00	4070	F14/11	- "	Grab D.O. (min. 4.51 mg/L); Sonde D.O. (min.						
LM01	27.90/27.80	1070	EWH	Full	4.53 mg/L)						
LM02	24.10/23.90	1090	EWH	Full							
LM03	22.30/22.20	1150	EWH	Full							
LM05	21.50/20.90	1160	EWH	Full	Max. Temperature (29.8°C)						
LM07	18.50/18.50	1190	EWH	Full							
LM08	17.70/16.90	1190	EWH	Full							
LM09	13.10/13.10	1200	EWH	Full							
LM11	10.90/10.90	1710	EWH	Full							
LM12	8.10/8.00	1710	EWH	Full							
LM13	6.83/7.30	1720	EWH	Full	Copper (36 μg/L)						
LM15	4.10/4.10	1730	EWH	Full							
					Grab D.O. (min. 3.00 mg/L), Sonde D.O. (min.						
LM16A	3.70/3.70	1740	EWH	Non	3.12 mg/L, avg. 4.3 mg/L)						
LM16	3.50/3.50	1750	EWH	Partial							
		Little Mi	ami River (W	/WH Aquatic	Life Use –Existing)						
LM17	1.60/1.40	1760	WWH	Partial	Lead (25.2 μg/L)						
		Sycamo	re Creek (WI	NH Aquatic L	ife Use - Existing)						
LM50	1.10/1.00	12.5	WWH	Non	Grab D.O. (min. 4.30 mg/L), NH ₃ -N (3.4 mg/L)						
LM51	0.50/0.24	22.8	WWH	Full	Grab D.O. (avg. 4.70 mg/L)						
LM52	0.10/0.10	23.3	WWH	Full							
	Unnamed Tr	ibutary (1.82) to Tributar	y to Sycamoi	re Creek (1.1) (PHW3A Existing Use)						
LM54	0.00/0.40	1.6	PHW3A	PHW3A							
				at RM 1.12	(WWH Aquatic Life Use - Existing)						
LM55	1.20/1.00	5.32	WWH	Non	Grab D.O. (min. 2.90 mg/L)						
LM56	0.20/0.20	5.61	WWH	Partial	Grab D.O. (min. 3.30 mg/L)						
					Use - Existing)						
LM40	0.30/0.30	9.97	WWH	Full							
		ı		1	Use – Existing)						
LM71	6.10/6.00	2.24	LRW	Non							
LM72	5.14/4.60	5.05	LRW	Full	pH (max. 9.1 S.U.)						
					Grab D.O. (min.1.00 mg/L); Sonde D.O. (min.						
LM73	4.58/4.40	5.84	LRW	Non	0.92)						
LM74	3.90/0.15	9.59	LRW	Full							
LM75	3.40/3.30	11.5	LRW	Non							
LM76	2.80/2.90	11.7	LRW	Full							

Table 7. continued.

		Drainage							
	River Mile	Area (sq.	Aquatic	Attainment	Parameters (Values) Exceeding Ohio Aquatic				
Site ID	Fish/Macros	mi.)	Life Use	Status	Life Criteria				
Duck Creek (WWH Aquatic Life Use – Existing)									
LM77	2.00/1.80	14.3	WWH	Full					
LM79	0.50/0.90	14.6	WWH	Non					
	Un	named Tribu	itary to Duck	Creek at RN	1 4.8 (PHW2 Existing Use)				
LM83	0.00/0.80	1.2	PHW2	PHW2					
LM80	0.10/0.20	1.42	PHW2	PHW2	Grab D.O. (min. 0.70 mg/L)				
	E	ast Fork Duc	k Creek (WW	/H Aquatic Lij	fe Use - Recommended)				
LM85	2.00/1.50	1.31	WWH	Non	Grab D.O. (min. 3.95 mg/L)				
LM84	0.50/0.60	1.99	WWH	Non	Copper (35.1 μg/L)				
		Little Du	ck Creek (W	WH Aquatic	Life Use - Existing)				
LM86	2.40/2.70	0.22	WWH	Partial					
LM87	1.90/2.60	0.45	WWH	Partial					
LM90	1.00/2.30	0.55	WWH	Partial					
LM92	0.49/0.49	1.68	WWH	Non	Grab D.O. (min. 3.90 mg/L)				
	Unnan	ned Tributary	to Little Du	ck Creek at R	M 4.42 (PHW3A Existing Use)				
LM82	0.20/0.10	0.59	PHW3A	PHW3A	Grab D.O. (min. 3.00 mg/L)				
	Clough Creek (WWH Aquatic Life Use – Existing)								
LM95	3.20/3.20	1.95	WWH	Partial					
LM98	0.60/0.40	7.81	WWH	Full	Max. Temperature (30.0°C)				

MSDGC service area watershed assessments. The IPS thresholds are more robust and regionally relevant and are a more robust and regionally relevant analysis of biological stressor thresholds and especially in light of the Ohio EPA (1999) dataset being somewhat sparse in the Interior Plateau ecoregion. The IPS thresholds also offer discrete goals that are directly linked to the codified biological criteria and their application in the determination of aquatic life use attainment and the response to a finding of attainment and findings of non-attainment⁵. The results for selected parameters are compared to the IPS threshold goals that align with the applicable aquatic life use and stream size category and color coded in keeping with the hierarchy of the Ohio tiered aquatic life uses. The results are graphically depicted along the Little Miami River mainstem as median or mean values for the 2022 results with maximum and minimums, as medians or means comparing available results using prior Ohio EPA and MBI results as a historical baseline, and in tabular form for 2022 median or mean values for the mainstem and tributary subwatershed sites. The degree or "severity" of an IPS threshold exceedance was also evaluated against the narrative thresholds of excellent, good, fair, poor, and very poor. The excellent and good thresholds are consistent with the EWH and WWH uses, respectively. This also allowed for a weighted approach to assessing threshold exceedances in the aquatic life use attainment and synthesis tables. These also factored into the calculation of Restorability scores for impaired sites and Susceptibility and Threat scores for attaining sites.

⁵ OAC 3745-1-07(A)(6)(a) describe the options for a finding of full attainment and (A)(6)(b) for a finding of non-attainment.

Nutrients at wadeable and headwater sites were assessed using the draft SNAP (Ohio EPA 2015d) which is a "combined criteria" consisting of the fish and macroinvertebrate biological criteria, the diel D.O. flux, benthic chlorophyll α, sestonic chlorophyll α, total nitrate, total phosphorus, and allied parameters such as BOD₅, TKN, and SSC. The Little Miami River mainstem was assessed for nutrient effects using the Ohio Large Rivers approach described by Miltner (2018) that offers assessment thresholds for each of the variables included in a combined nutrients effect assessment for three states of eutrophication – acceptable, enriched, and over-enriched. Lastly, sediment chemical data was assessed using the threshold and probable effect levels of MacDonald et al. (2000), Persuad et al. (1999), and Ohio EPA Sediment Reference Values (SRVs).

Conventional, Demand, and Nutrient Parameters - Little Miami River Mainstem

This category includes D.O., temperature, pH, ammonia-N, total phosphorus, total nitrate, and total Kjeldahl nitrogen all from grab samples collected under normal summer-fall flows. *E. coli* is added here as it can be an effective indicator of organic enrichment from sewage discharges. Benthic and sestonic chlorophyll a values are also included as they were collected in concert with the continuous D.O. data to support the Large River Nutrient and SNAP assessments. The D.O. results were comprised of both grab and short-term continuous data.

Dissolved Oxygen (D.O.)

D.O. values from daytime grab samples revealed only three exceedances of the minimum EWH criterion of 5.0 mg/L in the Little Miami River mainstem (Figure 10). All were minor excursions. No maximum values were recorded that would indicate excessive diel swings resulting from excessive nutrient enrichment and the means were well above the average criterion. No exceedances were observed in 2017. Exceedances of the EWH average and excessively high daytime values were evident in 2012, thus the 2017 and 2022 results were an improvement in the D.O. regime. The comparison of median D.O. values between 1983, 2007, 2012, 2017, and 2022 indicated no substantial changes between years with all except one value in 1983 were well within the range of median values and well above the average EWH criterion (Figure 10).

Short-term (4-5 days) continuous D.O. monitoring conducted in August 2022 at 14 mainstem locations showed D.O. exceedances at a single site, LM16A (RM 3.70) located immediately downstream from Duck Creek (Figure 11). This is a new site that has not been previously assessed. The low minimum of 3.0 mg/L and median of 4.0 mg/L indicate a chronic impact from low D.O. that is well below the water quality criteria for EWH. The lack of an excessively high maximum D.O. indicates this is unrelated to nutrient enrichment and is more likely due to excessive organic enrichment by sewage released via Duck Creek. The impact is localized to a reach of no more than 0.3 miles as evidenced by a return to upstream levels at LM16 (RM 3.5). Otherwise the 2022 results showed no other issue including excessive maximum values associated with nutrient enrichment with the possible exception of LM17 which had a high maximum of nearly 12 mg/L and at the maximum threshold of 12 mg/L that is indicative of excessive nutrient enrichment effects. This site is impounded by the Ohio River hence the

Figure 10. Median, maximum, and minimum D.O. values from daytime grab samples in 2022 (upper) and median D.O. values in 1983, 2007, 2012, 2017, and 2022 (lower). The EWH and WWH average and minimum criteria are shown as each applies to the L. Miami R. mainstem. Major discharges and tributaries are indicated across the top.

Figure 11. Box-and-whisker plots of continuous D.O from Datasonde continuous recorders at 14 sites in the Little Miami River mainstem during August 1-4 and 8-11, 2022. The EWH and WWH daily average and minimum criteria are indicated by gray shaded bars, solid and dashed lines, and the maximum D.O. indicative of excessive diel swings is indicated by a black dashed line. Major discharges and tributaries are indicated across the top.

slower flows and longer retention time likely contributed to these values. Maximum D.O. values in 2017 eclipsed the maximum value of 12 mg/L more frequently throughout the lower mainstem, but without any excursions even close the average or minimum EWH D.O. criterion. More frequent continuous monitoring in July and August 2012 revealed even more frequent and higher exceedances of the 12 mg/L threshold and with exceedances of the minimum EWH D.O. criterion at multiple sites. As was shown previously (see Figure 9), flows were much lower in 2012 compared to 2017 and 2022, the latter two of which had similar flow regimes. Also observed in 2012 was temporal variation in the more frequently monitored continuous D.O. data with more frequent high and low values in July than in August 2012. This illustrates an

apparent periodicity in spates of D.O. values that show a response to nutrient enrichment and oxygen demand.

Temperature ($^{\circ}$ C)

Continuous temperature data revealed only a single and slight exceedance of the Ohio River Basin maximum of 29.4C at LM05 (RM 21.50), but with the remaining maximum and means well below the maximum and period average criteria (Figure 12, upper panel). No exceedances of the temperature criteria were observed in 2017 as all values were well below both the average and maximum. In 2012 exceedances of both the average and maximum criteria values occurred downstream from the East Fork confluence persisting downstream to the Ohio River. This was associated with atypical releases from the W.M. Harsha Reservoir and the comparatively low flow conditions in 2012.

pH (S.U.)

pH values were well within the 6.5-9.0 S.U. criteria in 2022 with no excessively wide swings that would be indicative of excessive nutrient enrichment effects on algae (Figure 12, lower panel). The result at LM16A (RM 3.70) immediately downstream from Duck Creek was the lowest in the 2022 study and could have resulted from reduced algal activity due to toxicity from Duck Creek. The effect, if any, was brief as pH values returned to upstream levels at LM16 (RM 3.50). The pH values in 2017 were also well within the 6.5-9.0 criteria and with no excessive diel swings indicative of excessive nutrient enrichment. While not graphed the 2012 results for pH had diel fluctuations that corresponded to those commonly associated with diel D.O. fluctuations. Here again the effect was likely more apparent due to the consistently lower flows in 2012.

Ammonia-N

The median ammonia-N was at or just above the detection limit and well below the excellent IPS threshold for all samples in the mainstem in 2022 (Figure 13; Table 8) a result similar to 2017 and 2012. Maximum values exceeded the excellent threshold at LM05 (RM 21.50) and increasingly so downstream from the East Fork confluence at LM11 (RM 10.90) to the last site at LM17 (RM 1.70). Each of these maximum values was within the good range of the IPS indicating intermittently detectable, but low ammonia-N levels in the lower one half of the study area. Four of the sites had levels that were below detection and median values mostly at 0.03 mg/L (Table 8). Mean values were somewhat higher reflecting the higher maximum values downstream from the East Fork confluence indicating detectable sources of ammonia-N, but at levels below the excellent IPS threshold.

Total Kjeldahl Nitrogen (TKN)

Median TKN values exceeded the EWH IPS threshold in 2022, but were well within the WWH range (Figure 14; Table 8). Maximum values showed considerable variability at the same sites with high maximum ammonia-N with five values just exceeding the fair threshold. The median values in 2022 were comparable to 2017, but were lower than values recorded in 1983, 2007, and 2012, several of which exceeded the fair IPS threshold. This shows a consistent reduction in

Figure 12. Box-and-whisker plots of continuous temperature (C°) and pH (S.U.)from Datasonde continuous recorders at 14 sites in the Little Miami River mainstem during August 1-4 and 8-11, 2022. The period average and maximum temperature criteria are indicated by solid and dashed lines (upper) and the pH criteria by solid and dashed lines (lower). Major discharges and tributaries are indicated across the top.

Figure 13. Median, maximum, and minimum ammonia-N values in 2022 (upper) and median ammonia-N values in 1983, 2007, 2012, 2017, and 2022 (lower). The IPS thresholds are depicted by the solid colored lines. Major discharges and tributaries are indicated across the top.

Figure 14. Median, maximum, and minimum TKN values in 2022 (upper) and median TKN values in 1983, 2007, 2012, 2017, and 2022 (lower). The IPS thresholds are depicted by the solid colored lines. Major discharges and tributaries are indicated across the top.

Table 8. Ammonia-N and nutrient related parameter median and mean values at 14 sites in the Lower Little Miami River mainstem in 2022. Color shading corresponds to IPS and other thresholds for each parameter listed in the legend below the table.

		Drainage	Total Ar	nmonia	Total N	Nitrate			Total Ph	sphorus	Sest	onic	Benthic
		Area	(mg	g/L)	(mg	;/L)	TKN (mg/L)	(mg	;/L)	Chloroph	yll (μg/L)	Chlorophyll
Site ID	River Mile	(Sq. mi.)	Median	Mean	Median	Mean	Median	Mean	Median	Mean	Median	Mean	(mg/m ²)
		· · ·				Little Mia	mi River						, , ,
LM01	27.90	1069.0	BD	BD	2.80	3.00	0.52	0.48	0.21	0.21	2.34	2.78	65.10
LM02	24.10	1085.0	BD	BD	1.92	2.09	0.51	0.65	0.14	0.15	2.94	3.56	53.00
LM03	22.30	1148.0	0.02	0.02	1.98	2.20	0.51	0.52	0.16	0.17	4.01	4.53	74.10
LM05	21.50	1160.0	0.03	0.05	2.05	2.20	0.45	0.46	0.16	0.17	4.54	5.52	71.80
LM07	18.50	1187.0	0.03	0.03	2.08	2.30	0.46	0.49	0.18	0.19	4.54	5.15	59.30
LM08	17.70	1190.0	BD	BD	1.93	2.23	0.48	0.46	0.16	0.17	3.88	5.47	61.00
LM09	13.10	1203.0	BD	BD	1.62	1.86	0.55	0.62	0.16	0.20	3.61	6.30	50.20
LM11	10.90	1707.0	0.03	0.05	1.87	1.90	0.51	0.56	0.24	0.26	4.81	5.94	86.40
LM12	8.10	1710.0	0.03	0.07	1.81	1.83	0.61	0.65	0.23	0.25	4.81	5.84	84.80
LM13	6.83	1720.0	0.03	0.08	1.74	1.77	0.50	0.59	0.22	0.24	5.08	7.09	84.20
LM15	4.10	1730.0	0.03	0.09	1.56	1.68	0.58	0.63	0.24	0.24	6.41	7.65	84.60
LM16a	3.70	1752.0	0.05	0.08	0.52	0.91	0.71	0.64	0.18	0.20	4.81	4.97	84.20
LM16	3.50	1752.0	0.03	0.08	1.65	1.73	0.50	0.59	0.22	0.24	4.81	6.05	82.70
LM17	1.60	1754.0	0.03	0.08	1.52	1.65	0.60	0.66	0.21	0.22	5.01	7.27	127.00
Boatable	Excep	tional	<0	.11	<0.	71	<0	.30	<0.	05			
Narrative		ood		.56	<1.			.05	<0.			30	<182
Threshold	Fa	or		.85 .60	<2. <3.			.10 .55	<0.		30-	00	182-320 >320
Rankings				.60	<u>></u> 3.			.55 .55	<u>></u> 0.		>1	00	/320
Source	Very Poor IPS			PS	IF		IF		IPS		OEPA La	rge River	OEPA SNAP

the values observed in 2017 and 2022 and is a positive indication of decreased loadings of organic nitrogen biomass. All 2017 and 2022 values were well below the WWH IPS thresholds.

Fecal Bacteria (E. coli)

A graph of *E. coli* levels was included to serve as an indicator of excessive organic enrichment in the form of sewage inputs. The 2022 results were highlighted earlier regarding the contact recreation use implications (see Table 3). The recreation use criteria are included along with a level of E. coli that is almost certainly due to human sewage as the primary source in Figure 15. Arguably, values that exceed the SCR criterion of 1030 cfu/100 mL are likely the result of human

Figure 15. Median, maximum, and minimum E. coli values in 2022. The contact recreation criteria are depicted by the solid colored lines with the level associated with human sewage as the primary source added. Major discharges and tributaries are indicated across the top.

sewage. Using these thresholds there are significant sources of sewage inputs upstream from site LM09 (RM 10.90) and downstream to site LM17 (RM 1.70). The extremely high maximum value of 241,960 cfu/100 mL at LM16A immediately downstream from Duck Creek is certainly indicative of a major sewage release that is albeit highly localized as values returned to upstream levels at LM16 just 0.3 miles downstream.

Total Phosphorus

Total phosphorus median values were at just below or just above the good IPS threshold in 2022 (Figure 16; Table 8). Maximum values increased by 3-4 times relative to values upstream from site LM09 (RM 10.90) and downstream to site LM17 (RM 1.70), which roughly reflected the pattern of maximum *E. coli* and TKN maximum levels. Median values in 2022 were the second lowest among the years 1983, 2007, 2012, and 2017 with 2012 showing very low levels (Figure 16). The 2017 total phosphorus and nitrate reflected consistent exceedances of both the EWH and WWH IPS thresholds (Figure 16; Table 8). Excepting the very low levels in 2012, total P levels have declined since 1983 and 2007 when median values were consistently in the fair range and some values in the poor range.

Total Nitrate-N

Median and maximum total nitrate showed a pattern of general decline from upstream to downstream through the study area most likely reflecting inputs from upstream sources of the nitrification of municipal wastewater (Figure 17; Table 8). The sources of municipal wastewater in the study area had no apparent effect on this pattern. Median values exceeded the fair range at the upstream site (LM01) and declined through the fair range downstream to site LM15 (RM 4.10) and then to the good range at site LM16A (RM 3.70) to LM17 (RM 1.70). The same general upstream to downstream pattern persisted among the median values in 1983, 2007, 2012, and 2017 with the exception of one extremely high value in 2012. The highest values tended to occur in 2007 and the lowest in 2012, with 2022 the second lowest. However, the differences between years were mixed depending on the site. Being wastewater dominated the Lower Little Miami River has higher nitrate levels relative to the IPS thresholds than do the other nutrient related parameters.

Chlorophyll a

Benthic chlorophyll a and sestonic chlorophyll a values were all in their good range in accordance with the Ohio EPA Large Rivers and SNAP methodologies (Table 8). Sestonic chlorophyll a was collected along with other grab samples resulting in enough samples per site to calculate a median and mean value. Both were very low relative to the Ohio EPA large river maximum of 30 μ g/L ranging from 2.34 μ g/L to 7.27 μ g/L and with a general increase in values from upstream to downstream. Benthic chlorophyll a was collected once during the Datasonde deployments and ranged from 53.00 mg/m² to 127.00 mg/m² also with an increasing pattern from upstream to downstream and well below the 182.00 mg/m² SNAP threshold for good values.

Figure 16. Median, maximum, and minimum total phosphorus values in 2022 (upper) and median TKN values in 1983, 2007, 2012, 2017, and 2022 (lower). The IPS thresholds are depicted by the solid colored lines. Major discharges and tributaries are indicated across the top.

Figure 17. Median, maximum, and minimum total nitrate-N values in 2022 (upper) and median TKN values in 1983, 2007, 2012, 2017, and 2022 (lower). The IPS thresholds are depicted by the solid colored lines. Major discharges and tributaries are indicated across the top.

Nutrient Effects Assessment

The impact of nutrients on aquatic life has been well documented (Allan 2004), but the derivation of modernized nutrient criteria and their form and application are only just now emerging. Because of the widely varying efforts to develop nutrient criteria by the States, conflicting U.S. EPA oversight, and the potential cost of additional nutrient controls it has been a controversial issue (Evans-White et al. 2014). Unlike toxicants, the influence of nutrients on aquatic life is indirect and primarily via their influence on algal photosynthesis and respiration and the resulting increase in the magnitude of diel D.O. swings and by the biochemical oxygen demand exerted by algal photosynthesis, respiration, and decomposition. Nutrients can also affect food sources for macroinvertebrates and fish and the response of aquatic life to elevated nutrients is co-influenced by habitat (e.g., substrate composition, channel morphology), stream flow (e.g., scouring and dilution), temperature, and exposure of the water column to sunlight. Ohio has developed a technical approach to evaluate nutrient effects in large rivers (Miltner 2018) and is in the midst of a process to develop modernized nutrient water quality criteria. At this time an approach for developing nutrient water quality criteria for large rivers was described as part of an Early Stakeholder Outreach process in 2018 (Ohio EPA 2018) to revise (OAC 3745-1-36⁶). However, no formal proposal for revising these criteria has been made at this time.

The Ohio Large Rivers approach described by Miltner (2018) offers assessment thresholds for each of the variables included in a combined nutrients effect assessment (Table 9) for three states of eutrophication - acceptable, enriched, and over-enriched. The enriched and overenriched states also imply that biological assemblages are "stressed" for enriched and impaired for over-enriched along with the over-enriched state being "aesthetically obvious". For the latter, the Ohio EPA (2018) ESO presentation described visual signs of over-enrichment based on color and clarity with enriched conditions at >100 µg/L sestonic chlorophyll a and nuisance conditions occurring at levels of >165 µg/L. The combined effects of nutrient enrichment were assessed to integrate the preceding descriptions of the concentrations of each of the key nutrient related parameters with measures of algal productivity, habitat, and the numeric biocriteria. A multi-parameter approach using elements of the Ohio large rivers methodology (Miltner 2018), the proposed eutrophication standard box model (Ohio EPA 2018), the Ohio EPA SNAP (2015b) methodology, and the primacy of the biocriteria for determining aquatic life use attainment status (OAC 3745-1-07[C]). These were used in a combined approach to evaluate nutrient effects on the eutrophication status and aquatic life use attainment in the Lower Little Miami River mainstem. Some of the Ohio EPA nutrient thresholds differ from the SW Ohio IPS thresholds.

The results are detailed in a matrix that shows the biocriteria indices, the QHEI score, benthic and sestonic chlorophyll a (as biomass), the maximum and minimum D.O. (based on Datasondes), the width of the highest daily diel D.O. swing, BOD₅, total P, TKN, TSS, nitrate-N, an overall rating of the degree of nutrient enrichment based on the frequency and magnitude of exceedances of thresholds for the aforementioned indicators and parameters with aquatic

⁶ OAC 3745-1-36 is not currently listed in the Ohio WQS and will be proposed as a new rule.

Table 9. Nutrient assessment thresholds for nutrient and related parameters and indicators developed by Miltner (2018), Ohio EPA (2015b), and Ohio EPA (2018) for assigning eutrophication status to Ohio large rivers as acceptable, enriched, and over-enriched and as used to assess the status of sites in the Lower Little Miami River mainstem in 2022.

Parameter	Acceptable	Enriched	Over-Enriched	Source
Chlorophyll a (µg/L) ^a	<30	30-100 rapid increase in BOD ₅ and 24-h D.O. Range	≥100 BOD5 and TKN always highly elevated	Miltner (2018) Table 6
Chlorophyll a (µg/L) ^a	<30	100 with aesthetic impacts apparent	≥165 with nuisance conditions apparent	Ohio EPA (2018) Slide 2
Chlorophyll a (mg/m²) ^b	<182	182-320	>320	Ohio EPA SNAP (2015b)
BOD ₅ (mg/L)	<2.5	2.5-6.0 range of increasing stress	≥6.0	Miltner (2018) Table 6
TKN (mg/L)	NA	NA	<u>></u> 0.75	Miltner (2018) Table 6
24-hour D.O. (mg/L)	<7	7-9 rapid increase in BOD ₅	<u>≥</u> 9	Miltner (2018) Table 6
TSS (mg/L)	NA	>25 screening level under stable hydrograph	NA	Miltner (2018) Table 6
Total P (mg/L)	<u><</u> 0.130	>0.130	NA	Miltner (2018) Text
Nitrate-N (mg/L)	1.500 "starting point"	NA	NA	Miltner (2018) Text
Footnotes: a - sestonio	chlorophyll a as concer	ntration; b - benthic chlorophyll a as biomass.		

life use attainment status as the controlling factor (Table 10). Although the longitudinal and temporal trends in the chemical indicators and their relationship to the nutrient enrichment thresholds described by Miltner (2018) has already been thoroughly described individually, the box model matrix allows for as aggregate assessment of the contributing variables along the longitudinal pollution gradients present in the middle Scioto River. The overall degree of nutrient enrichment effects are represented by three narrative ratings of acceptable, enriched, or over enriched contingent on the degree to which each of the parameters and indicators exceeded their respective thresholds in accordance with Miltner (2018) against the attainment status of the applicable aquatic life use designation. Full attainment of the applicable aquatic life use resulted in an acceptable rating in keeping with OAC 3745-1-07(C)(1).

All the 14 mainstem sites evaluated had an acceptable result (Table 10). Eleven of the sites were rated as Acceptable based on full attainment of the EWH use designation and a lack of enrichment responses in the D.O. and chlorophyll a results. Nutrients were elevated, but not enough to counter the full attainment and lack of direct response indications. The related parameters such as BOD5, TKN, and SSC has some elevated levels, but not nearly enough to offset the more direct response indicators. Two sites were impaired for EWH and one for WWH, but for causes other than nutrients thus these were deemed acceptable based on the lack of strong nutrient responses in the D.O. and chlorophyll a indicators. This is a result similar to that

Table 10. Results of applying the Ohio Large River nutrient assessment and box model to 14 sites in the 2022 Lower Little Miami River mainstem study area. Thresholds for how each parameter reflects the degree of nutrient enrichment effects and are in Table 9 and at the bottom of the matrix.

Site ID	River Mile Fish/Macroin- vertebrates	Drainage Area (mi.²)	Current Aquatic Life Use ^a	IBI ^b	Mlwb ^b	ICIp	Aquatic Life Use Status ^c	QHEI	Benthic Chloro- phyll (mg/m²)	Sestonic Chloro- phyll (mg/L)	BOD ₅	Min. D.O. (mg/L)	Max. D.O. (mg/L)	Max. Daily D.O. Swing	TKN (mg/L)	SSC (mg/L)	TP (mg/L)	Nitrate-N (mg/L)	Overall Nutrient Box Model Status
LM01	27.90/27.90	1070	EWH	50	10.3	42 ^{ns}	Full	89.5	65.1	2.8	2.5	4.5	9.5	3.5	0.48	15.6	0.21	3.01	Acceptable
LM02	24.10/24.10	1090	EWH	52	10.9	50	Full	91.0	53.0	3.6	2.3	7.1	9.2	1.8	0.65	14.0	0.15	2.10	Acceptable
LM03	22.30/22.30	1150	EWH	47 ^{ns}	9.5 ^{ns}	52	Full	84.5	74.1	4.5	2.2	6.9	10.0	2.8	0.52	23.5	0.17	2.20	Acceptable
LM05	21.50/21.50	1160	EWH	47 ^{ns}	10.3	52	Full	89.5	71.8	5.5	2.3	7.0	10.8	3.8	0.46	13.6	0.17	2.21	Acceptable
LM07	18.50/18.50	1190	EWH	51	10.3	48	Full	89.5	59.3	5.2	2.5	6.9	10.6	3.2	0.49	14.2	0.19	2.31	Acceptable
LM08	17.70/17.70	1190	EWH	52	10.2	50	Full	85.5	61.0	5.5	2.5	7.1	10.3	3.0	0.46	13.3	0.17	2.24	Acceptable
LM09	13.10/13.10	1200	EWH	48	10.0	52	Full	87.8	50.2	6.3	3.0	7.0	9.5	1.9	0.62	12.2	0.20	1.87	Acceptable
LM11	10.90/10.90	1710	EWH	44 ^{ns}	9.8	42 ^{ns}	Full	85.0	86.4	5.9	2.5	6.9	9.0	1.1	0.56	22.6	0.26	1.91	Acceptable
LM12	8.10/8.10	1710	EWH	44 ^{ns}	9.3 ^{ns}	56	Full	89.3	84.8	5.8	2.5	6.8	8.6	1.1	0.65	11.2	0.25	1.84	Acceptable
LM13	6.83/6.83	1720	EWH	46 ^{ns}	9.8	54	Full	87.0	84.2	7.1	2.3	6.8	8.5	0.6	0.59	15.5	0.24	1.77	Acceptable
LM15	4.10/4.10	1730	EWH	44 ^{ns}	10.1	58	Full	87.5	84.6	7.7	2.7	6.7	8.3	0.7	0.63	16.3	0.24	1.69	Acceptable
LM16A	3.70/3.70	1740	EWH	30*	8.8*	40*	Non	65.0	84.2	4.97	3.2	3.1	8.5	5.3	0.64	21.6	0.20	0.91	Acceptable
LM16	3.50/3.50	1750	EWH	41*	9.2 ^{ns}	42 ^{ns}	Partial	84.0	82.7	6.1	2.3	6.6	8.3	0.8	0.59	17.5	0.24	1.73	Acceptable
LM17	1.60/1.60	1760	WWH	36 ^{ns}	7.8*		Partial	62.0	127.0	7.3	2.5	7.1	11.0	3.6	0.66	10.7	0.22	1.66	Acceptable
		Excepti	onal	48-60	>9.6	<u>></u> 42	FULL	>75											Acceptable
		Goo		38-43	8.0-9.1	32-40	FULL	60-74	<182	<30	<2.5	>4	<12	<7.0	<0.75	<20	<u><</u> 0.13	<1.56	Acceptable
Narrative 1	Threshold Rankings	Fair		26-37	5.8-7.9	14-30	PART./NON	46-59	182-320	30-100	2.5-5.9	<4	>12	7.0 - 8.9	<u>></u> 0.75	>20	>0.13	<u>></u> 1.56	Enriched
		Poo Verv P		19-25 12-18	4.0-5.7 <4.0	8-12 0-6	NON-Poor NON-V.Poor	30-45 <30	>320	>100	<u>≥</u> 6.0	<2	>15	>9.0	<u>≥</u> 0.75				Over Enriched
	Source	PA	12-18	K4. U	Ohio		<30	SNAP	OEPA	OEPA	OEPA	OEPA	OEPS	OEPA	OEPA	OEPA	OEPA	OEPA	

observed in 2017 using a modification of the SNAP assessment. A SNAP assessment was not conducted in 2012 as the methodology had not been developed at that time. An inspection of the 2012 D.O. results indicated a response to nutrient enrichment with extended diel D.O. variations that eclipsed the maximum of 12 mg/L. However nutrient levels were lower than in 2017 and 2022, but partial attainment of EWH was prevalent at most sites in the mainstem with only three of 17 sites attaining EWH. Without a more detailed re-analysis of the 2012 results it is not certain that nutrients would have been the sole or primary cause of the partial attainment.

Urban Parameters - Little Miami River Mainstem

Urban parameters include ionic strength measures such as conductivity, total dissolved solids, and total chlorides plus selected heavy metals such as copper, lead, and zinc. Suspended sediment (SSC) is included as a proxy for totals suspended solids (TSS) which is used frequently as an indicator of urban stormwater even though it is seldom directly related to aquatic life impairments. TKN is also considered an urban parameter as it has been shown to be an indicator of urban nonpoint source runoff. Major sources of organic nitrogen in urban stormwater runoff include organic nitrogen in algae, lawn and garden fertilizers, pet waste, leaking septic tanks, landfills, effluent from sewage treatment plants, and vehicle exhaust (U.S. EPA 2020). Nitrogen from aerial and terrestrial sources accumulates on roads and parking lots until runoff from a precipitation event carries the pollutants into stormwater drains and directly to local waterbodies. All of these parameters are commonly elevated in urban areas and are the result of stormwater runoff, but can also be indicative of other industrial and municipal sources of pollution. In addition to graphical depictions of these parameters the IPS biological effect thresholds (MBI 2015) were used to assess all of the urban parameters similar to the preceding analyses of nutrient and demand parameters (Table 11).

Chlorides

Median total chlorides generally declined through the study area in 2022 with values in the poor range at LM01 (RM 27.90) and a longitudinal pattern similar to nitrate-N and *E. Coli* (Figure 18). With the exception of a mean value that just exceeded the good threshold (Table 11), all median and mean values were in the upper good range with some borderline fair values. Maximum values were at or just into the poor range declining into the fair range in the lower one half of the mainstem (Figure 18). The 2022 median values were consistently the lowest of the 1983, 2007, 2012, and 2017 surveys. Median levels in 2017 were only slightly higher than in 2022 with both being among the highest flow years of the historical surveys. Median values were higher in 2007 and 2012 which had substantially lower flows by comparison (see Figure 8).

Specific Conductance and Total Dissolved Solids (TSS)

Specific conductance was measured by via grab sampling and short-term deployment of Datasondes at all 2022 Little Miami River mainstem sites (Table 11; Figure 19). Grab sample medians and means were all within the good IPS range with the exception of site LM01 (RM

Table 11. Urban source related parameter median and mean values at 14 sites in the Lower Little Miami River mainstem in 2022. Color shading corresponds to IPS and other thresholds for each parameter listed in the legend below the table. The corresponding chronic water quality criteria at 300 mg/L hardness for metals parameters are listed with the good IPS thresholds.

				Spe	rific	Total Di	ssolvad	Suspe Sedin				Total K	ieldahl			To	tal	To	tal	Tot	tal
			Drainage	· .		Solids		Concen		Chlo	rida	Nitro		Total Ca	dmium	Сор		Le		Zir	
	Divor												_			•	•		-		
	River	Aquatic	Area	(umho	•		g/L)	(SS		(mg		(mg		(μg		(μg		(μg		(µg	
Site ID	Mile	Life Use	(Sq. mi.)	Median	Mean	Median	Mean	Median	Mean	Median		Median	Mean	Median	Mean	Median	Mean	Median	Mean	Median	Mean
			ı						L	ittle Mian	ni River							1			
LM01	27.90	EWH	1069.0	810	826	450	445	17.0	15.6	98	97	0.52	0.48	BD	BD	3.15	2.65	25.40	21.03	20.50	20.75
LM02	24.10	EWH	1085.0	694	715	386	593	10.4	14.0	59	62	0.51	0.65	BD	BD	2.75	2.57	24.20	19.83	21.30	18.62
LM03	22.30	EWH	1148.0	691	665	356	355	16.0	23.5	62	62	0.51	0.52	BD	BD	3.05	2.77	26.70	21.39	14.70	14.15
LM05	21.50	EWH	1160.0	710	704	356	363	9.5	13.6	65	63	0.45	0.46	BD	BD	2.85	2.68	22.90	19.98	22.95	21.73
LM07	18.50	EWH	1187.0	710	718	374	385	9.5	14.2	67	68	0.46	0.49	BD	BD	3.30	2.77	25.55	20.68	22.90	23.02
LM08	17.70	EWH	1190.0	700	681	386	391	9.9	13.3	66	70	0.48	0.46	BD	BD	2.95	2.83	27.00	21.73	17.70	17.27
LM09	13.10	EWH	1203.0	698	681	376	379	10.5	12.2	64	67	0.55	0.62	BD	BD	3.50	4.12	26.40	22.28	25.20	27.75
LM11	10.90	EWH	1707.0	664	643	338	353	10.5	22.6	57	61	0.51	0.56	BD	BD	3.50	3.77	24.45	20.76	18.75	18.63
LM12	8.10	EWH	1710.0	673	643	340	341	10.3	11.2	59	60	0.61	0.65	BD	BD	4.00	4.67	22.75	20.04	22.85	24.75
LM13	6.83	EWH	1720.0	673	640	332	341	8.2	15.5	59	59	0.50	0.59	BD	BD	3.20	8.96*	25.25	21.71	22.00	21.35
LM15	4.10	EWH	1730.0	649	638	348	341	9.0	16.3	57	58	0.58	0.63	BD	BD	4.30	4.47	23.75	19.31	20.45	20.15
LM16a	3.70	EWH	1752.0	659	671	340	343	17.5	21.6	60	65	0.71	0.64	BD	BD	3.50	4.53	23.35	19.74	24.40	35.75
LM16	3.50	EWH	1752.0	646	635	326	327	11.5	17.5	58	59	0.50	0.59	BD	BD	3.40	3.28	17.45	17.03	18.70	19.18
LM17	1.60	EWH	1754.0	642	638	342	333	10.5	10.7	59	61	0.60	0.66	BD	BD	3.75	4.52	18.15*	17.29	15.45	15.78
LIVIT/	1.00		llent	V4Z <5			02	10.5 <43		<3:		<0.00		BD B		3.73 <5		<2		13.43 <16	
		Go		<7.			96	<74		<68		<1.		BD/		<8.9/		<17.4		<39.3/	
Boatab	le Sites		air	<8		<4		<13		<81		<2.		В		<10		<26		<50	
			oor	<9		<5		<15		<13		<2.		В		<14		<50		<79	
		Very	Poor	<u>≥</u> 9	92	<u>></u> 5	59	<u>≥</u> 15(6.7	<u>≥</u> 13	0.6	<u>≥</u> 2.	.55	В	U	<u>≥</u> 14	1.1	<u>></u> 5(0.3	<u>></u> 79	9.4

Figure 18. Median, maximum, and minimum total chloride values in 2022 (upper) and median TKN values in 1983, 2007, 2012, 2017, and 2022 (lower). The IPS thresholds are depicted by the solid colored lines. Major discharges and tributaries are indicated across the top.

Figure 19. Box-and-whisker plots of specific conductance from Datasonde continuous recorders at 14 sites in the Little Miami River mainstem during August 1-4, 8-11, and 25-29, 2022. The IPS thresholds are depicted as colored solid lines. Major discharges and tributaries are indicated across the top.

27.90) that was in the fair range (Table 11). The continuous results from August 2022 showed a somewhat similar longitudinal pattern with poor values at LM01 (RM 27.90) and a generally declining pattern in a general downstream direction with values in the good range between LM02 (RM 24.10) to the East Fork confluence and then declining to the exceptional range at all except two sites, LM16A (RM 3.70) and LM17 (RM 1.70; Figure 19). Maximum and upper quartile (75th percentile) values spiked into the poor range at LM16A with the median in the fair range, reflecting the effect of Duck Creek on this site. Again, as with other parameters that increased at LM16A, values returned to upstream excellent range levels at LM16 (RM 3.50). Values increased at LM17 (RM 1.70) with just less than one half the values into the good range.

This same pattern was perhaps accentuated by TDS median and mean values that were likewise in the good range excepting poor median and mean values at LM01 (RM 27.90) and a very poor mean at LM02 (RM 24.10) in 2022 (Table 11). The longitudinal profile from prior years in 2007 and 2012 showed higher values and increases immediately downstream from point sources, but values between sites were remarkably similar to 2017 and 2022 and not reflective of any

specific sources. This is the same conclusion that was reached in 2012 showing that few if any changes have taken place over the past five years since 2017. TDS were likewise in excess of both the excellent and good IPS thresholds in 2017.

Suspended sediment Concentration (SSC)

Median SSC concentrations in 2022 were well within the excellent range (Table 11; Figure 20). A few maximum values were in the good range with one just into the fair range an indication of the variability in this parameter. Median values in 2022 were similar to 2017 and are the lowest among the historical surveys and in the excellent range. The highest values occurred in 2007 followed by 2012, but all except three sites in the good range in 2007, all were within the excellent range (Figure 20). SSC can serve as a proxy for TSS which is a commonly employed indicator parameter for urban stormwater. However, it has consistently exhibited a poor relationship with the condition of the aquatic biota which serves as the arbiter of designated use attainment. A more complex array of parameters as employed herein is needed to better characterize stormwater quality and impacts.

Other Urban Parameters

All of the data were within the good or excellent IPS thresholds for TKN as were the heavy metals total cadmium, total copper, or total zinc in the mainstem in 2022. A single low level exceedance of the copper criteria (36 μ g/L) occurred at LM13 although the mean and median values were low (Table 11). Total lead had median and mean values that were consistently in the fair range with a median value in the poor range at LM08 (RM 17.70) which is 0.4 miles downstream from Sycamore Creek, although most values were "estimated" indicating uncertainty about the true value although most values were "estimated" indicating uncertainty about the true value. The IPS thresholds for cadmium, copper, and zinc are lower than the current chronic of Outside Mixing Zone Average (OZMA) chronic water quality criteria for each, but lead is close with the IPS threshold for fair being equivalent to the OMZA at 300 mg/L hardness (Table 11). These results are reflective of modest impacts by urban potential stormwater that largely enters the mainstem via tributaries such as Sycamore Creek and Duck Creek, although there is uncertainty about the measure values.

Sediment Chemistry

Sediment samples were collected from 14 sites in the Little Miami River mainstem in October 2022 and analyzed for heavy metals and organic compounds. The results were screened with the MacDonald et al. (2000) and Persuad et al. (1993) consensus-based levels for potential adverse effects to aquatic life and Ohio Sediment Reference Values (SRVs). MacDonald et al. (2000) described two levels of contamination - a Threshold Effects Concentration (TEC) and a Probable Effects Concentration (PEC). Persaud et al. (1993) described a similar scheme with a Severe Effect Level (SEL) and Low Effect Level (LEL). The TEC or LEL indicates exceedances for sensitive species and taxa while the PEC or SEL indicates effects for most species and taxa. The Ohio SRVs are based on reference sites data and thus reflect background levels. IPS thresholds have not yet been developed for sediment chemicals.

Figure 20. Median, maximum, and minimum suspended sediment concentration (SSC) values in 2022 (upper) and median TKN values in 1983, 2007, 2012, 2017, and 2022 (lower). The IPS thresholds are depicted by the solid colored lines. Major discharges and tributaries are indicated across the top.

Table 12. Sediment metals concentrations (mg/kg) for parameters with values >detection in the Little Miami River study area in October 2022. Values above the MacDonald et al. (2000) Threshold Effect Concentration (TEL) and Probable Effect Concentration (PEC) thresholds or above Ohio Sediment Reference Values (SRVs) are shaded in accordance with the color-code key at bottom. BD – below detection.

Site ID	River Mile	Drainage Area (Sq. mi.)	Arsenic (mg/kg)	Cadmium (mg/kg)	Copper (mg/kg)	Iron (mg/kg)	Lead (mg/kg)	Zinc (mg/kg)
			Litt	tle Miami Riv	ver			
LM01	27.90	1069.0	4.30	BD	BD	12000	BD	BD
LM02	24.10	1085.0	4.20	BD	4.60	-	BD	BD
LM03	22.30	1148.0	2.60	BD	3.40	6200	5.10	13
LM05	21.50	1160.0	1.90	BD	BD	-	BD	BD
LM07	18.50	1187.0	2.40	BD	6.60	-	BD	BD
LM08	17.70	1190.0	1.70	BD	4.70	-	BD	BD
LM09	13.10	1203.0	2.60	BD	5.30	-	BD	BD
LM11	10.90	1707.0	4.10	BD	BD	-	BD	BD
LM12	8.10	1710.0	3.90	0.53	8.90	-	BD	37
LM13	6.83	1720.0	2.20	BD	5.30	-	BD	BD
LM15	4.10	1730.0	3.70	0.61	1.80	-	8.60	16
LM16a	3.70	1752.0	4.90	0.53	3.00	-	8.60	18
LM16	3.50	1752.0	1.60	0.54	2.40	-	7.70	12
LM17	1.60	1754.0	1.70	0.57	3.40	-	8.40	43
Ohio	EPA	>SRV	>25.1	>0.8	>33	>51000	>47	>170
		>PEC	>33	>5	>149		>128	>459
MacDonald	et al. (2000)							>121
Ohio		>SRV	>25.1	>0.8	>33		>47	>2

Sediment Metals

There were no exceedances of TECs for any sediment metal that was analyzed and detected in the mainstem in 2022 (Table 12). Arsenic was the only metal parameter that was detected at every site while copper was detected at 11 sites. Cadmium, lead, and zinc were below detection at about one-half the sites with detections occurring in the downstream half of the mainstem. While none of the results indicate any threat to aquatic life, the pattern of detection indicates the influence of urban stormwater and other discharges that tends to accumulate in a downstream direction.

Sediment Organics

Organic chemical parameters that were detected in Little Miami River mainstem sediment samples revealed varying exceedances of only the MacDonald (2000) TEC and the Persuad et al. (1993) LEL thresholds in selected instances with a high number of below detection results (Table 13). Eleven (11) polycyclic aromatic hydrocarbon compounds were detected at all of the mainstem sites, but most were below the TEL or LEL thresholds. Benzo(a)anthracene, dibenzo(a,h)anthracene, and pyrene most frequently exceeded the TEC at the majority of

Table 13. Sediment PAH and selected organic chemical parameter concentrations (μg/kg) in the Little Miami River mainstem in October 2022. Values above the MacDonald et al. (2000) TEC and PEC and Persaud et al. (1993) SEL and LEL thresholds are shaded in accordance with the color-code key at the bottom of the table. BD – below detection; AD – above detection.

Site ID	River Mile	Drain- age Area (Sq. mi.)	Acenaphthylene (mg/kg dry)	Anthracene (mg/kg dry)	Benzo(a)anthracene (mg/kg dry)	Benzo(a)pyrene (mg/kg dry)	Benzo(b)fluoranthene (mg/kg dry)	Benzo(g,h,i)perylene (mg/kg dry)	Benzo(k)fluoranthene (mg/kg dry)	Chrysene (mg/kg dry)	Dibenzo(a,h)anthracene (mg/kg dry)	əp Fluoranthene 이것 (mg/kg dry)	Indeno(1,2,3-cd)pyrene (mg/kg dry)	Phenanthrene (mg/kg dry)	Pyrene (mg/kg dry)	n-Octadecane (mg/kg dry)	Fluorene (mg/kg dry)	Naphthalene (mg/kg dry)	Acenaphthene (mg/kg dry)	Carbazole (mg/kg dry)	Bis(2-ethylhexyl)phthalate (mg/kg dry)	Toluene (mg/kg dry)	1,4-Dichlorobenzene (mg/kg dry)	Aroclor 1221 (mg/kg dry)	Aroclor 1254 (mg/kg dry)
LM01	27.90	1069.0	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	BD	BD	BD	BD
LM02	24.10	1085.0	0.04	0.05	0.22	0.29	0.42	0.22	0.14	0.29	0.07	0.60	0.28	0.20	0.46	BD	BD	BD	BD	BD	BD	BD	BD	BD	BD
LM03	22.30	1148.0	BD	BD	0.03	0.04	0.05	0.03	0.03	0.03	BD	0.08	0.03	0.04	0.06	BD	BD	BD	BD	BD	BD	BD	BD	BD	BD
LM05	21.50	1160.0	BD	0.04	0.14	0.20	0.24	0.14	0.11	0.13	0.06	0.33	0.17	0.15	0.25	BD	BD	BD	BD	BD	BD	BD	BD	BD	BD
LM07	18.50	1187.0	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	BD	BD	BD	BD
LM08	17.70	1190.0	BD	BD	0.14	0.18	0.25	0.14	0.09	0.18	0.04	0.38	0.16	0.13	0.29	193.30	BD	BD	BD	BD	BD	BD	BD	BD	BD
LM09	13.10	1203.0	0.05	0.07	0.29	0.40	0.52	0.32	0.22	0.43	0.09	0.79	0.37	0.45	0.64	130.40	0.03	0.40	BD	BD	BD	BD	BD	BD	BD
LM11	10.90	1707.0	BD	0.04	0.15	0.13	0.16	0.09	0.07	0.10	0.06	0.28	0.13	0.14	0.22	BD	BD	BD	BD	BD	BD	BD	BD	BD	BD
LM12	8.10	1710.0	BD	0.03	0.11	0.11	0.14	0.08	0.07	0.08	0.06	0.17	0.10	0.07	0.14	BD	BD	BD	BD	BD	BD	BD	BD	BD	BD
LM13	6.83	1720.0	0.03	0.07	0.28	0.32	0.54	0.26	0.21	0.44	0.07	0.81	0.31	0.24	0.63	BD	BD	0.03	BD	BD	BD	BD	BD	BD	BD
LM15	4.10	1730.0	BD	BD	0.02	0.01	0.02	0.01	BD	0.01	BD	0.03	0.01	0.01	0.02	BD	BD	BD	BD	BD	BD	BD	BD	BD	BD
LM16a	3.70	1752.0	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	BD	BD	BD	BD
LM16	3.50	1752.0	0.05	0.09	0.35	0.37	0.49	0.24	0.16	0.43	0.05	0.87	0.27	0.49	0.76	BD	0.04	0.01	0.02	0.05	BD	BD	BD	BD	BD
LM17	1.60	1754.0	BD	BD	0.10	0.10	0.15	0.07	0.05	0.08	BD	0.20	0.08	0.05	0.16	BD	BD	BD	BD	BD	BD	BD	BD	BD	BD
MacDona (2000) Th		PEC TEC		>0.845 >0.057	>1.050 >0.108					>1.29	>0.033	>2.230		>1.170	>1.520 >0.195		>0.536	>0.561 >0.176	>88.90 >6.710						
(2000) Th		SEL	>0.088	>370	>0.108	>1440	>1340	>320	>1340	>0.166 >460	>0.033	>0.423	>320	>950	>0.195		>0.077	>0.176	>6.710						>340
Persaud et Thres		LEL	>0.088	>0.220	>0.320	>0.370	>0.240	>0.170	>0.240	>0.340	>0.060	>0.750	>0.200	>0.560	>0.490	AD	>0.190	>0.391	>88.9	AD	AD	AD	AD	AD	>60
inies	ioius	<lel td="" tec<=""><td><0.0067</td><td><0.057</td><td><0.108</td><td><0.370</td><td><0.240</td><td><0.170</td><td><0.240</td><td><0.166</td><td><0.033</td><td><0.423</td><td><0.200</td><td><0.204</td><td><0.195</td><td>BD</td><td><0.077</td><td><0.034</td><td><6.710</td><td>BD</td><td>BD</td><td>BD</td><td>BD</td><td>BD</td><td><60</td></lel>	<0.0067	<0.057	<0.108	<0.370	<0.240	<0.170	<0.240	<0.166	<0.033	<0.423	<0.200	<0.204	<0.195	BD	<0.077	<0.034	<6.710	BD	BD	BD	BD	BD	<60

mainstem sites. Other PAH compounds such as anthracene, chrysene, fluoranthene, phenanthrene, and naphthalene exceeded the TEC at LEL at a handful of sites. The only non-PAH compound detected was the aromatic heterocyclic organic carbazole at a single site in the lower mainstem. PAH compounds are commonly detected in sediment samples at sites impacted by urban runoff. All of the detected PAH compounds are by products of coal tar, gasoline exhaust, and incomplete combustion of coal and oil and several are known carcinogens. Most of these compounds are not manufactured and are more commonly detected in urban rivers and streams with runoff from asphalt pavement and heavy automobile traffic as the primary sources.

Conventional, Demand, and Nutrient Parameters - Tributary Subwatersheds

Results in the tributary subwatersheds are portrayed in tables for all sites where water samples were collected and graphically for the mainstem of Duck Creek. Three sites that were classified as Primary Headwater Habitat were not sampled for water chemistry. The tributary subwatersheds have a wide range of impacts ranging from relatively unimpacted in Polk Run to wastewater and urban runoff in Sycamore Creek, CSOs in Clough Creek, and numerous CSOs and urban stormwater conveyances in Duck Creek. The latter also has a mix of WWH and Limited Resource Water (LRW) designated streams and mainstem reaches, thus parameters with water quality criteria and IPS threshold differences as a result of the differing existing and recommended aquatic life use designations were included in the assessment of the results. Three sites in the Duck Creek subwatershed are classified as Primary Headwater Habitat, one PHW1 (also LRW designated), one PHW2, and one PHW3A. One site in the unnamed tributary at RM 1.82 to the unnamed tributary Sycamore Creek at RM 1.12 (LM54) is classified as a PHW3A. Only one of these sites (LM82) had water chemistry data. The sampling in Duck Creek included a total of 16 sites, eight (8) in the mainstem, four (4) in Little Duck Creek, two (2) in the East Fork Duck Creek, and two sites each in two unnamed tributaries one to Duck Creek at RM 4.8 (LM80) and the other to Little Duck Creek at RM 4.42 (LM82). The sampling in Sycamore Creek, Polk Run, and Clough Creek included eight (8) sites of which five (5) were in the Sycamore Creek subwatershed. Sycamore Creek receives four (4) SSO and one WWTP discharge in proximity to the sampling sites (see Table 8). The two sites in Clough Creek are impacted by two CSOs and two SSOs and Polk Run is affected only by a low level of urban runoff.

Dissolved Oxygen (D.O.)

D.O. was measured with daytime grab samples and continuously over a short term period of four days in August 2022 at three (3) sites in Sycamore Creek, one (1) site in Polk Run, seven (7) sites in the Duck Creek mainstem, one (1) site in the East Fork Duck Creek, and one (1) site in Clough Creek (Figure 21). The results at the two upstream sites in Sycamore Creek showed wide diel variations with minimums well above the average WWH criteria and an indication of excessive nutrient effects. The site downstream from the WWTP had a considerably reduced diel variation a likely response to the "diluting" effect of treated wastewater. Polk Run exhibited a much narrower diel fluctuation an indication of no apparent enrichment effects a result that was mimicked by the Clough Creek results.

Figure 21. Box-and-whisker plots of continuous D.O. from Datasonde continuous recorders at 13 sites in Duck Creek, Sycamore Creek, Polk Run, and Clough Creek during August 11-15, 15-18, and 25-29, 2022. The WWH and LRW daily average and minimum criteria are indicated by gray shaded bars, solid lines, and the maximum D.O. indicative of excessive diel swings is indicated by a black dashed line. The applicable use designation is shown as a colored bar across the top of the graph (green – WWH; light green – WWH recommended; orange – LRW).

The results in the Duck Creek mainstem varied considerably with all except the upstream most site (LM71) either showing a wide diel swing or low minimum values that exceeded the 2.0 mg/L minimum LRW criterion at LM73 (Figure 21). The East Fork at LM85 exceeded the WWH 4.0 mg/L minimum D.O. criterion which the results were evaluated against given the recommendation to upgrade the use form LRW to WWH. These results show the impacts of numerous CSO discharges, urban runoff, and the modified habitat in the LRW designed reach of

the Duck Creek mainstem that has reduced assimilative capacity and accelerated downstream delivery of pollutants.

Temperature ($^{\circ}$ C)

With the exception of the upstream most site in Duck Creek (LM71), median temperature was generally between 21-23°C (Figure 22). Maximum values were all less than 27.8°C, well below the WWH maximum of 29.4°C and the LRW maximum of 34.0°C. The width of the diel swing on Temperature was higher in smaller streams which are less buffered from solar insolation and nighttime cooling than large streams or those with a wastewater discharge. The results are otherwise unremarkable with no patterns related to land use or wastewater discharges.

pH (S.U.)

Median pH values were generally in the range of 7.8-8.3 S.U. which is only slightly higher than the median of reference sites for headwater streams in the SW Ohio IPS database. One site in Duck Creek (LM72) had a maximum of 9.1 S.U. which is a technical exceedance of the pH water quality criterion (Figure 23). The diel swings were wider than in the mainstem a reflection of the smaller stream size and more influence from urban and CSO/SSO nutrient enrichment.

Ammonia-N

Median and mean total ammonia-N values were generally below or close to the method detection limit at except six (6) sites in the Little Miami River tributaries (Table 14). The only value outside of the excellent or good IPS ranges was a mean value of 0.87 mg/L at the upstream most site (LM50) in Sycamore Creek. This site is impacted by two SSOs. This impact apparently was episodic as evidenced by the comparatively low median of 0.03 mg/L and short lived as the ammonia-N next site (LM51) 0.6 miles downstream was below detection.

Nitrate-N

Mean and median total nitrate-N values were largely within the excellent range of IPS thresholds with eight (8) sites in Duck Creek within the good range (Table 14). Two sites in Sycamore Creek (LM52) downstream from the WWTP had nitrate-N values in the very poor range, a result of the nitrification process to reduce ammonia-N.

Total Kjeldahl Nitrogen (TKN)

Mean and median TKN values were predominantly in the excellent and good ranges at the majority of sites (Table 14). However, values in the fair range were more frequent. The mean in Sycamore Creek at site LM50 (RM 1.10) was in the fair range and disproportionate to the mean indicating an episodic event similar to the ammonia-N result. This site is downstream of two SSOs. The Sycamore Creek site (LM52) downstream from the WWTP also had virtually identical elevated mean and median values in the fair range indicating a more consistent exposure. The other fair range median and mean values were in the unnamed tributary to Duck Creek at RM 4.8 (LM80) and the unnamed tributary to Little Duck Creek at RM 4.8 (LM82) also with similar mean and median values indicating a more consistent exposure. Both sites are impacted by the same three CSOs.

Figure 22. Box-and-whisker plots of continuous temperature ($^{\circ}$ C) from Datasonde continuous recorders at 13 sites in Duck Creek, Sycamore Creek, Polk Run, and Clough Creek during August 11-15, 15-18, and 25-29, 2022. The WWH and LRW daily average and minimum criteria are indicated by dashed and dotted lines. The applicable use designation is shown as a colored bar across the top of the graph (green – WWH; light green – WWH recommended; orange – LRW).

Fecal Bacteria (E. coli)

A graph of *E. coli* levels in the Duck Creek mainstem was included to serve as an indicator of excessive organic enrichment in the form of sewage inputs from CSOs and SSOs. The 2022 results were highlighted earlier regarding the contact recreation use implications (see Table 3). The recreation use criteria are included along with a level of *E. coli* (5,000 cfu/100 mL) that is almost certainly due to human sewage as the primary source in Figure 24. Values that exceed the SCR criterion of 1,030 cfu/100 mL are also likely the result of human sewage. Using these thresholds there are significant sources of sewage inputs to Duck Creek from CSOs and SSOs in

Figure 23. Box-and-whisker plots of continuous pH (S.U.) from Datasonde continuous recorders at 13 sites in Duck Creek, Sycamore Creek, Polk Run, and Clough Creek during August 11-15, 15-18, and 25-29, 2022. The range of pH criteria of 6.5-9.0 S.U. is indicated by dashed and solid lines. The applicable use designation is shown as a colored bar across the top of the graph (green – WWH; light green – WWH recommended; orange – LRW).

the upper one half of the LRW designated reach. Mean values greater than the 1,030 cfu/100 mL Secondary Contact criterion and maximum values of 75,000 cfu/100 mL is certainly indicative of sewage releases into Duck Creek that essentially acts as a "point source" to the Little Miami River mainstem. Based on a comparison of means from 2012, 2017, and 2022 the levels of *E. coli* have been essentially unchanged over that time period with the exception of very low levels at the upstream most site in Duck Creek.

Table 14. Ammonia-N and nutrient related parameter median and mean values at 24 Little Miami River tributary sites in 2022. Color shading corresponds to wadeable and headwater site IPS and other thresholds for each parameter listed in the legend at the bottom of the table.

		Drainage Area	Total Ar (mg		Total Nitra	ite (mg/L)	TKN (ı	mg/L)	Total Ph (mg	-	Sesto Chloroph		Benthic Chlorophyll
Site ID	River Mile	(Sq. mi.)	Median	Mean	Median	Mean	Median	Mean	Median	Mean	Median	Mean	(mg/m ²)
					Syca	more Creel	k (LMR RM	19.2)			,		
LM50	1.10	14.7	0.03	0.87	0.37	0.39	0.24	1.27	0.47	0.49	2.64	5.07	72.80
LM51	0.50	24.0	BD	BD	0.15	0.24	0.31	0.30	0.12	0.12	1.34	2.25	92.80
LM52	0.10	24.0	BD	BD	4.88	4.75	0.68	0.67	0.13	0.17	1.00	1.29	151.00
				Ur	named Trib	outary to S	ycamore Cr	eek at RM	1.12				
LM55	1.20	5.3	BD	BD	0.14	0.14	0.18	0.18	0.10	0.10	1.00	1.00	-
LM56	0.20	5.6	BD	BD	0.09	0.09	0.22	0.22	0.08	0.08	6.60	6.60	-
					P	olk Run (Ll	MR RM 21.	55)					
LM40	0.30	10.8	BD	BD	0.19	0.21	0.11	0.13	0.08	0.08	1.00	1.00	62.30
		0 22 00 00			Di	uck Creek (LMR RM 3.	87)					
LM71	6.10	2.2	BD	BD	0.78	0.81	BD	BD	0.21	0.21	1.00	1.00	159.00
LM72	5.14	5.1	0.12	0.10	0.72	0.74	0.49	0.49	0.23	0.23	1.30	1.70	78.10
LM73	4.58	5.8	0.08	0.11	0.63	0.62	0.46	0.49	0.23	0.23	1.04	1.17	52.40
LM74	3.90	9.6	0.03	0.05	0.53	0.49	0.35	0.37	0.22	0.21	1.87	1.87	119.00
LM75	3.40	7.3	BD	BD	0.93	0.93	0.28	0.30	0.15	0.15	2.10	3.30	135.00
LM76	2.80	11.8	BD	BD	0.94	0.94	0.32	0.36	0.13	0.13	6.41	8.13	143.00
LM77	2.00	14.3	BD	BD	0.55	0.58	0.36	0.35	0.10	0.11	4.01	4.52	84.30
LM79	0.50	14.6	BD	BD	0.40	0.45	0.29	0.29	0.13	0.13	1.30	1.84	-
Wadeable	Excep		<0		<0.		<0.		<0.			0	
Narrative	Go Fa		<0.	.83	<1. <1.		<0. <1.		<0. <0.		<3 30-1	-	<182 182-320
Threshold Rankings	Po	or		.58	<2.		<2.		<1.		>10		>320
namings	Very	Poor tional	_	.58 .09	<u>></u> 2.		<u>></u> 2.	03	<u>></u> 1.				
Headwater	Go			.31	<0.		<0.		<0.		<3	0	<182
Narrative Threshold	Fa	ir	<0	.63	<1.	12	<1.		<1.		30-1		182-320
Rankings	Po Very			43	<1.		<2.		<2. ≥2.		>10	00	>320
Source		S		.43 PS	<u>≥</u> 1.		<u>≥</u> 2 IF		<u>≥</u> 2.	00	OEPA	SNAP	OEPA SNAP

Table 14. continued.

Site ID	River Mile	Drainage Area (Sq. mi.)	Total Ar (mg Median		Total Nitra Median Unnamed	ite (mg/L) Mean	Median	Mean	Total Ph (mg Median	-	Sest Chloroph Median		Benthic Chlorophyll (mg/m²)
LM80	0.10	1.4	0.08	0.10	0.12	0.12	0.68	0.70	0.17	0.18	1.61	5.85	-
						East Fork	Duck Creek	1					
LM85	2.00	1.3	0.03	0.05	0.32	0.31	0.48	0.54	0.30	0.31	1.00	1.69	86.00
LM84	0.50	2.4	BD	BD	0.20	0.22	0.26	0.25	0.15	0.13	1.84	1.84	-
						Little Du	ıck Creek						
LM86	2.40	0.5	BD	BD	0.45	0.45	0.24	0.24	0.17	0.17	1.00	1.00	-
LM87	1.90	0.5	BD	BD	0.41	0.41	0.27	0.27	0.19	0.19	1.00	1.00	-
LM90	1.00	1.1	BD	BD	0.34	0.34	0.25	0.25	0.18	0.18	1.00	1.00	-
LM92	0.49	1.7	BD	BD	0.54	0.54	0.22	0.22	0.22	0.22	1.00	1.00	-
				U	nnamed Tri	butarty to	Little Duck	Creek at 4	4.42				
LM82	0.20	0.3	BD	BD	0.57	0.55	0.57	0.55	0.26	0.26	1.00	1.02	-
					Clo	ough Creek	(LMR RM	2.9)					
LM95	3.20	2.1	BD	BD	0.30	0.30	0.19	0.19	0.11	0.11	1.00	1.00	-
LM98	0.60	7.8	BD	BD	0.12	0.12	BD	BD	0.06	0.06	1.00	1.00	62.30
Headwater		tional	<0.		<0.		<0.		<0.			20	100
Narrative	Go Fa		<0. <0.	-	<0. <1.		<0. <1.		<0. <1.		30-:		<182 182-320
Threshold	Po		<1.		<1.		<2.		<2.		>1		>320
Rankings	Very		<u>≥</u> 1.		<u>≥</u> 1.		<u>≥</u> 2		<u>≥</u> 2.	60			
Source	IF	PS .	IF.	S	IP	S	IP	S	IPS		OEPA	SNAP	OEPA SNAP

Figure 24. Median, maximum, and minimum E. coli values in Duck Creek in 2022. The contact recreation criteria are depicted by the solid colored lines with the level associated with human sewage as the primary source added. The LRW (orange shaded) and WWH (green shaded) designated reaches are indicated across the top.

Total Phosphorus

Mean and median total phosphorus values were much more frequently in the fair range with the remainder in the good range evidence of the pervasive enrichment in the tributaries (Table 14). However, all except two of the fair values were only slightly outside of the good range. The two highest median and mean values of 0.47 mg/L and 0.49 mg/L, respectively, occurred in upper Sycamore Creek at site LM50 (RM 1.10) which is impacted by two SSOs and urban runoff.

Chlorophyll a

Median and mean sestonic and benthic chlorophyll a values were all within what is considered to be good levels by Ohio EPA (2015b) and not indicative of excessive nutrient enrichment effects (Table 14). Median and mean sestonic chlorophyll a values were very low with the highest mean value of 8.13 μ g/L in Duck Creek at site LM76 (RM 2.80) with a median value of 6.41 μ g/L. Another elevated mean and median of 6.60 μ g/L occurred at LM56 in the unnamed tributary to Sycamore Creek at RM 1.12. Benthic chlorophyll a levels were general well below the good threshold of 182 mg/m² with high values of 151 mg/m² occurring in lower Sycamore Creek at LM52 (RM 0.10) downstream of the WWTP and 159 mg/m² in upper Duck Creek at LM71 (RM 6.10). Values >100 mg/m² occurred in Duck Creek at sites LM74 (119 mg/m²), LM75 (135 mg/m²), and LM76 (143 mg/m²) each of which is impacted by numerous CSOs and urban stormwater.

Nutrient Effects (SNAP)

The primary nutrients (phosphorus and nitrates) can pose a threat to aquatic life indirectly through the stimulation of excessive algal production and the corresponding effects that photosynthesis and respiration have on the diel D.O. regime. The SNAP procedure was developed as a combined assessment of the effects of nutrient enrichment which goes beyond a reliance on primary nutrient concentrations alone. The variables included in a SNAP assessment appear in Table 15 and include the aquatic life use attainment status based on the applicable biological criteria, total P, the diel D.O swing, and benthic chlorophyll a as the primary variables and several other supporting variables such as nitrate-N, TKN, BOD₅, and TSS each of which can be affected by excessive nutrient enrichment. The QHEI is also included as stream habitat can be an important factor in how nutrients are processed by the aquatic ecosystem.

Full attainment of the WWH use designation occurred at five (5) tributary sites which is generally sufficient to assign a SNAP status of Attaining, Not Threatened (2 sites) or an Attaining, Threatened (3 sites) regardless of the non-biological SNAP indicators (Table 15). The difference between Not Threatened and Threatened is based on the responses of the non-biological indicators towards a nutrient enrichment effect which included elevate total P, nitrate-N, BOD₅, and TKN. All of these sites had good QHEI scores. Three (3) sites in Duck Creek attained the LRW use and were assigned an Attaining, Threatened SNAP status. Two impaired sites were assigned Impaired, Nutrients as a Likely Cause, one in the WWH designated upper Sycamore Creek site (LM50) and the other in the LRW designated Duck Creek at LM75 (RM 3.40) despite the latter having a very poor QHEI score. Each site had Low to Medium Risk

Table 15. The results of the Ohio EPA Stream Nutrient Assessment Procedure (SNAP) for 16 Little Miami River tributary sites with sufficient data in 2022. Color shading is explained in the legend at the bottom of the table (na – not applicable; ns – nonsignificant exceedance). Exceedances are asterisked, poor and very poor values are underlined.

									Chloro	phyll a		Gra	ab Dissol	ved Oxyg	en ^a	Contin	uous Dis	solved O	xygenª					
																			Max.	Total	Susp.	Total		
	River Mile	Drain-					Aquatic												Daily	Kjeldahl	Sed.	Phos-	Nitrate-	
	Fish/Macroin-	age Area	Aquatic				Life Use		Benthic	Sestonic	BOD ₅	Min.	Mean	Max	Max.	Min.	Mean	Max.	D.O.	Nitrogen	Conc.	phorus	N	
Site ID	vertebrates	(mi.²)	Life Use ^a	IBI ^b	Mlwbb	ICI ^b	Status	QHEI	(mg/m ²)	(mg/m ³)	(mg/L	(mg/L)	(mg/L)	(mg/L)	Swing	(mg/L)	(mg/L)	(mg/L)	Swing	(mg/L)	(mg/L)	(mg/L)	(mg/L)	Overall Assessment of Nutrient Effects
													Sycamo	re Creek										
LM50	1.10/1.10	12.5	WWH	<u>24</u> *	na	46	Non	70.0	72.8	5.1	3.0	4.3				5.3	8.4	13.4	7.7	1.27	7.5	0.49	0.45	Impaired, nutrients as a likely cause
LM51	0.50/0.50	22.8	WWH	49	7.7 ^{ns}	48	Full	61.5	92.8	2.3	2.0	4.7	6.2	8.5	3.8	5.3	8.6	12.2	6.8	0.30	2.3	0.12	0.25	Attaining, threatened by nutrients
LM52	0.10/0.10	23.3	WWH	47	7.8 ^{ns}	38	Full	68.0	151.0	1.3	2.3	7.2	8.0	9.2	1.9	8.1	8.5	9.3	0.9	0.67	2.6	0.17	4.76	Attaining, threatened by nutrients
											Polk Ru	n												
LM40	0.30/0.30	10.0	WWH	52	na	50	Full	63.0	62.3	1.0	2.0	7.6	8.7	10.3	2.7	7.4	8.6	11.2	3.5	0.13	3.2	0.08	0.21	Attaining, not threatened by nutrients
													Duck	Creek										
LM71	6.10/6.10	2.2	LRW	<u>12</u> *	na	VP*	Non	26.0	143.0	1.0	2.0	6.6	7.2	7.6	1.1	7.7	8.0	8.7	1.0	0.13	1.0	0.21	0.81	Impaired, cause(s) other than nutrients
LM72	5.14/5.14	5.1	LRW	24	na	Р	Full	54.5	78.1	1.7	2.3	4.2	5.9	7.7	3.5	2.4	5.5	11.6	9.0	0.49	3.0	0.23	0.78	Attaining, threatened by nutrients
LM73	4.58/4.58	5.8	LRW	<u>12</u> *	na	F	Non	16.0	52.4	1.2	2.3	2.9	5.6	7.4	4.5	0.9	3.5	8.9	8.0	0.49	1.6	0.23	0.66	Impaired, cause(s) other than nutrients
LM74	3.90/3.90	9.6	LRW	28	na	F	Full	63.0	119.0	1.9	2.0	5.2	6.8	8.9	3.7	3.1	6.2	11.9	8.5	0.37	1.5	0.21	0.52	Attaining, may be threatened by nutrients
LM75	3.40/3.40	11.5	LRW	<u>12</u> *	na	F	Non	15.0	135.0	3.3	2.0	7.7	9.5	11.8	4.2	6.3	8.5	13.3	6.8	0.30	3.6	0.15	0.94	Impaired, nutrients as a likely cause
LM76	2.80/2.80	11.7	LRW	24	na	26	Full	66.0	143.0	8.1	3.3	7.5	8.3	9.5	2.0	5.7	7.8	12.1	6.3	0.36	3.7	0.13	0.95	Attaining, threatened by nutrients
LM77	2.00/2.00	14.3	WWH	36 ^{ns}	na	32	Full	67.0	84.3	4.5	2.3	5.9	6.5	7.4	1.5	5.4	7.9	12.0	6.2	0.35	5.1	0.12	0.59	Attaining, threatened by nutrients
LM79	0.50/0.50	14.6	WWH	<u>26</u> *	na	38	Non	68.8		1.8	2.0	5.0	5.8	6.8	1.8					0.29	6.0	0.14	0.45	Impaired, cause(s) other than nutrients
												E	ast Fork	Duck Cre	ek									
LM85	2.00/2.00	1.3	WWH	<u>22</u> *	na	F	Partial	62.5	86.0	1.7	2.0	4.0	5.0	5.3	1.4	3.1	4.5	8.1	4.8	0.54	9.9	0.31	0.32	Impaired, cause(s) other than nutrients
LM84	0.50/0.50	2.0	WWH	28*	na	F	Partial	65.0	1.0	1.8	2.0	5.6	6.7	7.2	1.6					0.25	3.0	0.14	0.23	Impaired, cause(s) other than nutrients
													Cloug	h Creek										
LM95	3.20/3.20	2.0	WWH	30*	na	MG	Partial	59.0		1.0	2.0	6.8	7.0	7.2	0.4					0.19	2.5	0.11	0.31	Impaired, cause(s) other than nutrients
LM98	0.60/0.60	7.8	WWH	38 ^{ns}	na	G	Full	59.5	62.3	1.0	2.0	6.1	6.1	6.1	0.1	6.7	8.0	10.0	3.0	0.14	3.5	0.07	0.13	Attaining, not threatened by nutrients
		Excellent (Reference)	<u>≥</u> 50	<u>≥</u> 9.4	<u>></u> 46	Full	<u>></u> 75		<2.0	<1.98	>5.0	>6.0	<8.0	<5.0	>5.0	>6.0	<8.0	<5.0	<0.38	<17.0	<0.04	<0.44	Attaining, not threatened by nutrients
			y Low Risk)	<u>></u> 40	<u>≥</u> 8.1	<u>></u> 30	Full	<u>></u> 60	≤182	<5.0	<2.48	>4.0	>5.0	<11.5	<u><</u> 6.5	>4.0	>5.0	<11.5	<u><</u> 6.5	<0.51	<64.7	<0.08	<1.10	Attaining, threatened by nutrients
		Fair (Lo	ow Risk)	≥28	≥5.9	20-29	Partial	≥45 >30	<320	<10	<2.74 <3.38	>3.0	>4.0	<14.0 <17.0	<9.0	>3.0	>4.0	<14.0 <17.0	<9.0 <12.0	<u>≤</u> 1.70 <2.15	<165.3 <203.0	<0.131 >0.400	<3.60 <6.70	Impaired, nutrients as a likely cause
			(High Risk)	≥18 <18	≥4.5 <4.5	<12	Non Non	<u>≥</u> 30 <30	<u>≥</u> 320	<25 >25	<3.38 >3.38	>2.0	>3.0	<17.0 >17.0	<12.0 >12.0	>2.0 <2.0	>3.0	>17.0	>12.0	<2.15	>203.0	>0.400	<6.70 >6.70	Impaired, nutrients as a likely cause Impaired, nutrients as the cause
			ırce	OEPA	OEPA	OEPA	OEPA	OEPA	SNAP	MBI	IPS	OEPA	OEPA	MBI	SNAP	OEPA	OEPA	MBI	SNAP	IPS	IPS	IPS	IPS	SNAP

responses in maximum D.O., diel D.O. swing, and total P with LM50 having a High Risk total P mean (Table 15). LM50 also had Low and Medium Risk BOD₅ and TKN mean values.

The remaining sites were Impaired, but with Causes Other Than Nutrients. These sites generally lacked the D.O. responses (e.g., wide diel D.O. swings, maximum D.O.) to nutrient enrichment and while most had elevated total P and allied parameter values, the indications of either habitat or organic enrichment causes (e.g., low minimum D.O.) were sufficient grounds for this SNAP assignment. Five (5) of the six assignments occurred in the Duck Creek subwatershed with the other in the upstream Clough Creek site (LM95). Three (3) of these sites are affected by CSOs while the other two are affected by urban stormwater.

Urban Parameters – Tributary Subwatersheds

The same as that described for the Little Miami River mainstem results, urban parameters include ionic strength measures such as conductivity, total dissolved solids, and total chlorides plus selected heavy metals such as copper, lead, and zinc. Suspended sediment (SSC) is included as a proxy for totals suspended solids (TSS) which is used frequently as an indicator of urban stormwater even though it is seldom directly related to aquatic life impairments. TKN is considered an urban parameter as it has been shown to be an indicator of urban nonpoint source runoff (U.S. EPA 2020). These parameters are commonly elevated in urban areas and are the result of stormwater runoff, but can also be indicative of other industrial and municipal sources of pollution. The IPS biological effect thresholds (MBI 2015) were used to assess urban parameters similar to the preceding analyses of nutrient and demand parameters (Table 16).

Specific Conductance

Specific conductivity was measured by grab samples at all 24 sites (Table 16) and short term continuous monitoring with Datasondes at 13 sites (Figure 25). Median and mean values consistently exceeded the good or WWH threshold at all except two sites, one in the unnamed tributary to Sycamore Creek at RM 1.12 at site LM56 (RM 0.20) and the other in upper Duck Creek at LM71 (RM 6.10). The majority of the values were in the fair range (14 sites) and six (6) sites in the poor range. Two sites, the unnamed tributary to Duck Creek @RM 4.8 (LM80) and the downstream site in the East Fork of Duck Creek (LM84) had both values in the very poor range. The continuous short term results showed seven (7) sites in Sycamore Creek (LM50 and LM51), Duck Creek (LM71, LM72, LM73, LM74), and Clough Creek (LM98) to have virtually all maximum, outlier, median, upper and lower quartile, and minimum values within the good range. Four (4) sites, one in Sycamore Creek (LM52), three in Duck Creek (LM75, LM76, LM77) had values that spanned the good, fair, and poor ranges thus showing considerable variability across a brief period of time. Three sites (LM52, LM40, LM85) had lower outlier values in the excellent range. There were no values in the very poor range. The contrasting results between the grab and continuous results illustrates variability that is likely caused by episodic discharges from CSOs and in urban stormwater.

Table 16. Urban source related parameter median and mean values at 24 sites in the Little Miami River tributaries in 2022. Color shading corresponds to IPS and other thresholds for each parameter listed in the legend below the table. The corresponding chronic water quality criteria at 300 mg/L hardness for metals parameters are listed with the good IPS thresholds for wadeable and headwater sites. Exceedances of the Ohio OMZA average criteria for metals is denoted by an asterisk.

6 15		Aquatic	Drainage Area	Spec Condu (umho	ctivity s/cm)		(TDS) g/L)	Suspe Sedin Concen (SS	nent tration SC)	Chlo	g/L)	(mį	ogen g/L)	Total Ca (μg	/L)	To Cop (µg	per /L)	Το Le (μg	ad /L)	Zii (µg	otal nc g/L)
Site ID	River Mile	Life Use	(Sq. mi.)	Median	Mean	Median	Mean	Median		Median re Creek (I		Median	Mean	Median	Mean	Median	Mean	Median	Mean	Median	Mean
	T T		T																		
LM50	1.10	WWH	14.7	744	751	388	405	7.3	7.5	80	84	0.24	1.27	BD	BD	4.35	5.05	20.40	17.36	20.90	19.73
LM51	0.50	WWH	24.0	710	707	386	386	2.4	2.3	96	98	0.31	0.30	BD	BD	3.35	3.48	14.55	14.56	15.30	23.98
LM52	0.10	WWH	24.0	923	939	502	494	2.7	2.6	135	138	0.68	0.67	BD	BD	3.05	3.08	19.00	17.64	28.80	30.25
								Unname	d Tributo	ary to Syco	more Cre	eek @RM	1.12								
LM55	1.20	WWH	5.3	948	953	521	521	14.5	14.5	175	175	0.18	0.18	-	-	-	-	-	-	-	-
LM56	0.20	WWH	5.6	630	636	314	314	4.9	4.9	93	93	0.22	0.22	-	-	-	_	_	-	-	-
									Polk	Run (LMR	RM 21.5	5)									
LM40	0.30	WWH	10.8	821	811	446	449	5.4	5.4	105	110	0.11	0.13	BD	BD	2.60	2.35	22.40	21.20	18.10	21.00
									Duck	Creek (LN	IR RM 3.8	3 <i>7)</i>									
LM71	6.10	LRW	2.2	623	618	338	335	0.6	0.6	70	69	0.11	0.11	BD	BD	3.60	3.10	7.70	10.19	15.25	15.85
LM72	5.14	LRW	5.1	728	733	400	420	2.9	2.8	90	88	0.49	0.49	4.55	3.81	4.20	4.58	11.15	13.29	16.45	17.93
LM73	4.58	LRW	5.8	780	729	410	407	1.7	1.6	98	95	0.46	0.49	4.65	3.81	5.30	4.75	24.15	21.98	22.05	19.80
LM74	3.90	LRW	9.6	786	769	410	399	1.6	1.5	98	94	0.35	0.37	4.65	3.81	6.25	5.88	23.80	21.35	23.25	21.88
LM75	3.40	LRW	7.3	1000	959	538	541	1.4	4.2	130	125	0.28	0.30	BD	BD	4.50	4.83	41.15	39.00	22.30	22.33
LM76	2.80	WWH	11.8	1026	1017	586	562	3.9	3.7	135	130	0.32	0.36	BD	BD	3.95	4.15	32.90	28.39	25.65	24.25
LM77	2.00	WWH	14.3	987	934	542	521	3.3	5.1	135	128	0.36	0.35	BD	BD	4.25	4.30	26.25	23.96	20.80	20.28
LM79	0.50	WWH	14.6	869	826	466	425	3.0	6.0	110	103	0.29	0.29	BD	BD	3.95	3.98	23.20	21.31	18.95	18.30
		Exce	ellent	<39		<2		<17	7.0	<2:	1.9	<0	.38	В	D	<5	.9	<2			6.4
			ood	<70		<3		<65			2.6		.51	BD/		<8.9/		<17.4/		<39.3	-
Headwa	ater Sites		air oor	<8! <12		<4 <5		<16 <20		<65 <10			.70 .15	В		<10		<26 <50		<50 <79	0.8
			Poor	≥12			03	>20		>10			.15	В		>14		>50			9.4
		Exce	ellent	<3!		<2	96	<23	3.0	<2	3.2	<0	.50	В	D	<5	.9	<2	.7	<1	6.4
			ood	<60		<3		<70		<5!			.58	BD/		<8.9/		<17.4/		<39.3	
Wadea	ıble Sites		air oor	<8: <11		<4 <5		<15 <19		<7. <11			.63 .03	B B		<10 <14		<26 <50		<5! <79	0.8
			Poor	>11			38	>19		>11			.03	В		>14		>50			9.4

Table 16. continued.

				C	-:¢:-	T-4-LD:		Suspe				T-1-11/	: - - -				4-1	T -	1	-	4-1
			_	Spe	-	Total Dis		Sedin				Total K				То		То		То	
			Drainage	Condu	,	Solids	• •	Concen		Chlo		Nitro	-	Total Ca		Cop	•	Le		Ziı	
	River	Aquatic	Area	(umho	os/cm)	(mg	g/L)	(SS	C)	(mg	;/L)	(mg	;/L)	(μg	/L)	(μg	<u>/L)</u>	(μg	/L)	(μg	/L)
Site ID	Mile	Life Use	(Sq. mi.)	Median	Mean	Median	Mean	Median	Mean	Median	Mean	Median	Mean	Median	Mean	Median	Mean	Median	Mean	Median	Mean
								Unna	med Trib	utary to E	Ouck Cree	k @RM 4.	8								
LM80	5.00	LRW	1.4	1568	1460	874	838	12.3	17.1	270	265	0.68	0.70	2.42	2.42	7.00	6.50	24.05	25.24	21.95	21.30
									Eas	st Fork Du	ck Creek										
LM85	2.00	WWH	1.3	941	917	554	573	9.4	9.9	90	86	0.48	0.54	BD	BD	3.10	3.03	17.80	17.24	11.35	12.65
LM84	0.50	WWH	2.4	1308	1340	741	754	2.9	3.0	215	223	0.26	0.25	BD	BD	2.55	10.35*	19.45	18.89	15.55	18.60
									L	ittle Duck	Creek										
LM86	2.40	WWH	0.5	774	789	434	434	8.9	8.9	76	76	0.24	0.24	BD	BD	BD	BD	BD	BD	BD	BD
LM87						452	452	4.2	4.2	80	80	0.27	0.27	BD	BD	BD	BD	BD	BD	BD	BD
LM90	1.00	WWH	1.1	812	832	474	474	11.5	11.5	86	86	0.25	0.25	BD	BD	BD	BD	BD	BD	BD	BD
LM92	0.49	WWH	1.7	793	793	436	436	6.5	6.5	57	57	0.22	0.22	BD	BD	8.30	8.30	43.00	43.00	27.70	27.70
								Unnan	ned Tribu	tary to Lit	tle Duck	Creek @4.	.42								
LM82	0.20	PHW3A	0.3	749	765	444	448	44.0	44.0	50	60	0.57	0.55	BD	BD	5.70	5.97	39.10	28.85	24.00	22.63
									Clougi	h Creek (L	MR RM 2	2.9)									
LM95	3.20	WWH	2.1	846	838	472	472	2.5	2.5	115	115	0.19	0.19	BD	BD	2.65	2.65	22.40	22.40	14.20	14.20
LM98	0.60	WWH	7.8	762	790	404	404	3.5	3.5	99	99	0.14	0.14	-	-	-	-	-	-	-	-
		Exce		<3		<28		<17		<2:		<0.		BE		<5		<2		<10	
		Go		<7		<36		<65		<52		<0.		BD/5		<8.9/		<17.4/		<39.3,	
Headwat	ter Sites	Fa Po			56 240	<4(<5(<16: <20		<68 <10		<1. <2.		BI BI		<1		<26 <50		<50 <79	
		Very			240	≥5(<u>></u> 20		≥10		>2.		BE			4.1	≥5(≥75	
* - Indicates a	n individual	value exceed t	the Ohio meta	water quali	ty OMZA.											_					

Figure 25. Box-and-whisker plots of continuous specific conductivity (μS/cm) from Datasonde continuous recorders at 13 sites in Duck Creek, Sycamore Creek, Polk Run, and Clough Creek during August 11-15, 15-18, and 25-29, 2022. The range of EWH, WWH, and LRW IPS thresholds are indicated by shaded bars and labels. The applicable use designation is shown as a colored bar across the top of the graph (green – WWH; orange – LRW).

Total Dissolved Solids (TDS)

Median and mean TDS values in grab samples generally tracked specific conductivity, but more sites in the very poor range, seven (7) in all (Table 14). Twelve (12) sites had mean values in the poor range, but two of these sites had median scores in the fair range. Only two sites, the unnamed tributary to Sycamore Creek at RM 1.12 at site LM56 (RM 0.20) and upper Duck Creek at LM71 (RM 6.10) had median and mean values in the good range the same as specific conductivity.

Chloride

Median chloride levels were mostly in the poor range encompassing 13 sites while mean values in the poor range included 13 sites, with all but two coinciding with the median values (Table 14). There were nine (9) sites with median and mean values in the very poor range, with two not coinciding. Only two (2) sites had fair values and a single mean in the unnamed tributary to Little Duck Creek @4.42 had a good value. There were no values within the excellent range at any of the 24 tributary sites. The good IPS threshold corresponds closely to the "safe" level for chloride at 52 mg/L for the protection of high quality waters derived by Miltner (2021). Based on an inspection of the 2012 and 2017 results, chloride median values of 150-250 mg/L in the upper one half of Duck Creek declined to a range of 70-130 mg/L in 2017 and 2022. This is most likely due the diluting effect of higher flows in 2017 and 2022 compared to the very low flows of 2012.

Suspended Sediment Concentration (SSC)

Median and mean SSC values were consistently in the excellent range with the exception of a single site in the unnamed tributary to Little Duck Creek @4.42 which had a good value (Table14). The uniformity of the results suggesting excellent quality is misleading in terms of indicator parameter for urban stormwater. However, it consistently exhibited a poor relationship with the condition of the aquatic biota which serves as the arbiter of designated use attainment in the tributary subwatersheds. A more complex array of parameters as employed herein is needed to better characterize stormwater quality and impacts.

Other Urban Parameters

TKN was previously described as a reflection of organic nitrogen enrichment. Mean and median TKN values were predominantly in the excellent and good ranges at the majority of sites (Table 14). The handful of sites with fair values coincided with SSO and CSO discharge locations, but some are also impacted by urban stormwater of which TKN can be an important indicator (U.S. EPA 2020). Heavy metals included total cadmium, copper, lead, and zinc as indicators of urban impacts (Table 14). The good IPS thresholds for cadmium, copper, and zinc are somewhat lower than the current chronic Outside Mixing Zone Average (OZMA) chronic water quality criteria for each, but lead is the closest with the IPS threshold for fair being equivalent to the OMZA at 300 mg/L hardness (Table 14). All metals except zinc had one or more levels that were elevated above the good IPS threshold. Cadmium was detected at levels just below the Ohio OMZA criterion of 5.80 µg/L at three sites in Duck Creek (LM72, LM73, LM74) and one site in the unnamed tributary to Little Duck Creek @4.42 that were in the very poor range. Median and mean copper values were in the excellent range except for the mean at LM74 with all well below the Ohio OMZA average. Elevated median and mean lead values were more widespread with the majority of values in the fair range and several in the poor range. Four (4) sites, two in Duck Creek (LM75, LM76), one in Little Duck Creek (LM92), and one in the unnamed tributary to Little Duck Creek @4.42 (LM82), were in the poor range and with the mean and median values exceeding the Ohio OMZA criterion at 300 mg/L hardness. Only three (3) sites in Little Duck Creek had below detection results. These results reflect modest impacts by urban stormwater that enters the mainstem via tributaries such as Sycamore and Duck Creeks.

Sediment Chemistry

Sediment samples were collected from 19 sites in the Little Miami River tributary subwatersheds in October 2022 and analyzed for heavy metals and organic compounds. The results were screened with the MacDonald et al. (2000) and Persuad et al. (1993) consensus-based levels for potential adverse effects to aquatic life and Ohio Sediment Reference Values (SRVs). MacDonald et al. (2000) described two levels of contamination - a Threshold Effects Concentration (TEC) and a Probable Effects Concentration (PEC). Persaud et al. (1993) described a similar scheme with a Severe Effect Level (SEL) and Low Effect Level (LEL). The TEC or LEL indicates exceedances for sensitive species and taxa while the PEC or SEL indicates effects for most species and taxa. The Ohio SRVs are based on reference sites data and thus reflect background levels. IPS thresholds have not yet been developed for sediment chemicals.

Sediment Metals

There were only nine (9) exceedances of the sediment metal consensus guideline thresholds among four (4) heavy metal parameters – the majority sample results were below the TEC (Table 17). The TEC threshold was exceeded for arsenic (LM72, LM74), cadmium (LM84, LM87), and lead (LM86, LM87, LM90). The PEC was exceeded for copper in Duck Creek at LM73 (RM 4.58) with a value of 420 mg/kg that was nearly 3 times the PEC threshold. This site is downstream from numerous CSOs that discharge to Duck Creek.

Sediment Organics

Numerous organic chemical parameters were detected in Little Miami River tributary subwatershed sediment samples. Out of 16 PAH compounds, 12 had multiple exceedances of the MacDonald (2000) TEC and PEC and the Persuad et al. (1993) LEL thresholds (Table 18). Six (6) polycyclic aromatic hydrocarbon compounds had multiple exceedances of the more serious PEC threshold. This included anthracene (11 TEC, 4 PEC), benzo(a)anthracene (2 TEC, 9 PEC), chrysene (6 TEC, 9 PEC), fluoranthene (4 TEC, 11 PEC), phenanthrene (5 TEC, 10 PEC), pyrene (5 TEC, 12 PEC), and fluorene (7 TEC, 1 PEC). Other PAH compounds such as benzo(a)pyrene, benzo(b)fluoranthene, benzo(k)fluoranthene, dibenzo(a)anthracene, indeo(1,2,3-cd)pyrene had numerous TEC or SEL exceedances at the majority of sites. Naphthalene, acenaphthene, and acenapthylene were either below the TEC/LEL or were not detected. Non-PAH compounds that were detected included the aromatic heterocyclic organic carbazole with 6 LEL exceedances, four (4) volatile organic compounds with at least one LEL exceedance, and two forms of Aroclor (PCB) with one LEL exceedance each. These results are indicative of heavy urbanization with inputs of multiple contaminants via CSOs, SSOs, and stormwater conveyances and urban runoff.

Physical Habitat for Aquatic Life

The assessment of stream and riverine habitat is based on the QHEI and its metrics, submetrics, and individual attributes. Habitat, along with flow, is a master variable which means that it is an essential component of an aquatic ecosystem. It is, therefore, an important determinant of biological potential and performance. It is also a key factor in the determination of causes of

Table 17. Sediment metals concentrations (mg/kg) for parameters with values >detection in the Little Miami River tributary subwatersheds in October 2022. Values above the MacDonald et al. (2000) Threshold Effect Concentration (TEL) and Probable Effect Concentration (PEC) thresholds or above Ohio Sediment Reference Values (SRVs) are shaded in accordance with the color-code key at bottom. BD – below detection.

Site ID	River Mile	Drainage Area (Sq. mi.)	Arsenic (mg/kg)	Cadmium (mg/kg)	Copper (mg/kg)	Iron (mg/kg)	Lead (mg/kg)	Zinc (mg/kg)
Site ID	Kivei iville	(34. 1111.)		Creek (LMR		(IIIg/Kg)	(IIIg/Kg)	(IIIg/Kg)
LM50	1.10	14.7	7.80	BD	24.00	27000	22.00	78
LM51	0.50	24.0	7.40	BD	8.80	16000	9.80	31
LM52	0.10	24.0	5.40	BD	6.70	13000	8.10	24
			Polk R	un (LMR RM	21.55)			
LM40	0.30	10.8	6.00	BD	7.40	13000	10.00	25
			Duck C	reek (LMR RN	1 3.87)			
LM71	6.10	2.2	4.70	BD	32.00	-	BD	31
LM72	5.14	5.1	12.00	BD	15.00	-	23.00	56
LM73	4.58	5.8	5.80	BD	420.00	-	17.00	100
LM74	3.90	9.6	11.00	BD	12.00	-	BD	72
LM75	3.40	7.3	7.00	BD	20.00	•	23.00	68
LM76	2.80	11.8	6.40	BD	14.00	-	30.00	43
LM77	2.00	14.3	7.20	BD	13.00	-	22.00	52
LM79	0.50	14.6	5.90	BD	21.00	•	20.00	72
		Un	named Tribu	tary to Duck	Creek at RM 4	4.8		
LM80	0.10	1.4	2.20	0.69	9.80	•	11.00	51
			East	t Fork Duck Ci	reek			
LM85	2.00	1.3	1.20	BD	4.90	-	BD	BD
LM84	0.50	2.4	4.30	1.30	11.00	-	22.00	46
			Li	ttle Duck Cree	k			
LM86	2.40	0.5	6.10	0.64	14.00	-	44.00	120
LM87	1.90	0.5	7.90	1.10	11.00	-	35.00	61
LM90	1.00	1.1	3.80	0.74	13.00	-	28.00	43
			Clough	Creek (LMR F	RM 2.9)			
LM98	0.60	7.8	4.10	BD	3.40	-	BD	BD
Ohi	o EPA	>SRV	>25.1	>0.8	>33	>51000	>47	>170
MacDonald	et al. (2000)	>PEC >TEC	>33 >9.79	>5 >0.99	>149 >32	-	>128	>459 >121
		≤TEC	<9.79	<u><</u> 0.99	<u><</u> 32	<51000	<u><</u> 23	<u><</u> 121

impairment and in performing use attainability analyses, the latter of which were mostly accomplished in 2012 and verified and refined in 2017.

Little Miami River Mainstem

QHEI scores in 2022 were well above the threshold for excellent quality (>75) in the EWH designated reach of mainstem downstream to Duck Creek. The new site LM16A (RM 3.70) immediately downstream from Duck Creek revealed a decline in habitat quality from excellent to good. Habitat quickly recovered within 0.2 miles with an excellent QHEI score at site LM 16 (RM 3.50). The WWH designated reach that includes site LM17 (RM 1.70) that is impounded by

Table 18. Sediment PAH and organic chemical concentrations (μg/kg) in the Little Miami River tributary subwatersheds in October 2022. Values above the MacDonald et al. (2000) TEC and PEC and Persaud et al. (1993) SEL and LEL thresholds are shaded in accordance with the color-code key at the bottom of the table. BD – below detection; AD – above detection.

Site ID	River Mile	Drain- age Area (Sq. mi.)	Acenaphthylene (mg/kg dry)	Anthracene (mg/kg dry)	Benzo(a)anthracene (mg/kg dry)	Benzo(a)pyrene (mg/kg dry)	Benzo(b)fluoranthene (mg/kg dry)	Benzo(g,h,i)perylene (mg/kg dry)	Benzo(k)fluoranthene (mg/kg dry)	Chrysene (mg/kg dry)	, Dibenzo(a,h)anthracene (mg/kg dry)	Fluoranthene (mg/kg dry)	Indeno(1,2,3-cd)pyrene (mg/kg dry)	Phenanthrene (mg/kg dry)	Pyrene (mg/kg dry)	n-Octadecane (mg/kg dry)	Fluorene (mg/kg dry)	Naphthalene (mg/kg dry)	Acenaphthene (mg/kg dry)	Carbazole (mg/kg dry)	Bis(2- ethylhexyl)phthalate (mg/kg dry)	Toluene (mg/kg dry)	1,4-Dichlorobenzene (mg/kg dry)	Aroclor 1221 (mg/kg dry)	Aroclor 1254 (mg/kg dry)
11150	4.40	447		0.47	0.66	0.04	4 20	0.60	0.40	0.04			ek (LMR				0.04	00	0.00	0.40					
LM50	1.10	14.7	BD	0.17	0.66	0.84	1.20	0.60	0.40	0.81	0.11	1.90	0.68	0.84	1.40	BD	0.04	BD	0.03	0.10	BD	BD	BD	BD	BD
LM51	0.50	24.0	BD	BD	0.08	0.08	0.12	0.06	0.05	0.05	BD	0.15	0.07	0.04	0.10	BD	BD	0.02	BD 0.04	BD	BD	BD	BD	BD	BD
LM52	0.10	24.0	0.05	0.12	0.34	0.36	0.47	0.21	0.16	0.36	0.05	0.91	0.26	0.50	0.66	BD	0.06	BD	0.04	BD	BD	BD	BD	BD	BD
11110	0.20	10.0		0.00	0.00	0.40	0.46		0.00	0.44			LMR RM		0.40	D.D.		00		0.0		D.D.			
LM40	0.30	10.8	BD	0.02	0.08	0.10	0.16	0.08	0.06	0.11	0.02	0.25	0.09	0.09	0.18	BD	BD	BD	BD	BD	BD	BD	BD	BD	BD
					F 40	T 40			2.40	4.00			(LMR RI		40.00		0.50	55	0.00			0.00		l 55	
LM71	6.10	2.2	BD	1.70	5.10	5.40	6.60	3.30	2.40	4.90	0.76	11.00	3.90	6.00	10.00	BD	0.52	BD	0.36	BD	BD	0.03	BD	BD	BD
LM72	5.14	5.1	BD	0.25	1.70	2.10	3.10	1.40	1.10	2.00	0.29	4.80	1.60	2.00	3.30	BD	0.10	BD	BD	0.49	BD	BD	BD	3.30	BD
LM73	4.58	5.8	BD	0.97	2.20	2.10	2.60	1.40	0.97	1.80	0.35	5.10	1.50	4.10	4.10	BD	0.50	BD	0.47	BD	BD	BD	BD	BD	0.15
LM74	3.90	9.6	0.08	0.44	2.60	3.40	5.20	2.20	1.70	3.40	0.57	8.70	2.60	4.60	6.40	BD	0.19	BD	0.15	0.88	BD	BD	BD	BD	BD
LM75	3.40	7.3	BD	0.76	4.10	4.60	6.50	3.10	2.20	5.30	0.73	11.00	3.80	5.00	9.70	BD	0.21	BD	0.16	0.92	BD	BD	BD	BD	BD
LM76	2.80	11.8	BD	1.30	4.30	4.90	6.80	3.40	2.50	5.20	0.76	13.00	4.00	6.20	9.60	BD	0.46	BD	0.28	BD	BD	BD	BD	BD	BD
LM77	2.00	14.3	BD	0.63	2.50	2.90	4.10	2.10	1.40	2.80	0.46	7.00	2.40	2.90	5.50	BD	BD	BD	BD	BD	BD	BD	BD	BD	BD
LM79	0.50	14.6	BD	0.14	0.69	0.95	1.40	0.75	0.45	1.00	0.16	2.00	0.85	0.74	1.60	BD	BD	BD	BD	BD	1.00	BD	BD	BD	BD
_										Unn	amed T	ributary	to Duck		RM 4.8										
LM80	0.10	1.4	BD	1.80	11.00	12.00	17.00	7.30	5.60	14.00	1.60	34.00	8.40	19.00	27.00	BD	0.82	BD	0.56	3.40	BD	BD	0.14	BD	BD
												East For	k Duck C	reek											
LM85	2.00	1.3	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	BD	BD	BD	BD
LM84	0.50	2.4	0.02	0.16	0.85	1.10	1.40	0.79	0.47	1.10	0.15	2.40	0.92	0.91	2.00	BD	0.04	BD	0.03	0.15	BD	BD	BD	BD	BD
												Little L	Duck Cred	ek											
LM86	2.40	0.5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	•	ı	BD	BD	BD	BD
LM87	1.90	0.5	BD	0.37	1.30	1.40	1.80	0.81	0.71	1.40	BD	3.00	0.97	1.70	2.50	BD	BD	BD	BD	BD	BD	BD	BD	BD	BD
LM90	1.00	1.1	BD	0.26	0.90	1.10	1.40	0.67	0.52	1.10	0.15	2.70	0.77	1.50	2.10	BD	0.09	BD	BD	BD	BD	BD	BD	BD	BD
											Clo	ugh Cree	k (LMR	RM 2.9)											
LM98	0.60	7.8	0.04	0.17	0.63	0.66	0.93	0.46	0.32	0.73	0.14	1.70	0.56	0.91	1.30	BD	0.07	BD	0.04	BD	BD	BD	BD	BD	BD
MacDona	ld et al.	PEC		>0.845	>1.050					>1.29		>2.230		>1.170	>1.520		>0.536	>0.561	>88.90		-		-		
(2000) Thi	resholds	TEC		>0.057	>0.108					>0.166	>0.033	>0.423		>0.204	>0.195		>0.077	>0.176	>6.710						
Persaud et	al. (1993)	SEL LEL	>0.088 >0.0067	>370 >0.220	>1480 >0.320	>1440	>1340 >0.240	>320 >0.170	>1340 >0.240	>460 >0.340	>130 >0.060	>1020 >0.750	>320 >0.200	>950 >0.560	>850 >0.490	AD	>160 >0.190	>0.391 >0.034	>88.9 >6.710	AD	AD	AD	AD	AD	>340
Thresh	nolds	<lel td="" tec<=""><td><0.0067</td><td><0.057</td><td><0.108</td><td><0.370</td><td><0.240</td><td><0.170</td><td><0.240</td><td><0.166</td><td><0.033</td><td><0.423</td><td><0.200</td><td><0.204</td><td><0.195</td><td>BD</td><td><0.077</td><td><0.034</td><td><6.710</td><td>BD</td><td>BD</td><td>BD</td><td>BD</td><td>BD</td><td><60</td></lel>	<0.0067	<0.057	<0.108	<0.370	<0.240	<0.170	<0.240	<0.166	<0.033	<0.423	<0.200	<0.204	<0.195	BD	<0.077	<0.034	<6.710	BD	BD	BD	BD	BD	<60
02 0		,																							

82 | Page

the Ohio River resulting in only good quality habitat (Table 19; Figure 26). Good habitat attributes overwhelmingly prevailed downstream to site LM16A with only two moderate influence modified attributes at LM03 (RM 22.30). Moderate influence modified attributes appeared in mush higher numbers at site LM16A and at the expense of fewer good attributes. It and the impounded site LM17 (RM 1.70) each had seven modified attributes which is a poor result for that factor. These sites also had ratios of modified:good attributes of 1.75 and 2.00, respectively, each of which is below the excellent threshold. LM16A is directly subjected to inputs of sediment and fine materials from Duck Creek as evidenced by moderate to high siltation, an increase in sand substrates, and moderate substrate embeddedness. This site was comprised largely of pool habitat with no riffle development the result of "ponding" by the Beechmont Ave. bridge. This likely has little effect on the potential to attain EWH because it is flanked by excellent quality upstream and downstream. The current limitations to EWH attainment at this site are due primarily to organic enrichment and toxic impacts that emanate from Duck Creek. Site LM16 (RM 3.50) downstream of Beechmont Ave. usually exhibits excellent habitat characteristics, the recent effects of a temporary coffer dam constructed for the Beechmont bike path bridge were evident between the two sampling passes in 2022. The first pass (LM16-Pre in Table 19) was conducted with the coffer dam still present and there were three modified attributes including two that revealed substrate degradation. The second pass (LM16-Post) was conducted after the coffer dam was removed and the modified attributes had disappeared and the QHEI score increased by 4.5 points.

Little Miami River Tributary Subwatersheds

QHEI scores in the tributary subwatersheds varied in accordance with legacy modifications to stream habitat in Duck Creek, interceptor sewer line construction in portions of Sycamore Creek, and urban land use and riparian encroachment in other tributaries. QHEI scores were mostly good among the 24 sites evaluated being at or above the good threshold at 17 sites and one site in Sycamore Creek (LM50) with excellent habitat quality (Table 20). Each of these 18 sites had at least one modified attribute and most had 4-5 modified attributes. Ten (10) sites had only five (5) or fewer good attributes which is a fair quality result. The lower numbers of good attributes and elevated numbers of modified attributes are an indication of the urban character of these subwatersheds.

QHEI scores and attributes reflected the extensively modified channel in the LRW designated reach of Duck Creek (Figure 27) and tributaries. Modified attributes predominated with multiple high influence modified attributes, high numbers of modified attributes, and high ratios of modified:good attributes and four sites exhibiting very poor quality (Table 20). No recovery from prior channelization, no sinuosity, sparse or no cover, and maximum pool depths <40 cm were the most pervasive modified attributes at 10 of 14 sites. QHEI scores were good in the WWH designated reach of Duck Creek (2), Little Duck Creek (4 sites), and the two downstream sites in the East Fork of Duck Creek (Table 20). A single site in the LRW reach of Duck Creek had a good QHEI score of 63.0 which is a marked improvement over prior years that had very poor QHEI scores (Figure 26). While this result suggests better restoration potential than what was previously demonstrated, the concrete channel portions of the upper mainstem and selected tributaries is a deterrent to widespread improvement without direct remediation.

MBI/2023-6-12 Lower L. Miami and Tributaries Bioassessment 2022 June 30, 2023

Table 19. Qualitative Habitat Evaluation Index (QHEI) matrix for the Little Miami River mainstem showing good (■) and modified (● and ●) habitat attributes at 14 sites in 2022. Ranges of excellent to very poor quality for the number of good and modified attributes are shown in the footnotes at the bottom of the table.

_		1				-					, ,									1	_											-		
						G	ood Ha	bitat A	Attribu	tes				High	Influe	nce M	odified	d Attrib	utes				Mod	derate	Influe	nce Mo	dified	Attrib	utes					
Site ID	River Mile	QHEI	No Channelization	Boulder, Cobble, Gravel	Silt Free	Good-Excellent Development	Moderate-High Sinuosity	Moderate-Extensive Cover	Fast Flow w Eddies	Little to No Embeddedness	Max Depth > 40 cm	No Riffle Embeddedness	Good Habitat Attributes	Channelized or No Recovery	Silt/Muck Substrates	No Sinuosity	Sparse No Cover	Max Depths <40 cm	High Influence Poor Attributes	Recovering from Channelization	Mod-High Silt Cover	Sand Substrates (Boatable sites)	Hardpan Origin	Fair- Poor Development	Low Sinuosity	< 2 Cover Types	Intermittent Flow or Pools <20 cm	No Fast Current Types	Mod-Extensive Embeddedness	Mod-Extensive Riffle Embeddedness	No Riffle	Poor Habitat Attributes	Ratio of Modified (High) to Good	Ratio of Modified (All) to Good
0.0012			_		, ,		_	_			_	_				le Mic			_			<u> </u>				_ v		_		_	_			
LM01	27.90	89.50											9						0													0	0	0.00
LM02	24.10	91.00											9						0													0	0	0.00
LM03	22.30	84.50											8						0					•	•							2	0	0.25
LM05	21.50	89.50											9						0													0	0	0.00
LM07	18.50	89.50											9						0													0	0	0.00
LM08	17.70	85.50											9						0													0	0	0.00
LM09	13.10	87.80											9						0													0	0	0.00
LM11	10.90	85.00											9						0													0	0	0.00
LM12	8.10	89.30											9						0													0	0	0.00
LM13	6.83	87.00											9						0													0	0	0.00
LM15	4.10	87.50											9						0													0	0	0.00
LM16A		65.00											4						0		•	•		•	•				•		•	7	0	1.75
LM16-Pre	3.50	84.00											8						0		•								•			3	0	0.38
LM16-Post	3.50	88.50											9						0											<u> </u>		0	0	0.00
LM17	1.60	62.00											4				•		1		•	•		•	•			•	•		•	7	0.25	2.00
LM16-Pre sa	ampled o	during p	resenc	e of br	idge co	nstruc	tion co	ffer d	am; LN	l16-Po	st sam	pled af	ter cof	fer da	n remo																			
Excellent		<u>></u> 75											<u>≥</u> 9			Boatab	le Sites		0													≤1	<0.20	<0.50
Good		<u>≥</u> 73											<u>≥</u> 6						0													<u>≤</u> 4	<0.50	<2.00
Fair		<u>></u> 45											<u>></u> 4						1													<u><</u> 5	>1.00	>2.00
Poor		<u>></u> 30											<u>></u> 2						2													<u>></u> 6	>2.00	>6.00
Very Poor		<30											<u>≤</u> 1						3													<u>></u> 7	>4.00	>10.00

Figure 26. Qualitative Habitat Evaluation Index (QHEI) scores in the Little Miami River mainstem in 1983, 2007, 2012, 2017 and 2022 with QHEI narrative ranges as colored solid lines.

Table 20. Qualitative Habitat Evaluation Index (QHEI) matrix for the Little Miami River tributary subwatersheds showing good (■) and modified (● and ●) habitat attributes at 14 sites in 2022. Ranges of excellent to very poor quality for the number of good and modified attributes are shown in the footnotes at the bottom of the table.

June 30, 2023

			9			Go			Attribut						Influe	nce M	odified	d Attrib	outes				Mod	lerate	Influer	nce Mo	dified	Attrib	utes				-	
Site ID	River Mile	QHEI	No Channelization	Boulder, Cobble, Gravel	Silt Free	Good-Excellent Development	Moderate-High Sinuosity	Moderate-Extensive Cover	Fast Flow w Eddies	Little to No Embeddedness	Max Depth > 40 cm	No Riffle Embeddedness	Good Habitat Attributes	Channelized or No Recovery	Silt/Muck Substrates	No Sinuosity	Sparse No Cover	Max Depths <40 cm	High Influence Poor Attributes	Recovering from Channelization	Mod-High Silt Cover	Sand Substrates (Boatable sites)	Hardpan Origin	Fair- Poor Development	Low Sinuosity	< 2 Cover Types	Intermittent Flow or Pools <20 cm	No Fast Current Types	Mod-Extensive Embeddedness	Mod-Extensive Riffle Embeddedness	No Riffle	Poor Habitat Attributes	Ratio of Modified (High) to Good	Ratio of Modified (All) to Good
																ycamoi																		
LM50	1.10	70.00											9				•		1									•				1	0.11	0.22
LM51	0.50	61.50						_					4						0	•				•	•			•		•		5	0.00	
LM52	0.10	68.00											7						0	•	•								•	•		4	0.00	0.57
													Unna	med Ti	ributaı	y to Sy	camor	e Cree	k @RM	1.12														
LM55	1.20	60.80											6						0	•				•	•	•		•				5	0.00	
LM56	0.20	63.00											7						0	•				•		•		•				4	0.00	0.57
	1					•			•		T	1				Polk	Run						, ,											
LM40	0.30	63.00											6						0	•				•	•			•				4	0.00	0.67
				1			1	<u> </u>			T	ı		<u> </u>		Duck (_				1		1 -			
LM71	6.10	26.00				-			-				2	•		•	•	•	4		-			•	•			•			•	4	2.00	4.00
LM72	5.14	54.50							-				3					•	1	•				•	•			•		•			0.33	
LM73	4.58	16.00		_			_						2	•		•	•	•	4	_				•		•			•		•	4	2.00	4.00
LM74 LM75	3.90 3.40	63.00 15.00				-			-				5	•		•	•	•	0	•	•			•		•		•	•	•	•	5	0.00	
LM76	2.80	66.00			-								5	•		•	_	•	0	•	-			•		_		•	_		_	5	0.00	
LM77	2.00	67.00					-						6						0													4	0.00	
LM79	0.50	68.80											7						0						_							3	0.00	
LIVI7 3	0.50	00.00						_					,			Wadeab	ble Sites							•				•				J	0.00	0.43
Excellent		<u>≥</u> 75											<u>></u> 9						0													<u>≤</u> 1	<0.20	<0.50
Good		<u>≥</u> 60											<u>≥</u> 6						0													<u><</u> 4	<0.50	<2.00
Fair		<u>></u> 45											<u>></u> 4						1	'												<u><</u> 5	>1.00	>2.00
Poor		<u>></u> 30											<u>></u> 2						2													<u>></u> 6	>2.00	>4.00
Very Poor		<30											<u>≤</u> 1						3													<u>≥</u> 7	>4.00	>6.00
- · ·		. 50														Headwa	ter Sites																.0.00	0.50
Excellent		<u>≥</u> 70											<u>≥</u> 8						0													≤1	<0.20	
Good Fair		≥55 ≥43											<u>≥</u> 6						0													<u>≤</u> 4 <u>≤</u> 5	<0.50 >1.00	<2.00 >2.00
Poor		≥30											<u>≤</u> 3 ≥2						2													<u>≤</u> 5 ≥6	>2.00	>4.00
Very Poor		<30											0						3													>7	>4.00	>6.00

Table 20. continued.

						G	nnd Ha	hitat A	ttribut	es.				High	Influe	nce M	odifie	d Attrik	uites				Mod	derate	Influe	nce Mo	ndified	Δttrih	utes					
														81				Accile					1									T -		
Site ID	River Mile	QHEI	No Channelization	Boulder, Cobble, Gravel	Silt Free	Good-Excellent Development	Moderate-High Sinuosity	Moderate-Extensive Cover	Fast Flow w Eddies	Little to No Embeddedness	Max Depth > 40 cm	No Riffle Embeddedness	Good Habitat Attributes	Channelized or No Recovery	Silt/Muck Substrates	No Sinuosity	Sparse No Cover	Max Depths <40 cm	High Influence Poor Attributes	Recovering from Channelization	Mod-High Silt Cover	Sand Substrates (Boatable sites)	Hardpan Origin	Fair- Poor Development	Low Sinuosity	2 Cover Types	Intermittent Flow or Pools <20 cm	No Fast Current Types	Mod-Extensive Embeddedness	Mod-Extensive Riffle Embeddedness	No Riffle	Poor Habitat Attributes	Ratio of Modified (High) to Good	Ratio of Modified (All) to Good
Site ID	IVIIIE	QUE			<u> </u>	0													∟ ± k @RN			<u> </u>				V	_						<u></u>	Œ
LM80	0.10	34.50											2	•	11124			•	2					•		•		•	•			6	1.00	4.00
	3.23														East	Fork L	Duck C	creek																
LM85	2.00	62.50											5						0					•	•			•		•		5	0.00	1.00
LM84	0.50	65.00											5						0	•				•	•			•				4	0.00	0.80
															Litt	tle Du	ck Cre	ek																
LM86	2.40	56.50											3						2						•					•		5	0.67	2.33
LM87	1.90	61.00											5						1													5	0.20	1.20
LM90	1.00	61.00											5						0					•								4	0.00	0.80
LM92	0.49	66.50											8						0									•				2	0.00	0.25
												U	Innam	ed Tr	ibutaı	ry to L	ittle D	uck C	r. @RI	M 4.42	2													
LM82	0.20	50.50											4	•			•		2	•	•			•	•			•	•	•		7	0.50	2.25
															C	lough	Creel	k																
LM95	3.20	59.00											5						0	•				•	•			•		•		5	0.00	1.00
LM98	0.60	59.50											5						0	•				•	•			•				4	0.00	0.80
Excellent		≥70											\0			Headwa	ter Sites		0													≤1	<0.20	<0.50
Good		≥55											<u>≥</u> 8 <u>≥</u> 6						0													<u><</u> 1	<0.20	
Fair		<u>≥</u> 33											<u>≥</u> 0 <u>≤</u> 3						1													<u>≥</u> 4 ≤5	>1.00	>2.00
Poor		<u>></u> 30											<u>></u> 2						2	İ												<u>≥</u> 6	>2.00	>4.00
Very Poor		<30											0						3													<u>≥</u> 7	>4.00	>6.00

Poor >30

Very Poor <30

2

1

0

Figure 27. A modified site in Duck Creek at Erie Ave. (LM75; upper) and QHEI scores in 1994, 2007, 2012, 2017, and 2022 in the Duck Creek mainstem with QHEI narrative ranges as colored solid lines.

3

River Mile

Qualitative Habitat Evaluation Index (QHEI)

40

20

6

5

Biological Assemblages

Fish and macroinvertebrates were sampled at 40 of the 41 sites (one site was dry) in 2022 following standardized procedures specified by the 2011 Plan (MBI 2011) and consistent with Level 3 specifications and the Ohio WQS. Five (5) of the 41 sites were recommended for one of the Primary Headwater Habitat (PHWH) classification tiers, thus the remaining 36 sites were evaluated against the fish and macroinvertebrate biological criteria in the Ohio WQS (3745-1-07, Table 7-1) following Ohio EPA procedures for determining aquatic life use attainment (Ohio EPA 1987b; 1989b; 2015a) and as described previously in the methods.

Fish Assemblage Results

Key fish assemblage indices and attributes such as %DELT, sensitive species, and %tolerant species are depicted in Table 21. Of the 36 sites designated for one of the WWH suite of uses, two (2) failed to attain EWH in the Little Miami River mainstem, 10 failed to attain the WWH IBI biocriteria and another three (3) failed LRW at Little Miami River tributary sites. The remaining 21 sites met their applicable biocriterion including 11 of the EWH designated sites on the Little Miami River mainstem.

Little Miami River

Eleven (11) of the 14 sites sampled met the EWH IBI biocriterion in the Little Miami River mainstem with six (6) sites in the non-significant departure range (Table 21; Figure 28). Two sites in the EWH designated reach (LM16A and LM16) failed to meet the IBI biocriterion (Table 21). The IBI at the single site in the WWH designated reach (LM17) met the IBI biocriterion. This was a slight decline from 2017, but still a substantial improvement over 2012 when 12 of 15 sites sampled in the EWH reach failed to attain the IBI biocriterion with the remaining three in the non-significant departure range. The 2017 and 2022 results were in line with the 2007 results and a substantial improvement over years prior (1983, 1989; Figure 28).

The MIwb met the EWH biocriterion at 12 of 13 Little Miami River mainstem EWH sites with three (3) in the non-significant departure range (Table 21; Figure 29). The MIwb at the single site (LM17) in the WWH designated reach failed meet that criterion. The MIwb values were slightly higher in 2017 hence the 2022 results represent a minor decline in that fish assemblage indicator. In 2012, only two of the 15 MIwb values failed to meet the EWH biocriterion in 2012, but all were nearly a full MIwb unit lower in 2012 than in 2017 when all 11 values fully met the EWH biocriterion (Table 21; Figure 29).

Other assemblage indicators showing meaningful responses in the Little Miami River mainstem included elevated DELT anomalies at LM16A (poor) and LM16 (fair). The results in Table 21 are the mean of two sampling passes which individually at LM16A were 2.6% in August and 6.0% in September 2022, an increase over values of 0 and 0.6% in 2019, thus reflecting an increase in sublethal stress that is likely related to the comparatively low D.O. values that exceeded the EWH criteria in 2022. The mean of 1.8% at LM16 is a three-fold increase over the value of 0.6%

Table 21. Selected fish assemblage attributes at 14 sites Little Miami River mainstem sampled in the 2020. Color shading in the cells indicates the narrative quality of the index or attribute value in accordance with the thresholds in the footnotes at the bottom of the table (ns – nonsignificant departure; exceedances are asterisked).

Site ID	River Mile	Drainage Area (sq mi)	Ohio IBI	MIwb	Native Sp.	% DELT	Intol- erant Sp.	% Simple Lithophil Spawners	% Tolerant
			Li	ttle Mia	mi River				
LM01	27.90	1070	50	10.3	29.5	0.0	16.0	37.2	0.7
LM02	24.10	1090	52	10.9	35.5	1.0	18.5	45.9	1.0
LM03	22.30	1150	47 ^{ns}	9.5 ^{ns}	25.0	0.5	12.0	37.0	4.5
LM05	21.50	1160	47 ^{ns}	10.3	34.0	0.6	17.0	30.7	0.4
LM07	18.50	1190	51	10.3	26.5	0.3	14.5	48.0	1.7
LM08	17.70	1190	52	10.2	25.0	0.3	14.0	50.5	0.0
LM09	13.10	1200	48	10.0	29.5	0.0	16.0	33.7	0.2
LM11	10.90	1710	44 ^{ns}	9.8	26.5	0.6	10.0	29.8	1.2
LM12	8.10	1710	44 ^{ns}	9.3 ^{ns}	26.5	0.9	14.0	20.9	1.2
LM13	6.83	1720	46 ^{ns}	9.8	26.5	0.9	12.5	16.0	0.8
LM15	4.10	1730	44 ^{ns}	10.1	25.5	0.6	9.5	19.2	1.3
LM16A	3.70	1740	30*	8.8*	17.0	4.3	4.5	2.5	11.8
LM16	3.50	1750	41*	9.2 ^{ns}	20.5	1.8	8.5	19.3	0.9
LM17	1.60	1760	36 ^{ns}	7.8*	16.0	0.0	3.0	3.9	1.0
	Narrativ	e Category	ОН ІВІ	Mlwb	Nat. Sp	Anom.	Intols	Smp Lith	% Tolerant
		ellent	<u>≥</u> 48	<u>></u> 9.6	>25	0.0	>8	>30	<u>≤</u> 15
		ood	<u>≥</u> 38	<u>></u> 8.5	>14	<1.3	6-8	>20-30	>15-30
		air	>28	>5.9	>10	<3.0	3-5	>10-20	>30-50
		oor	<u>>16</u>	>4.0	>7	<10	1-2	>5-10	>50-70
	Ver	y Poor	<16	<u><</u> 4.0	<u><</u> 7	>10	0	<u><</u> 5	<u>≥</u> 70

in 2017. The declining results in these indicators between August and September reflects a longer term response as opposed to an episodic event with Duck Creek as the likely source. The number of intolerant species was reduced to fair at LM16A and the impounded site at LM17, the first a response to organic enrichment and toxicity, the second to the impounded habitat. The percentage simple lithophilic spawners declined in the lower mainstem beginning further upstream at LM11 downstream from the East Fork (3 WWTPs) and worsening downstream becoming fair at LM13 and LM15 to very poor at LM16A and LM17. While this metric has overlap with the intolerant species metric, its response is primarily to substrate degradation in the form of finer sediments and sand either replacing or embedding coarser substrate types such as cobbles and gravel. Highly tolerant species were low and in the excellent range at all sites.

Little Miami River Tributary Subwatersheds

Of the 22 sites sampled in the Little Miami River tributary subwatersheds 16 are either designated or recommended for the WWH use designation with six (6) Duck Creek sites

Figure 28. Index of Biotic Integrity (IBI) results for the Little Miami River mainstem in 1983, 2007, 2012, 2017, and 2020. The EWH and WWH biocriteria are depicted as shaded areas between the biocriterion and the non-significant departure with major pollution sources and tributaries along the top of the graph.

designated as LRW (Table 22). The WWH IBI biocriterion was met at only five (5) sites, two (2) in Sycamore Creek, one in Polk Run, a non-significant departure at site LM77 in the WWH designated reach of Duck Creek, and another non-significant departure in Clough Creek site LM98 (Table 22). Three of the six (6) LRW designated sites in Duck Creek surpassed the LRW threshold for the IBI (Table 22; Figure 30). Of the non-attaining WWH designated sites, five (5) had fair IBI scores, four (4) had poor IBIs, and one had a very poor IBI of 12 (LM92). Of the three

Figure 29. Modified Index of Well-Being (Mlwb) results for the Little Miami River mainstem in 1983, 2007, 2012, 2017, and 2022. The EWH and WWH biocriteria are depicted as shaded areas between the biocriterion and the non-significant departure with major pollution sources and tributaries along the top of the graph.

(3) non-attaining LRW sites all had very poor IBI scores of 12. The MIwb applied to only two tributary sites (drainage area >20 sq. mi.) and both were in non-significant departure of WWH. Of the other metrics and attributes in Table 22, the richness of native species was consistently poor or very poor, intolerant species were widely absent, simple lithophils were below expectations at one-half the sites, and tolerant species were poor or very poor at 15 sites. The percentage of DELT anomalies were elevated out of the good range at only two sites, but this can be misleading when there are few fish that would accrue anomalies under sublethal stress anyway. In the aggregate the results demonstrate the severity of the urban impacts in Duck

Table 22. Selected fish assemblage attributes at 22 sites Little Miami River tributary subwatersheds sampled in the 2020. Color shading in the cells indicates the narrative quality of the index or attribute value in accordance with the thresholds in the footnotes at the bottom of the table (ns – nonsignificant departure; exceedances are asterisked).

		Drainage		ijicarie (Intol-	% Simple	
	River	Area			Native		erant	Lithophil	
Site ID	Mile	(sq mi)	Ohio IBI	MIwb	Sp.	% DELT	Sp.	-	% Tolerant
0.00.12		(64)		ycamore		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		- - - 	70 101010111
LM50	1.10	12.5	24*	NA	9.0	0.0	0.0	9.3	63.6
LM51	0.50	22.8	49	7.7 ^{ns}	21.5	0.0	10.0	8.7	10.3
LM52	0.10	23.3	47	7.8 ^{ns}	22.0	0.1	9.5	14.1	12.5
	0.20		med Tribut						
LM55	1.20	5.3	26*	NA	3.0	0.5	0.0	0.0	48.2
LM56	0.20	5.6	28*	NA	8.0	0.0	0.0	20.2	70.3
EIVISO	0.20	3.0	20	Polk I		0.0	0.0	20.2	70.3
LM40	0.30	10.0	52	NA	20.0	0.0	7.0	10.2	17.0
LIVITO	0.50	10.0	32	Duck C		0.0	7.0	10.2	17.0
LM71	6.10	2.2	12*	NA	0.0	0.0	0.0	0.0	0.0
LM72	5.14	5.1	24	NA	3.0	1.4	0.0	4.2	100.0
LM73	4.58	5.8	12*	NA	1.0	0.0	0.0	0.0	100.0
LM74	3.90	9.6	28	NA	8.0	0.2	0.0	11.8	84.9
LM75	3.40	11.5	12*	NA	1.0	0.0	0.0	100.0	100.0
LM76	2.80	11.7	24	NA	5.0	0.0	0.0	11.0	97.4
LM77	2.00	14.3	36 ^{ns}	NA	14.0	1.0	3.0	22.2	62.6
LM79	0.50	14.5	26*	NA	6.0	0.0	1.0	0.0	68.9
LIVI75	0.50	14.0			uck Creel		1.0	0.0	00.5
LM85	2.00	1.3	22*	NA	3.0	3.3	0.0	33.3	90.0
LM84	0.50	2.0	28*	NA	3.0	0.0	0.0	62.5	70.1
LIVIO	0.50	2.0		ittle Duc		0.0	0.0	02.5	70.1
LM86	2.40	0.2	32*	NA	3.0	0.0	0.0	56.3	77.5
LM87	1.90	0.5	32*	NA	4.0	0.0	0.0	49.1	88.5
LM90	1.00	0.6	32*	NA	4.0	0.0	0.0	37.4	82.4
LM92	0.49	1.7	12*	NA	0.0	0.0	0.0	0.0	0.0
LIVIJZ	0.43	1./	12	Clough		0.0	0.0	0.0	0.0
LM95	3.20	2.0	30*		5.0	0.0	0.0	43.8	73.6
			38 ^{ns}	NA					
LM98	0.60	7.8 e Category	OH IBI	NA Mlwb	10.0 Nat. Sp	O.O Anom.	1.0	42.3 Smp Lith	47.6 % Tolerant
		ellent	<u>>50</u>	na	>25	0.0	>8	>30	% Tolerant ≤15
		ood	<u>></u> 40	na	>14	<1.3	6-8	>20-30	>15-30
	F	air	>26	na	>10	<3.0	3-5	>10-20	>30-50
		oor	<u>>18</u>	na	>7	<10	1-2	>5-10	>50-70
	Ver	y Poor	<18	na	<u>≤</u> 7	>10	0	<u>≤</u> 5	<u>≥</u> 70

Creek especially. The two downstream Sycamore Creek sites, the Polk Run, and the Clough Creek sites were the only ones to have consistently good to exceptional index scores and attributes and demonstrate the potential for streams with their degree of urban land use.

Fish Assemblage Composition Changes Since 2017

Changes in fish assemblage composition in the Little Miami River mainstem since 2017 are summarized in Table 23. Emerald Shiner (Notropis atherinoides) was the numerically predominant species again in 2020 comprising 25.7% of the assemblage. Smallmouth Redhorse (Moxostoma breviceps) and Gizzard Shad (Dorosoma cepedianum) traded the number two and three spots in 2022 at 10.9% and 7.0%, respectively. From there the changes were more apparent with Smallmouth Buffalo (Ictiobus bubalus), Freshwater Drum (Aplodinotus grannies), and Channel Catfish (Ictalurus punctatus) moving up 10 and eight (8) places, respectively. Mountain madtom (Noturus eleuthurus) moved from 30th to ninth with a nearly threefold increase in numbers (7.8/Km to 21.5/Km). Of the top 20 most numerous species in 2022, four (4) are highly intolerant and eight (8) are moderately intolerant. Five (5) of these species ranked outside the top 20 in 2017. Only one moderately tolerant and no tolerant species were included in the top 20 species.

Macroinvertebrate Assemblage Results

Macroinvertebrates were sampled in all except one of the 41 sites in the 2022 Little Miami River study area following standardized procedures specified by the 2011 Plan (MBI 2011) and consistent with Level 3 specifications and the Ohio WQS the same as the fish assemblage. Like fish, they were assessed against the WWH suite of uses at 35 sites and factored into the PHWH assessment at four (4) of the PHW classified sites.

Little Miami River Mainstem

All except one of the 13 sites sampled in the EWH designated reach of the Little Miami River mainstem met the ICI biocriterion with three sites in the insignificant departure range (Table 24). In 2017 no ICI results were in the non-significant departure range for EWH (Figure 31). Both 2017 and 2022 are a substantial improvement over 2012 when eight (8) of the 15 sites sampled in the EWH reach were in the non-significant departure range of EWH for the ICI. The only nonattaining site in 2022 is LM16A immediately downstream from Duck Creek and it has never been sampled previously. The ICI score of 40 is only 2 points below the non-significant departure range, but it was 18 points below the upstream site LM15. The impact is lasting as evidenced by only a two point improvement at LM16 some 0.2 miles downstream. Other key macroinvertebrate assemblage indices and attributes such as total taxa, sensitive taxa, %tolerant taxa, qualitative EPT taxa, %toxic tolerant taxa, and %organic enrichment taxa are depicted in Table 24. All of the attributes and metrics were excellent or good with the exception of %Mayflies which was only fair at LM07 downstream from Sycamore Creek. It worsened to poor at LM08 and stayed in the fair range until it recovered to excellent at LM13. The %Mayflies declined to very poor at LM16A downstream from Duck Creek and along with an elevated %Organic Tolerant taxa affirmed the impact from Duck Creek that was expressed in the fish assemblage and several chemical indicators. %Mayflies and %Organic Tolerant taxa recovered only incrementally at LM16. The general pattern was for the excellent attribute characteristics in the upper mainstem to decline to good, fair, and even poor and very poor in two instances in a downstream direction.

Figure 30. Index of Biotic Integrity (IBI) results for the Duck Creek mainstem in 1983, 2007, 2012, 2017, and 2022. The WWH and LRW biocriteria are depicted as a shaded bar and a colored line. The LRW (orange) and WWH (green) designated reaches are indicated along the top of the graph.

Little Miami River Tributary Subwatersheds

Of the 16 tributary sites that were assessed against the WWH biocriterion, three (3) sites had excellent ICI scores, 10 sites had good ICI or Good or Marginally Good narrative equivalents, and three had fair narrative equivalents (Table 25). In the LRW designated reach of Duck Creek four (4) sites had a fair ICI or equivalent narrative rating, one had a poor narrative rating, and one site had a very poor narrative rating (Table 25). The trend in Duck Creek was a sharp

Table 23. A comparison in the numerical ranking of fish species in the Little Miami River mainstem between 2017 and 2022 using the catch-per-unit-effort (CPUE) and proportion of the assemblage (% numbers). The Ohio tolerance classification is included for intolerant (I and R), moderately intolerant (M), moderately tolerant (p), and highly tolerant (T). Species with a blank are intermediate.

			20)22	20)17
	Ohio	Rank in		%		%
Species Name	Tolerance	2017	CPUE	Numbers	CPUE	Numbers
Emerald Shiner		1	212.7	25.80	233.4	19.18
Smallmouth Redhorse	M	3	89.8	10.89	131.5	10.81
Gizzard Shad		2	57.8	7.01	168.9	13.88
Smallmouth Buffalo		8	44.2	5.35	33.7	2.76
Northern Hog Sucker	M	4	40.2	4.87	72.5	5.96
Freshwater Drum	Р	16	25.5	3.09	22.1	1.82
Channel Catfish		15	22.4	2.71	23.3	1.91
Mimic Shiner	Ι	5	21.8	2.64	62.8	5.16
Mountain Madtom	R	30	21.5	2.61	7.8	0.64
Golden Redhorse	М	6	19.3	2.34	39.3	3.23
Logperch	М	20	17.5	2.12	12.9	1.06
River Carpsucker		14	15.3	1.85	24.0	1.97
Banded Darter	I	23	15.1	1.83	11.1	0.91
Longear Sunfish	М	12	14.8	1.80	26.4	2.17
Smallmouth Bass	М	11	13.0	1.58	27.1	2.22
Greenside Darter	М	31	12.0	1.46	7.1	0.58
Variegate Darter	I	46	11.6	1.40	1.9	0.15
Spotfin Shiner		17	11.3	1.37	15.8	1.30
Gravel Chub	М	38	10.8	1.31	4.0	0.33
Central Stoneroller		10	10.5	1.28	29.9	2.46
Longnose Gar		25	9.8	1.19	9.2	0.75
Channel Shiner	I	22	9.8	1.19	12.5	1.02
Spotted Bass		18	9.5	1.15	14.1	1.16
Stonecat Madtom	I	35	9.3	1.13	4.7	0.39
Black Buffalo		21	7.4	0.90	12.7	1.04
Bluegill Sunfish	Р	9	7.3	0.88	32.0	2.63
Common Carp	Т	39	7.1	0.86	4.0	0.33
Sand Shiner	М	24	6.5	0.79	10.1	0.83
Black Redhorse	I	32	6.4	0.77	6.1	0.50
Steelcolor Shiner	Р	26	5.9	0.72	8.9	0.73
Rainbow Darter	М	19	5.5	0.66	13.9	1.14
Rosyface Shiner	I	13	5.2	0.63	25.9	2.13
Largemouth Bass		43	5.0	0.61	2.6	0.21
Striped X White Bass		33	4.9	0.59	5.9	0.48
Flathead Catfish		45	4.7	0.58	2.6	0.21

Table 23. continued.

			20	022	20	017
	Ohio	Rank in		%		%
Species Name	Tolerance	2017	CPUE	Numbers	CPUE	Numbers
Quillback Carpsucker		27	4.4	0.54	8.5	0.70
River Redhorse	I	42	4.2	0.50	3.1	0.25
Slenderhead Darter	R	40	4.2	0.50	3.8	0.31
Green Sunfish	Т	29	3.6	0.43	8.0	0.66
Bluntnose Minnow	T	7	3.4	0.41	33.9	2.78
Mooneye	R	52	2.4	0.29	0.9	0.08
Silver Redhorse	M	41	1.6	0.20	3.8	0.31
Sauger		36	0.9	0.11	4.5	0.37
Sauger X Walleye		50	0.9	0.11	0.9	0.08
Suckermouth Minnow		48	0.7	0.09	1.2	0.10
Fantail Darter		54	0.7	0.09	0.5	0.04
White Crappie		28	0.6	0.07	8.2	0.68
Silver Chub		49	0.3	0.04	1.2	0.10
Grass Carp		0	0.3	0.04	0.0	0.00
Black Crappie		59	0.3	0.04	0.2	0.02
Rock Bass		56	0.3	0.04	0.5	0.04
Highfin Carpsucker		0	0.2	0.02	0.0	0.00
Striped Shiner		61	0.2	0.02	0.2	0.02
Bullhead Minnow		37	0.2	0.02	4.5	0.37
Orangespotted Sunfish		55	0.2	0.02	0.5	0.04
Redear Sunfish		0	0.2	0.02	0.0	0.00
Green Sf X Bluegill Sf		0	0.2	0.02	0.0	0.00
Longear Sf X Bluegill Sf		0	0.2	0.02	0.0	0.00
Walleye		58	0.2	0.02	0.2	0.02
Johnny Darter		0	0.2	0.02	0.0	0.00
Unspecified Sucker		0	0.2	0.02	0.0	0.00
Bigmouth Buffalo		57	0.0	0.00	0.5	0.04
River Chub	ı	62	0.0	0.00	0.2	0.02
Silver Shiner	I	34	0.0	0.00	5.7	0.46
River Shiner		51	0.0	0.00	0.9	0.08
Yellow Bullhead	Т	60	0.0	0.00	0.2	0.02
Brook Silverside	M	47	0.0	0.00	1.2	0.10
White Bass		44	0.0	0.00	2.6	0.21

improvement from the very poor upstream site at LM71 to poor at LM72 to fair at sites LM73, LM74, LM75, and LM76 each of which meets the expectation for macroinvertebrates in a LRW designated stream (Figure 32). The improvement continued into the WWH designated reach of Duck Creek with ICI scores that met and surpassed the WWH biocriterion.

Figure 31. Invertebrate Community Index (ICI) results for the Little Miami River mainstem in 1983, 2007, 2012, 2017, and 2022. The EWH and WWH biocriteria are depicted as shaded areas between the biocriterion and the non-significant departure with major pollution sources and tributaries along the top of the graph.

The most urban impacted sites had numerous fair, poor, and very poor values for selected macroinvertebrate attributes, namely sensitive taxa, qualitative EPT taxa, and % or number of Mayflies, which was zero in most of the Duck Creek watershed, the unnamed tributary to Sycamore Creek, and Clough Creek. The % or number of toxic tolerant taxa was elevated well into the fair range at only one site, LM76 in Duck Creek and the number of % Organic Tolerant taxa was elevated into the poor range at the next site LM77.

Table 24. Selected macroinvertebrate assemblage attributes at 13 sites Little Miami River mainstem sampled in the 2022. Color shading in the cells indicates the narrative quality of the index or attribute value in accordance with the thresholds in the footnotes at the bottom of the table (ns – nonsignificant departure; exceedances are asterisked).

semblage Response Indicators	Assemblag	oinvertebr	Macr				
		Sensitive					
er- Qualita- %Toxic %Organic	Toler-	Taxa			Drainage		
		(Qualita-	Total Site		Area	River	
c /olvidy cive Li i		•		ıcı	(mi. ²)		Cita ID
ros flies Taxa Taxa ^a Taxa ^a		tive)	Taxa	ICI	(mi.)	Mile	Site ID
		tle Miami R	Litt				
2 21.6 33 0.1 12.7	0.12	33	97	42 ^{ns}	1070	27.90	LM01
0 21.3 30 0.0 2.0	0.00	28	85	50	1090	24.10	LM02
8 29.6 28 0.2 6.8	0.18	30	78	52	1150	22.30	LM03
5 47.1 27 0.5 8.4	l.15 4	29	81	52	1160	21.50	LM05
9 12.0 30 0.3 8.9	0.39	30	90	48	1190	18.50	LM07
4 8.1 25 1.1 4.8	L.14	24	81	50	1190	17.70	LM08
3 14.8 27 0.9 2.0	0.93	28	79	52	1200	13.10	LM09
0 14.2 26 0.0 5.9	0.00	30	85	42 ^{ns}	1710	10.90	LM11
3 15.3 24 0.0 2.1	0.03	27	75	56	1710	8.10	LM12
5 35.9 29 0.3 14.5	0.25	31	79	54	1720	6.83	LM13
0 23.8 24 0.0 6.4	0.00	25	71	58	1730	4.10	LM15
9 4.8 15 0.0 16.9	2.19	12	72	40*	1740	3.70	LM16A
1 8.6 25 0.5 11.5	l.11	20	76	42 ^{ns}	1750	3.50	LM16
<u>≥</u> 30 >15 0 <5	<u><</u> 5	>16	>60	<u>≥</u> 46	llent	Exce	
		11-16	>40-60	>36	ood		
9 4.8 15 0.0 1 8.6 25 0.5	2.19 1.11 5 -5-10 > 10-25 > 10-25 > 10-25 10	12 20 >16	72 76 >60	40* 42 ^{ns} ≥46	1740 1750	3.70 3.50 Exce Go Fa	LM16A

Synthesis of Results

Table 26 represents a synthesis of the aquatic life use attainment status, the biological criteria by which attainment status is derived, the principal indicators of biological quality and response to predominant stressors, indicators of habitat quality, key aspects of the D.O. regime that are affected by organic and nutrient enrichment, and key chemical indicators consisting of water column and sediment chemistry in 2022. Each index score, metric, attribute, or response signature was normalized to a narrative scale of exceptional, good, fair, poor, and very poor quality with the results color coded accordingly. This analysis presents a synthesis of the results that were previously described on an individual assemblage, attribute, or parameter basis.

The Southwest Ohio IPS thresholds for land use, water chemistry, and physical habitat attributes (MBI 2015) were used to assess causes of impairment and their comparative severity. Threats to attaining sites are also determined by the IPS and these are evaluated as well. The approach for deriving these thresholds included a more refined stratification of biological effect threshold values for parameters that showed valid relationships with biological responses based on species and taxa level analyses and then correlated with the corresponding fish and

Table 25. Selected macroinvertebrate assemblage attributes at 22 sites in Little Miami River tributary subwatersheds sampled in the 2022. Color shading in the cells indicates the narrative quality of the index or attribute value in accordance with the thresholds in the footnotes at the bottom of the table (ns – nonsignificant departure; exceedances are asterisked).

				Macı	oinvertebr	ate Assem	blage Resp	onse Indic	ators	
					Sensitive				%/#	%/#
		Drainage			Таха	%Toler-		Qualita-	Toxic	Organic
	River	Area		Total Site	(Qualita-	ant	%May-	tive EPT	Tolerant	Tolerant
Site ID	Mile	(mi.²)	ICI	Taxa	tive)	Macros	flies	Taxa	Taxa ^a	Taxa ^a
				Sy	camore Cre	eek				
LM50	1.10	12.5	46	58	4	2.29	21.6	11	0.6	7.0
LM51	0.50	22.8	48	65	13	0.03	36.8	15	0.0	6.0
LM52	0.10	23.3	38	62	10	1.62	6.1	13	0.0	4.9
			Unnam	ed Tributa	ry to Sycan	nore Cr. at	RM 1.12			
LM55	1.20	5.3	G	24	3	0.00	0.0	8	1	4
LM56	0.20	5.6	36	45	4	10.99	0.0	10	9.6	19.0
				Polk Ru	ın (LMR RI	Л 21.55)				
LM40	0.30	10.0	50	57	12	0.09	39.3	14	0.0	1.1
				Duck Cr	eek (LMR I	RM 3.87)				
LM71	6.10	2.2	VP	11	0	0.00	0.0	0	1	1
LM72	5.14	5.1	Р	18	0	0.00	0.0	3	1	2
LM73	4.58	5.8	F	17	0	0.00	0.0	5	1	3
LM74	3.90	9.6	F	20	1	0.00	0.0	6	1	3
LM75	3.40	11.5	F	25	0	0.00	0.0	5	1	4
LM76	2.80	11.7	26	39	2	42.82	27.6	7	32.8	12.6
LM77	2.00	14.3	32	42	1	18.71	22.2	7	3.0	35.0
LM79	0.50	14.6	38	49	2	4.83	55.9	10	4.0	8.4
		T 1		1	Fork Duck	Creek				
LM85	2.00	1.3	F	26	0	0.00	0.0	5	1	4
LM84	0.50	2.0	F	29	0	0.00	0.0	5	1	4
		T 1			tle Duck Cr					
LM86	2.40	0.2	MG	24	3	0.00	0.0	7	1	4
LM87	1.90	0.5	G	28	4	0.00	0.0	9	1	4
LM90	1.00	0.6	G	29	4	0.00	0.0	8	1	4
LM92	0.49	1.7		Clausi	Cup als /1 a co	0.004.2.01				
10405	2.20		NAC		Creek (LMF		0.0	-		0
LM95	3.20	2.0	MG	19	3	0.00	0.0	7	0	0
LM98	0.60	7.8	G >46/E	36 >60	6 >16	0.00 <5	0.0 ≥30	11 >15	0/0	4 <5/0
		ood	>36/G	>40-60	11-16	>5-10	>20-30	11-15	<5/1	<15/ <u><</u> 2
		air	>14/F	>20-40	6-10	>10-25	>10-20	6-10	<20/>2	<u>≥15/<</u> 5
		oor / Poor	>6/P <6/VP	>10-20 <10	2-5 <2	>25-50 >50	>5-10 <5	2-5 <2	<u>></u> 35/>3 <60/>4	≥35/ <u><</u> 8 >60/>9

macroinvertebrate index attainment thresholds for the Ohio tiered aquatic life uses and narrative ratings (MBI 2015). This produced thresholds across five narrative categories of quality (excellent, good, fair, poor, and very poor) with excellent corresponding to the EWH,

Figure 32. Invertebrate Community Index (ICI) results for the Duck Creek mainstem in 1983, 2007, 2012, 2017, and 2020. The WWH and LRW biocriteria are depicted as a shaded bar and a colored line. The LRW (orange) and WWH (green) designated reaches are indicated along the top of the graph.

good to the WWH, and poor to the LRW use designations. This replaces the binary (i.e., "pass/fail") approach to evaluating exceedances of chemical and physical effect thresholds and criteria by providing a gradient approach to the assignment of causes and sources of biological impairments. The IPS framework is anchored in the tiered aquatic life use (TALU) framework by stratifying goals and thresholds that are incorporated into all IPS outputs to support local restoration and protection efforts by MSDGC and the respective watershed groups and stakeholders.

Table 26. Key chemical, physical, and biological response indicators of impairment observed at each site in the Little Miami River study area in 2020. The causes associated with biological impairments are drawn from analyses of habitat, nutrient effects, chemical IPS, and other threshold exceedances, and biological response signatures. Causes of impairment are classified as fair, poor, or very poor in accordance with the exceedance of corresponding thresholds. Threats to attainment are listed for attaining sites. See footnotes for table references and biological, physical, and chemical thresholds ((ns – nonsignificant departure; exceedances are asterisked).

							a jor att					-										
								1	1								Water					
	1	Drain-						ı	Good	Poor	%/#	%/#			Max.		Column	Sediment	Sediment			
	1	age						ı	OHEI	QHEI	Toxic	Organic	Min.	Max.	Daily	Nutrient	Poor/VP	Metals	PAH			
	River Mile	Area	Aquatic				Aq. Life	ı			Tolerant	-		D.O.	D.O.	Box/SNAP	Exceed-	Exceed-	Exceed-			
Sito ID	Fish/Macros		-	IBI	Mlwb	ICI	Status	QHEI		butes	Taxa	Taxa		(mg/L)		-	ances	ances	ances	Very Poor	Poor	Fair
ite ib	Tistiyiviacios	(34. 1111.)	Life Ose	101	IVIIVI	101	Status	QIILI	Dutes	butes	Taxa	Taxa	(1116/1-)	(1116/11)		: Miami River				Very 1 doi	1 001	Tan
LM01	27.90/27.80	1070	EWH	50	10.3	42 ^{ns}	Full	89.5		0	0.1	12.7	4.5	9.5	3.5	Acceptable	O O	nc Lije Ose	-LAISTING)	H. Urb (Cat); H. Urb (Buff); Chloride; TDS; Nitrate; Cond; Min De	2	
									9	0							0	0	0		<u> </u>	
	24.10/23.90		EWH	52	10.9	50	Full	91.0		0	0.0	2.0	7.1	9.2	1.8	Acceptable	0	0	0	TDS; H. Urb (Cat); H. Urb (Buff); Nitrate; Cond;		
	22.30/22.20		EWH	47 ^{ns}	9.5 ^{ns}	52	Full	84.5		2	0.2	6.8	6.9	10.0	2.8	Acceptable	0	0	0	H. Urb (Cat); H. Urb (Buff); Nitrate;		
LM05	21.50/20.90	1160	EWH	47 ^{ns}	10.3	52	Full	89.5	9	0	0.5	8.4	7.0	10.8	3.8	Acceptable	0	0	0	H. Urb (Cat); H. Urb (Buff); Nitrate; Max. Temperature		
LM07	18.50/18.50	1190	EWH	51	10.3	48	Full	89.5	9	0	0.3	8.9	6.9	10.6	3.2	Acceptable	0	0	0	H. Urb (Cat); H. Urb (Buff); Nitrate;		
LM08	17.70/16.90	1190	EWH	52	10.2	50	Full	85.5	9	0	1.1	4.8	7.1	10.3	3.0	Acceptable	0	0	0	H. Urb (Cat); H. Urb (Buff); Nitrate; Chloride;		
LM09	13.10/13.10	1200	EWH	48	10.0	52	Full	87.8	9	0	0.9	2.0	7.0	9.5	1.9	Acceptable	0	0	0	H. Urb (Cat); H. Urb (Buff); BOD; Nitrate;		
	10.90/10.90	1710	EWH	44 ^{ns}	9.8	42 ^{ns}	Full	85.0	9	0	0.0	5.9	6.9	9.0	1.1	Acceptable	0	0	0	H. Urb (Cat); H. Urb (Buff); Nitrate;		
LM12	8.10/8.00	1710	EWH	44 ^{ns}	9.3 ^{ns}	56	Full	89.3		0	0.0	2.1	6.8	8.6	1.1	Acceptable	0	0	0	H. Urb (Cat); H. Urb (Buff); Nitrate;		
LM13	6.83/7.30	1720	EWH	46 ^{ns}	9.8	54	Full	87.0		0	0.3	14.5	6.8	8.5	0.6	Acceptable	0	0	0			
										0										H. Urb (Cat); H. Urb (Buff); Nitrate; Copper		
LM15	4.10/4.10	1730	EWH	44 ^{ns}	10.1	58	Full	87.5		0	0.0	6.4	6.7	8.3	0.7	Acceptable	0	0		H. Urb (Cat); H. Urb (Buff); BOD; Nitrate;		
M16A	3.70/3.70	1740	EWH	30*	8.8*	40*	Non	65.0		7	0.0	16.9	3.1	8.5	5.3	Acceptable	0	0	0	H. Urb (Cat); H. Urb (Buff);		Channel; BOD; Org., Enrich;
LM16	3.50/3.50	1750	EWH	41*	9.2 ^{ns}	42 ^{ns}	Partial	84.0	8	3	0.5	11.5	6.6	8.3	0.8	Acceptable	0	0	0	H. Urb (Cat); H. Urb (Buff);		
															Little	Miami River (WWH Aque	atic Life Use	–Existing)			
LM17	1.60/1.40	1760	WWH	36 ^{ns}	7.8*		Partial	62.0	4	7			7.1	11.0	3.6	Acceptable	2	0	0	H. Urb (Cat);		Channel; Lead
																more Creek (V	WWH Aqua	tic Life Use -				
LM50	1.10/1.00	12.5	WWH	24*	NA	46	Non	70.0	9	1	0.6	7.0			Jycu	Nutrients			0	H. Urb (Cat): H. Urb (Buff):	Chloride; BOD; TDS; TAmm;	TKN; Cond;
					7.7 ^{ns}					5			4.7	0.5	2.0		0	0			Temoriue, BOD, 103, TAIIIII;	TRIV, COIIU,
LM51	0.50/0.24	22.8	WWH	49		48	Full	61.5	_		0.0	6.0	4.7	8.5	3.8	Threats	0	0	0	H. Urb (Cat); H. Urb (Buff); Chloride; Channel; TDS; Cond;		
LM52	0.10/0.10	23.3	WWH	47	7.8 ^{ns}	38	Full	68.0	7	4	0.0	4.9	7.2	9.2	1.9	Threats	0	0	0	Chloride; pH; Nitrate; H. Urb (Cat); H. Urb (Buff); TDS; Cond; TK	N;	
									_			Unnan	ned Tribu	tary at	RM 1.8		ributary to	Sycamore C		.12 (PHW2 Existing Use)		
LM54	2.40/2.40	1.58	PHW3	12	NA		PHW3A				0	3				Acceptable				QHEI; Substr; Channel; H. Urb (Cat); Org. Enrich		
													Unno	med Tril	butary t	to Sycamore C	Cr. at RM 1.	12 (WWH A	quatic Life	Use - Existing)		
LM55	1.20/1.00	5.32	WWH	26*	NA	G	Non	60.8	6	5	9.6	19.0	2.9	5.2	2.3	Acceptable	3			Chloride; TDS; H. Urb (Cat);	Cond;	Channel; Toxics; Org., Enrich
LM56	0.20/0.20	5.61	WWH	28*	NA	36	Partial	63.0		4.0	1	4	3.3	5.9	2.6	Acceptable	1			QHEI; Substr; Channel; H. Urb (Cat);	Chloride;	Org. Enrich
	0.00,0.00															Polk Run (WWI	H Aquatic I	ifo I Iso - Fvi	ctina)	action of the control		(- (- (- (- (- (- (- (- (- (-
LM40	0.30/0.30	9.97	WWH	52	NA	50	Full	63.0	6	4	0.0	1.1	7.6	10.3		Acceptable		1) C U 3C - LXI	o n	Chloride; H. Urb (Cat); H. Urb (Buff); TDS; Channel; Cond;		
LIVI40	0.30/0.30	3.31	VVVVII	JZ	IVA	30	i uli	03.0		4	0.0	1.1	7.0	10.5						Chloride, 11. Orb (Cat), 11. Orb (Bull), 103, Chaillel, Colid,		
																uck Creek (LRI	w Aquatic I					
LM71	6.10/6.00	2.24	LRW	<u>12</u> *	NA	VP*	Non	26.0		4	1	1	6.6	7.6	1.1	Nutrients	3	0	0	Substr; H. Urb (Cat);	QHEI; Chloride;	Channel;
LM72	5.14/4.60	5.05	LRW	24	NA	Р	Full	54.5		5	1	2	4.2	7.7	3.5	Threats	0	0	0	H. Urb (Cat); H. Urb (Buff); Chloride; TDS; QHEI; Channel; Cond;	Org. Enrich	
LM73	4.58/4.40	5.84	LRW	<u>12</u> *	NA	F	Non	16.0	2	4	1	3	2.9	7.4	4.5	Nutrients	3	1	0	QHEI; Substr; H. Urb (Cat); H. Urb (Buff);	Chloride; TDS;	Channel; Cond;
LM74	3.90/3.90	9.59	LRW	28	NA	F	Full	63.0	5	7	1	3	5.2	8.9	3.7	Threats	0	0	0	H. Urb (Cat); H. Urb (Buff); Chloride; Channel; TDS; Cond;		
LM75	3.40/3.30	11.5	LRW	<u>12</u> *	NA	F	Non	15.0	1 /	5	1	4	7.7	11.8	4.2	Nutrients	3	0	0	QHEI; Substr; Chloride; TDS; H. Urb (Cat); H. Urb (Buff)	Cond;	Channel;
LM76	2.80/2.90	11.7	LRW	24	NA	26	Full	66.0	5	5	32.8	12.6	7.5	9.5	2.0	Threats	0	0	0	Chloride; TDS; H. Urb (Cat); H. Urb (Buff); BOD; Cond; Channel;		
				<u> </u>												ıck Creek (WW	VH Aquatic	Life Use – F	ristina)			
LM77	2.00/1.80							-														
	0.50/0.90	1/13	\\/\\/H	36 ^{ns}	NΔ	27	Full	67.0	6	1	3.0	35.0	5.0	7.1		Threats	0	n		Chloride: TDS: H. Urb (Cat): H. Urb (Buff): Cond: Channel:		
LM79		14.3	WWH	36 ^{ns}	NA	32	Full	67.0		4	3.0	35.0	5.9	7.4	1.5	Threats	0	0		Chloride; TDS; H. Urb (Cat); H. Urb (Buff); Cond; Channel;	Chlavida, TDC	Cont
	0.30/0.30	14.3 14.6	WWH	36 ^{ns} 26*	NA NA	32	Full Non	67.0 68.8		3	3.0 4.0	35.0 8.4	5.9 5.0	6.8	1.8	Nutrients	4	0		H. Urb (Cat); H. Urb (Buff);	Chloride; TDS;	Cond;
		14.6	WWH		NA		Non							6.8	1.8	Nutrients ributary to Dua	4	0		H. Urb (Cat); H. Urb (Buff); g Use)	Chloride; TDS;	Cond;
LM83	0.00/0.80	14.6	WWH PHW2		NA NA		Non PHW2	68.8						6.8 Unna	1.8 med Tr	Nutrients ributary to Dua PHW2	4	0		H. Urb (Cat); H. Urb (Buff); g Use) QHEI; Substr; Channel; H. Urb (Cat); H. Urb (Buff);		
LM83 LM80		14.6	WWH		NA		Non							6.8	1.8	Nutrients ributary to Dua	4	0		H. Urb (Cat); H. Urb (Buff); g Use)		
	0.00/0.80	14.6	WWH PHW2		NA NA		Non PHW2	68.8						6.8 Unno	1.8 med Tr 5.4	Nutrients ributary to Dua PHW2	4 ck Creek at 0	0 0 RM 4.8 (PH		H. Urb (Cat); H. Urb (Buff); g Use) QHEI; Substr; Channel; H. Urb (Cat); H. Urb (Buff); Chloride; BOD; TDS; pH; Cond; H. Urb (Cat); H. Urb (Buff); QHEI		
LM80	0.00/0.80	14.6 1.20 1.42	WWH PHW2		NA NA		Non PHW2	68.8					0.7	6.8 Unno	1.8 med Tr 5.4 East Fo	Nutrients ributary to Duc PHW2 PHW2 PHW2 ork Duck Creek	4 ck Creek at 0	0 0 RM 4.8 (PH		H. Urb (Cat); H. Urb (Buff); g Use) QHEI; Substr; Channel; H. Urb (Cat); H. Urb (Buff); Chloride; BOD; TDS; pH; Cond; H. Urb (Cat); H. Urb (Buff); QHEI		
LM80 LM81	0.00/0.80 0.10/0.20 2.30/2.30	1.20 1.42 0.29	PHW2 PHW2 PHW1	26* 12 12	NA NA NA		PHW2 PHW2 PHW1	34.5	2	6	1		0.7 Dry - no	6.8 Unna 6.2	1.8 med Tr 5.4 East Fo	Nutrients ributary to Duc PHW2 PHW2 PHW2 ork Duck Creek only)	4 ck Creek at 0	0 0 RM 4.8 (PH		H. Urb (Cat); H. Urb (Buff); g Use) QHEI; Substr; Channel; H. Urb (Cat); H. Urb (Buff); Chloride; BOD; TDS; pH; Cond; H. Urb (Cat); H. Urb (Buff); QHEI D	; Substr; Channel; TKN; Org. Enric y - no samples	h;
M81 LM85	0.00/0.80 0.10/0.20 2.30/2.30 2.00/1.50	14.6 1.20 1.42 0.29 1.31	PHW2 PHW2 PHW1 WWH	26* 12 12 12 22*	NA NA NA NA	38 P	PHW2 PHW2 PHW1 Non	34.5 62.5	2 5	6	1	6	0.7 Dry - no	6.8 Unno 6.2 sample: 5.3	1.8 med Tr 5.4 East Fo (HHEI) 1.4	Nutrients Fibutary to Duck PHW2 PHW2 PHW2 ork Duck Creek only) Nutrients	4 ck Creek at 0	0 0 RM 4.8 (PH 0 uatic Life Us		H. Urb (Cat); H. Urb (Buff); g Use) QHEI; Substr; Channel; H. Urb (Cat); H. Urb (Buff); Chloride; BOD; TDS; pH; Cond; H. Urb (Cat); H. Urb (Buff); QHEI) Dr TDS; H. Urb (Cat); H. Urb (Buff);	; Substr; Channel; TKN; Org. Enric	h; Channel; TKN; Org. Enrich;
LM80 LM81 LM85	0.00/0.80 0.10/0.20 2.30/2.30	1.20 1.42 0.29	PHW2 PHW2 PHW1	26* 12 12	NA NA NA	38 P	PHW2 PHW2 PHW1	34.5	2 5	6	1	6	0.7 Dry - no	6.8 Unna 6.2	1.8 med Tr 5.4 East Fo	Nutrients ributary to Due PHW2 PHW2 ork Duck Creek only) Nutrients Nutrients	4 ck Creek at 0 c (WWH Aqu	0 0 RM 4.8 (PH 0 uatic Life Us	e - Existing	H. Urb (Cat); H. Urb (Buff); g Use) QHEI; Substr; Channel; H. Urb (Cat); H. Urb (Buff); Chloride; BOD; TDS; pH; Cond; H. Urb (Cat); H. Urb (Buff); QHEI D	; Substr; Channel; TKN; Org. Enric y - no samples	h;
LM81 LM85 LM84	0.00/0.80 0.10/0.20 2.30/2.30 2.00/1.50 0.50/0.60	14.6 1.20 1.42 0.29 1.31 1.99	PHW2 PHW2 PHW1 WWH	26* 12 12 12 22* 28*	NA NA NA NA NA	78 P	PHW2 PHW2 PHW1 Non	68.8 34.5 62.5 65.0	7 2 5 5	6 5 4	1	6	0.7 Dry - no 4.0 5.6	6.8 <i>Unna</i> 6.2 sample: 5.3 7.2	1.8 med Tr 5.4 East Fo s (HHEI 1.4 1.6	Nutrients PHW2 PHW2 PK Duck Creek only) Nutrients Nutrients Little Duck C	4 ck Creek at 0 c (WWH Aqu	0 0 RM 4.8 (PH 0 uatic Life Us 0 0 H Existing U	e - Existing	H. Urb (Cat); H. Urb (Buff); g Use) QHEI; Substr; Channel; H. Urb (Cat); H. Urb (Buff); Chloride; BOD; TDS; pH; Cond; H. Urb (Cat); H. Urb (Buff); QHEI Dr TDS; H. Urb (Cat); H. Urb (Buff); Chloride; TDS; Cond; H. Urb (Cat); H. Urb (Buff);	; Substr; Channel; TKN; Org. Enric y - no samples Chloride; Cond;	Channel; TKN; Org. Enrich; Channel; Org. Enrich; Copper
LM81 LM85 LM84	0.00/0.80 0.10/0.20 2.30/2.30 2.00/1.50 0.50/0.60 2.40/2.70	14.6 1.20 1.42 0.29 1.31 1.99	PHW2 PHW2 PHW1 WWH WWH	26* 12 12 12 22* 28*	NA NA NA NA NA NA NA	P F F MG	PHW2 PHW2 PHW1 Non Non	34.5 62.5 65.0 56.5	7 2 2 5 5 5 3	3 6 5 4	1 1 1 1	8.4 6 4 4	0.7 Dry - no 4.0 5.6	6.8 Unna 6.2 5.3 7.2	1.8 med Tr 5.4 East Fo 5 (HHEI 1.4 1.6	Nutrients ibutary to Dud PHW2 PHW2 PHW2 ork Duck Creek only) Nutrients Nutrients Little Duck C Nutrients	4 ck Creek at 0 c (WWH Aqu	0 0 RM 4.8 (PH 0 uatic Life Us 0 0 H Existing U	e - Existing	H. Urb (Cat); H. Urb (Buff); g Use) QHEI; Substr; Channel; H. Urb (Cat); H. Urb (Buff); Chloride; BOD; TDS; pH; Cond; H. Urb (Cat); H. Urb (Buff); QHEI Dr TDS; H. Urb (Cat); H. Urb (Buff); Chloride; TDS; Cond; H. Urb (Cat); H. Urb (Buff); H. Urb (Cat);	; Substr; Channel; TKN; Org. Enric y - no samples Chloride; Cond; Chloride; TDS;	Channel; TKN; Org. Enrich; Channel; Org. Enrich; Copper QHEI; Channel; Cond; Org Enrich
LM81 LM85 LM84 LM86 LM87	0.00/0.80 0.10/0.20 2.30/2.30 2.00/1.50 0.50/0.60 2.40/2.70 1.90/2.60	14.6 1.20 1.42 0.29 1.31 1.99 0.22 0.45	PHW2 PHW2 PHW1 WWH WWH WWH	26* 12 12 12 22* 28* 32* 32*	NA NA NA NA NA NA NA NA	P F F MG G	PHW2 PHW2 PHW1 Non Non Partial Partial	68.8 34.5 62.5 65.0 56.5 61.0	5 5 5	5 4	1 1 1 1 1 1 1	6 4 4 4	0.7 Dry - nc 4.0 5.6 5.6	6.8 Unna 6.2 5.3 7.2 7.8 7.1	1.8 med Tr 5.4 East Fo 6 (HHEI 1.4 1.6	Nutrients ibutary to Dud PHW2 PHW2 PHW2 ork Duck Creek only) Nutrients Nutrients Little Duck C Nutrients Nutrients	4 ck Creek at 0 c (WWH Aque 5 5 Creek (WWI 3 3	0 0 RM 4.8 (PH 0 uatic Life Us 0 0 H Existing U	e - Existing	H. Urb (Cat); H. Urb (Buff); g Use) QHEI; Substr; Channel; H. Urb (Cat); H. Urb (Buff); Chloride; BOD; TDS; pH; Cond; H. Urb (Cat); H. Urb (Buff); QHEI DT TDS; H. Urb (Cat); H. Urb (Buff); Chloride; TDS; Cond; H. Urb (Cat); H. Urb (Buff); H. Urb (Cat); H. Urb (Cat);	; Substr; Channel; TKN; Org. Enric y - no samples Chloride; Cond; Chloride; TDS; Chloride; TDS;	Channel; TKN; Org. Enrich; Channel; Org. Enrich; Copper QHEI; Channel; Cond; Org Enrich Channel; Cond; Org Enrich
LM81 LM85 LM84 LM86 LM87	0.00/0.80 0.10/0.20 2.30/2.30 2.00/1.50 0.50/0.60 2.40/2.70 1.90/2.60 1.00/2.30	1.46 1.20 1.42 0.29 1.31 1.99 0.22 0.45 0.55	PHW2 PHW2 PHW1 WWH WWH WWH WWH	26* 12 12 12 22* 28*	NA	P F F MG	PHW2 PHW2 PHW1 Non Non	68.8 34.5 62.5 65.0 56.5 61.0 61.0	5 5 5 5	3 6 5 4	1 1 1 1	8.4 6 4 4	0.7 Dry - no 4.0 5.6	6.8 Unna 6.2 5.3 7.2 7.8 7.1 8.3	1.8 med Tr 5.4 East Fo 5 (HHEI 1.4 1.6	Nutrients ibutary to Dud PHW2 PHW2 PHW2 ork Duck Creek only) Nutrients Nutrients Little Duck C Nutrients	4 ck Creek at 0 c (WWH Aqu	0 0 RM 4.8 (PH 0 uatic Life Us 0 0 H Existing U	e - Existing	H. Urb (Cat); H. Urb (Buff); g Use) QHEI; Substr; Channel; H. Urb (Cat); H. Urb (Buff); Chloride; BOD; TDS; pH; Cond; H. Urb (Cat); H. Urb (Buff); QHEI Dr TDS; H. Urb (Cat); H. Urb (Buff); Chloride; TDS; Cond; H. Urb (Cat); H. Urb (Buff); H. Urb (Cat);	; Substr; Channel; TKN; Org. Enric y - no samples Chloride; Cond; Chloride; TDS;	Channel; TKN; Org. Enrich; Channel; Org. Enrich; Copper QHEI; Channel; Cond; Org Enrich Channel; Cond; Org Enrich Channel; Org Enrich
LM80 LM81 LM85 LM84 LM86 LM86 LM87	0.00/0.80 0.10/0.20 2.30/2.30 2.00/1.50 0.50/0.60 2.40/2.70 1.90/2.60	14.6 1.20 1.42 0.29 1.31 1.99 0.22 0.45	PHW2 PHW2 PHW1 WWH WWH WWH	26* 12 12 12 22* 28* 32* 32*	NA NA NA NA NA NA NA NA	P F F MG G	PHW2 PHW2 PHW1 Non Non Partial Partial	68.8 34.5 62.5 65.0 56.5 61.0	5 5 5 5	5 4	1 1 1 1 1 1 1	6 4 4 4	0.7 Dry - nc 4.0 5.6 5.6	6.8 Unna 6.2 5.3 7.2 7.8 7.1	1.8 med Tr 5.4 East Fo 6 (HHEI 1.4 1.6	Nutrients ibutary to Dud PHW2 PHW2 PHW2 ork Duck Creek only) Nutrients Nutrients Little Duck C Nutrients Nutrients	4 ck Creek at 0 c (WWH Aque 5 5 Creek (WWI 3 3	0 0 RM 4.8 (PH 0 uatic Life Us 0 0 H Existing U	e - Existing	H. Urb (Cat); H. Urb (Buff); g Use) QHEI; Substr; Channel; H. Urb (Cat); H. Urb (Buff); Chloride; BOD; TDS; pH; Cond; H. Urb (Cat); H. Urb (Buff); QHEI DT TDS; H. Urb (Cat); H. Urb (Buff); Chloride; TDS; Cond; H. Urb (Cat); H. Urb (Buff); H. Urb (Cat); H. Urb (Cat);	; Substr; Channel; TKN; Org. Enric y - no samples Chloride; Cond; Chloride; TDS; Chloride; TDS;	Channel; TKN; Org. Enrich; Channel; Org. Enrich; Copper QHEI; Channel; Cond; Org Enrich Channel; Cond; Org Enrich
LM80 LM81 LM85 LM84 LM86 LM86 LM87	0.00/0.80 0.10/0.20 2.30/2.30 2.00/1.50 0.50/0.60 2.40/2.70 1.90/2.60 1.00/2.30	1.46 1.20 1.42 0.29 1.31 1.99 0.22 0.45 0.55	PHW2 PHW2 PHW1 WWH WWH WWH WWH	26* 12 12 12 22* 28* 32* 32*	NA	P F F MG G	PHW2 PHW2 PHW1 Non Non Partial Partial Partial	68.8 34.5 62.5 65.0 56.5 61.0 61.0	5 5 5 5	5 4 5 4	1 1 1 1 1 1 1	6 4 4 4	5.0 0.7 Dry - nc 4.0 5.6 5.6 5.6 5.9 3.8	6.8 Unna 6.2 5.3 7.2 7.8 7.1 8.3 3.8	1.8 med Tr 5.4 East Fo 5 (HHEI 1.4 1.6 2.2 1.5 0.0	Nutrients ibutary to Dud PHW2 PHW2 PHW2 ork Duck Creek only) Nutrients Nutrients Little Duck C Nutrients Nutrients Nutrients Nutrients Nutrients Nutrients	4 ck Creek at 0 c (WWH Aqu 5 5 Creek (WWI 3 3 4	0 0 RM 4.8 (PH 0 uatic Life Us 0 0 H Existing U 0 0	e - Existing	H. Urb (Cat); H. Urb (Buff); g Use) QHEI; Substr; Channel; H. Urb (Cat); H. Urb (Buff); Chloride; BOD; TDS; pH; Cond; H. Urb (Cat); H. Urb (Buff); QHEI DT TDS; H. Urb (Cat); H. Urb (Buff); Chloride; TDS; Cond; H. Urb (Cat); H. Urb (Buff); H. Urb (Cat); H. Urb (Cat); H. Urb (Cat); H. Urb (Buff); H. Urb (Cat); H. Urb (Buff); H. Urb (Cat); H. Urb (Buff);	; Substr; Channel; TKN; Org. Enric y - no samples Chloride; Cond; Chloride; TDS; Chloride; TDS; Chloride; TDS; Chloride; TDS; Cond;	Channel; TKN; Org. Enrich; Channel; Org. Enrich; Copper QHEI; Channel; Cond; Org Enrich Channel; Cond; Org Enrich Channel; Org Enrich
LM80 LM81 LM85 LM84 LM86 LM87 LM90 LM92	0.00/0.80 0.10/0.20 2.30/2.30 2.00/1.50 0.50/0.60 2.40/2.70 1.90/2.60 1.00/2.30 0.49/0.49	1.20 1.42 0.29 1.31 1.99 0.22 0.45 0.55 1.68	PHW2 PHW2 PHW1 WWH WWH WWH WWH	26* 12 12 22* 28* 32* 32* 32* 12*	NA	P F F MG G	PHW2 PHW2 PHW1 Non Non Partial Partial Ponn	68.8 34.5 62.5 65.0 56.5 61.0 66.5	5 5 5 5 8	5 4 5 4	1 1 1 1 1 1 1	6 4 4 4	5.0 0.7 Dry - nc 4.0 5.6 5.6 5.6 5.9 3.8	6.8 Unna 6.2 5.3 7.2 7.8 7.1 8.3 3.8 Unname	1.8 med Tr 5.4 East Fo 5 (HHEI 1.4 1.6 2.2 1.5 0.0 d Tribut	Nutrients ibutary to Dud PHW2 PHW2 PHW2 ork Duck Creek only) Nutrients Nutrients Little Duck C Nutrients Nutrients Nutrients Nutrients Nutrients Nutrients Nutrients Nutrients	4 ck Creek at 0 c (WWH Aqu 5 5 Creek (WWI 3 3 4	0 0 RM 4.8 (PH 0 uatic Life Us 0 0 H Existing U 0 0	e - Existing se) PHW3A Exi	H. Urb (Cat); H. Urb (Buff); g Use) QHEI; Substr; Channel; H. Urb (Cat); H. Urb (Buff); Chloride; BOD; TDS; pH; Cond; H. Urb (Cat); H. Urb (Buff); QHEI DT TDS; H. Urb (Cat); H. Urb (Buff); Chloride; TDS; Cond; H. Urb (Cat); H. Urb (Buff); H. Urb (Cat); H. Urb (Cat); H. Urb (Cat); H. Urb (Buff); Isting Use)	; Substr; Channel; TKN; Org. Enric y - no samples Chloride; Cond; Chloride; TDS; Chloride; TDS; Chloride; TDS; Chloride; TDS; Cond;	Channel; TKN; Org. Enrich; Channel; Org. Enrich; Copper QHEI; Channel; Cond; Org Enrich Channel; Cond; Org Enrich Channel; Org Enrich
LM80 LM81 LM85 LM84 LM86 LM87 LM90 LM92	0.00/0.80 0.10/0.20 2.30/2.30 2.00/1.50 0.50/0.60 2.40/2.70 1.90/2.60 1.00/2.30 0.49/0.49	1.20 1.42 0.29 1.31 1.99 0.22 0.45 0.55 1.68	PHW2 PHW2 PHW1 WWH WWH WWH WWH	26* 12 12 12 22* 28* 32* 32*	NA	P F F MG G	PHW2 PHW2 PHW1 Non Non Partial Partial Partial	68.8 34.5 62.5 65.0 56.5 61.0 61.0	5 5 5 5	5 4 5 4	1 1 1 1 1 1 1	6 4 4 4	5.0 0.7 Dry - nc 4.0 5.6 5.6 5.6 5.9 3.8	6.8 Unna 6.2 5.3 7.2 7.8 7.1 8.3 3.8	1.8 med Tr 5.4 East Fo 5 (HHEI 1.4 1.6 2.2 1.5 2.5 0.0 I Tribut 2.9	Nutrients ibutary to Dud PHW2 PHW2 PHW2 onk Duck Creek only) Nutrients Nutrients Little Duck C Nutrients PHW2	4 ck Creek at 0 c (WWH Aqu 5 5 Creek (WWI 3 3 4 3 uck Creek a	0 0 RM 4.8 (PH 0 uatic Life Us 0 0 H Existing U 0 0 0	e - Existing se) PHW3A Exi	H. Urb (Cat); H. Urb (Buff); g Use) QHEI; Substr; Channel; H. Urb (Cat); H. Urb (Buff); Chloride; BOD; TDS; pH; Cond; H. Urb (Cat); H. Urb (Buff); QHEI DT TDS; H. Urb (Cat); H. Urb (Buff); Chloride; TDS; Cond; H. Urb (Cat); H. Urb (Buff); H. Urb (Cat); H. Urb (Cat); H. Urb (Cat); H. Urb (Buff); H. Urb (Cat); H. Urb (Buff); H. Urb (Cat); H. Urb (Buff);	; Substr; Channel; TKN; Org. Enric y - no samples Chloride; Cond; Chloride; TDS; Chloride; TDS; Chloride; TDS; Chloride; TDS; Cond;	Channel; TKN; Org. Enrich; Channel; Org. Enrich; Copper QHEI; Channel; Cond; Org Enrich Channel; Cond; Org Enrich Channel; Org Enrich
LM80 LM81 LM85 LM84 LM86 LM87 LM90 LM92 LM82	0.00/0.80 0.10/0.20 2.30/2.30 2.00/1.50 0.50/0.60 2.40/2.70 1.90/2.60 1.00/2.30 0.49/0.49	14.6 1.20 1.42 0.29 1.31 1.99 0.22 0.45 0.55 1.68	PHW2 PHW2 PHW1 WWH WWH WWH WWH PHW3A	26* 12 12 22* 28* 32* 32* 32* 12*	NA	P F F G G G	PHW2 PHW1 Non Non Partial Partial Partial Pontial Pontial Pontial Pontial Pontial Pontial Pontial	68.8 34.5 62.5 65.0 56.5 61.0 61.0 66.5 50.5	5 5 5 5 8	3 6 5 4 5 5 4 2	1 1 1 1 1 1 0	6 4 4 4 4 2	5.0 0.7 Dry - no 4.0 5.6 5.6 5.6 5.9 3.8	6.8 Unna 6.2 5.3 7.2 7.8 7.1 8.3 3.8 Unnamed	1.8 med Tr 5.4 East Fo s (HHEI 1.4 1.6 2.2 1.5 2.5 0.0 d Tribut 2.9 Clo	Nutrients ibutary to Duc PHW2 PHW2 PHW2 ork Duck Creek only) Nutrients Nutrients Little Duck C Nutrients Nutrients Nutrients Nutrients Nutrients PHW2 ugh Creek (W	4 ck Creek at 0 ck (WWH Aqu 5 5 5 Creek (WWI 3 4 3 uck Creek a	0 0 RM 4.8 (PH 0 uatic Life Us 0 0 H Existing U 0 0 0	e - Existing se) PHW3A Exi	H. Urb (Cat); H. Urb (Buff); g Use) QHEI; Substr; Channel; H. Urb (Cat); H. Urb (Buff); Chloride; BOD; TDS; pH; Cond; H. Urb (Cat); H. Urb (Buff); QHEI TDS; H. Urb (Cat); H. Urb (Buff); Chloride; TDS; Cond; H. Urb (Cat); H. Urb (Buff); H. Urb (Cat); H. Urb (Cat); H. Urb (Cat); H. Urb (Buff); H. Urb (Cat); H. Urb (Buff); H. Urb (Cat); H. Urb (Buff); isting Use) H. Urb (Cat); TDS; QHEI; Channel; TKN; Chloride; Cond;	; Substr; Channel; TKN; Org. Enric y - no samples Chloride; Cond; Chloride; TDS; Chloride; TDS; Chloride; TDS; Chloride; TDS; Chloride; TDS;	channel; TKN; Org. Enrich; Channel; Org. Enrich; Copper QHEI; Channel; Cond; Org Enrich Channel; Cond; Org Enrich Channel; Org Enrich Chloride; Cond;
LM80 LM81 LM85 LM84 LM86 LM87 LM90 LM92 LM82	0.00/0.80 0.10/0.20 2.30/2.30 2.00/1.50 0.50/0.60 2.40/2.70 1.90/2.60 1.00/2.30 0.49/0.49 0.20/0.10	14.6 1.20 1.42 0.29 1.31 1.99 0.22 0.45 0.55 1.68 0.59	PHW1 WWH WWH WWH WWH WWH WWH WWH WWH WWH	26* 12 12 12 22* 28* 32* 32* 32* 32* 32* 32* 32* 32*	NA N	P F F MG G G MG	PHW2 PHW2 PHW1 Non Non Partial Partial Partial PHW3A	68.8 34.5 62.5 65.0 56.5 61.0 66.5 50.5	5 5 5 8 4	3 6 6 5 4 5 5 4 2	1 1 1 1 1 1 0 0	8.4 6 4 4 4 4 2	0.7 Dry - no 4.0 5.6 5.6 5.6 5.9 3.8	6.8 Unna 6.2 9 samples 5.3 7.2 7.8 7.1 8.3 3.8 Unnamed	1.8 med Tr 5.4 East Fo s (HHEI 1.4 1.6 2.2 1.5 2.5 0.0 d Tribut 2.9 Clo 0.4	Nutrients ibutary to Duc PHW2 PHW2 PHW2 ork Duck Creek only) Nutrients Nutrients Little Duck C Nutrients Nutrients Nutrients Nutrients Nutrients PHW2 ugh Creek (W Acceptable	4 ck Creek at 0 ck (WWH Aqu 5 5 5 Creek (WWI 3 4 3 uck Creek a 0 WH Aquatic	0 0 RM 4.8 (PH 0 uatic Life Us 0 0 H Existing U 0 0 0 t RM 4.42 (0 c Life Use – I	e - Existing se) PHW3A Exi	H. Urb (Cat); H. Urb (Buff); g Use) QHEI; Substr; Channel; H. Urb (Cat); H. Urb (Buff); Chloride; BOD; TDS; pH; Cond; H. Urb (Cat); H. Urb (Buff); QHEI TDS; H. Urb (Cat); H. Urb (Buff); Chloride; TDS; Cond; H. Urb (Cat); H. Urb (Buff); H. Urb (Cat); H. Urb (Cat); H. Urb (Cat); H. Urb (Buff); H. Urb (Cat); H. Urb (Buff); H. Urb (Cat); H. Urb (Buff); isting Use) H. Urb (Cat); TDS; QHEI; Channel; TKN; Chloride; Cond; Chloride; pH; H. Urb (Cat); H. Urb (Buff);	; Substr; Channel; TKN; Org. Enric y - no samples Chloride; Cond; Chloride; TDS; Chloride; TDS; Chloride; TDS; Chloride; TDS; Cond; TDS;	Channel; TKN; Org. Enrich; Channel; Org. Enrich; Copper QHEI; Channel; Cond; Org Enrich Channel; Cond; Org Enrich Channel; Org Enrich
LM80 LM81 LM85 LM84 LM86 LM87 LM90 LM92 LM82	0.00/0.80 0.10/0.20 2.30/2.30 2.00/1.50 0.50/0.60 2.40/2.70 1.90/2.60 1.00/2.30 0.49/0.49	14.6 1.20 1.42 0.29 1.31 1.99 0.22 0.45 0.55 1.68	PHW2 PHW2 PHW1 WWH WWH WWH WWH PHW3A	26* 12 12 22* 28* 32* 32* 32* 12*	NA	P F F G G G	PHW2 PHW1 Non Non Partial Partial Partial Pontial Pontial Pontial Pontial Pontial Pontial Pontial	68.8 34.5 62.5 65.0 56.5 61.0 61.0 66.5 50.5	5 5 5 8 4	3 6 6 5 4 5 5 4 2	1 1 1 1 1 1 0	8.4 6 4 4 4 4 4 2	5.0 0.7 Dry - no 4.0 5.6 5.6 5.6 5.9 3.8	6.8 Unna 6.2 5.3 7.2 7.8 7.1 8.3 3.8 Unnamed	1.8 med Tr 5.4 East Fo s (HHEI 1.4 1.6 2.2 1.5 2.5 0.0 d Tribut 2.9 Clo	Nutrients ibutary to Duc PHW2 PHW2 PHW2 ork Duck Creek only) Nutrients Nutrients Little Duck C Nutrients Nutrients Nutrients Nutrients Nutrients PHW2 ugh Creek (W	4 ck Creek at 0 ck (WWH Aqu 5 5 5 Creek (WWI 3 4 3 uck Creek a	0 0 RM 4.8 (PH 0 uatic Life Us 0 0 H Existing U 0 0 0	e - Existing se) PHW3A Exi	H. Urb (Cat); H. Urb (Buff); g Use) QHEI; Substr; Channel; H. Urb (Cat); H. Urb (Buff); Chloride; BOD; TDS; pH; Cond; H. Urb (Cat); H. Urb (Buff); QHEI TDS; H. Urb (Cat); H. Urb (Buff); Chloride; TDS; Cond; H. Urb (Cat); H. Urb (Buff); H. Urb (Cat); H. Urb (Cat); H. Urb (Cat); H. Urb (Buff); H. Urb (Cat); H. Urb (Buff); H. Urb (Cat); H. Urb (Buff); isting Use) H. Urb (Cat); TDS; QHEI; Channel; TKN; Chloride; Cond;	; Substr; Channel; TKN; Org. Enric y - no samples Chloride; Cond; Chloride; TDS; Chloride; TDS; Chloride; TDS; Chloride; TDS; Cond; TDS;	channel; TKN; Org. Enrich; Channel; Org. Enrich; Copper QHEI; Channel; Cond; Org Enrich Channel; Cond; Org Enrich Channel; Org Enrich Chloride; Cond;
LM80 LM81 LM85 LM84 LM86 LM87 LM90 LM92 LM82	0.00/0.80 0.10/0.20 2.30/2.30 2.00/1.50 0.50/0.60 2.40/2.70 1.90/2.60 1.00/2.30 0.49/0.49 0.20/0.10	14.6 1.20 1.42 0.29 1.31 1.99 0.22 0.45 0.55 1.68 0.59 1.95 7.81 Criteria – Ir	PHW2 PHW2 PHW1 WWH WWH WWH WWH WWH WWH WWH WWH WWH	26* 12 12 12 28* 32* 32* 32* 32* 32* 32* 32* 32* 32* 32	NA N	P F F MG G G MG	PHW2 PHW2 PHW1 Non Non Partial Partial Partial PHW3A	68.8 34.5 62.5 65.0 56.5 61.0 66.5 50.5 59.0 59.5	7 2 5 5 5 8 4 4	3 6 5 4 5 5 4 2 7	1 1 1 1 1 1 0	8.4 6 4 4 4 4 4 7 0 4 4 5	0.7 Dry - no 4.0 5.6 5.6 5.6 5.9 3.8 3.0	6.8 Unna 6.2 sample 5.3 7.2 7.8 7.1 8.3 3.8 Unnamee 6.0 7.2 6.1	1.8 med Tr 5.4 East Fo 6 (HHEI 1.4 1.6 2.2 1.5 2.5 0.0 11 Tribut 2.9 Clo 0.4 0.1	Nutrients ibutary to Duc PHW2 PHW2 PHW2 only) Nutrients Nutrients Little Duck C Nutrients Nutrients Nutrients Vitients Nutrients Nutrients Nutrients Nutrients Nutrients Autrients Autrien	4 ck Creek at 0 ck (WWH Aquelian 5 5 5 Creek (WWI 3 3 4 3 uck Creek a 0 WH Aquatic 4 0	0 0 RM 4.8 (PH 0 uatic Life Us 0 0 H Existing U 0 0 0 tr RM 4.42 (0 c Life Use - I	e - Existing	H. Urb (Cat); H. Urb (Buff); g Use) QHEI; Substr; Channel; H. Urb (Cat); H. Urb (Buff); Chloride; BOD; TDS; pH; Cond; H. Urb (Cat); H. Urb (Buff); QHEI TDS; H. Urb (Cat); H. Urb (Buff); Chloride; TDS; Cond; H. Urb (Cat); H. Urb (Buff); H. Urb (Cat); H. Urb (Cat); H. Urb (Cat); H. Urb (Buff); H. Urb (Cat); H. Urb (Buff); H. Urb (Cat); H. Urb (Buff); isting Use) H. Urb (Cat); TDS; QHEI; Channel; TKN; Chloride; Cond; Chloride; pH; H. Urb (Cat); H. Urb (Buff);	; Substr; Channel; TKN; Org. Enric y - no samples Chloride; Cond; Chloride; TDS; Chloride; TDS; Chloride; TDS; Chloride; TDS; Cond; TDS;	channel; TKN; Org. Enrich; Channel; Org. Enrich; Copper QHEI; Channel; Cond; Org Enrich Channel; Cond; Org Enrich Channel; Org Enrich Chloride; Cond;
LM80 LM81 LM85 LM84 LM86 LM87 LM90 LM92 LM92 LM92 LM92	0.00/0.80 0.10/0.20 2.30/2.30 2.00/1.50 0.50/0.60 2.40/2.70 1.90/2.60 1.00/2.30 0.49/0.49 0.20/0.10 3.20/3.20 0.60/0.40 Biological C Index	14.6 1.20 1.42 0.29 1.31 1.99 0.22 0.45 0.55 1.68 0.59 1.95 7.81 Criteria – Ir	PHW2 PHW2 PHW1 WWH WWH WWH WWH WWH WWH WWH WWH WWH	26* 12 12 12 22* 28* 32* 32* 32* 12* 28 30* 38 ^{ns} 38 ^{ns} aau Ecoreg	NA N	P F F MG G G MG	PHW2 PHW2 PHW1 Non Non Partial Partial Partial PHW3A	68.8 34.5 62.5 65.0 56.5 61.0 66.5 50.5 59.0 59.5 >75 60-74	5 5 5 5 8 4 5 5 5	5 4 5 5 4 2 7	1 1 1 1 1 1 0 0 0 0 0 <5	8.4 6 4 4 4 4 4 7 0 4 5 <15	5.0 Dry - nc 4.0 5.6 5.6 5.6 5.9 3.0 6.8 6.1	6.8 Unna 6.2 5 samples 5.3 7.2 7.8 7.1 8.3 3.8 Unnamed 6.0 7.2 6.1	1.8 med Tr 5.4 East Fo 6 (HHEI 1.4 1.6 2.2 1.5 0.0 11 Tribut 2.9 0.4 0.1	PHW2 PHW2 PHW2 PHW2 PHW2 PHW2 PHW2 PHW2	4 ck Creek at 0 ck (WWH Aqu 5 5 5 Creek (WWH 3 3 4 3 uck Creek a 0 WH Aquatic 4 0 1	0 0 RM 4.8 (PH 0 uatic Life Us 0 0 H Existing U 0 0 0 tt RM 4.42 (0 c Life Use - I	e - Existing	H. Urb (Cat); H. Urb (Buff); g Use) QHEI; Substr; Channel; H. Urb (Cat); H. Urb (Buff); Chloride; BOD; TDS; pH; Cond; H. Urb (Cat); H. Urb (Buff); QHEI TDS; H. Urb (Cat); H. Urb (Buff); Chloride; TDS; Cond; H. Urb (Cat); H. Urb (Buff); H. Urb (Cat); H. Urb (Cat); H. Urb (Cat); H. Urb (Buff); H. Urb (Cat); H. Urb (Buff); H. Urb (Cat); H. Urb (Buff); isting Use) H. Urb (Cat); TDS; QHEI; Channel; TKN; Chloride; Cond; Chloride; pH; H. Urb (Cat); H. Urb (Buff);	; Substr; Channel; TKN; Org. Enric y - no samples Chloride; Cond; Chloride; TDS; Chloride; TDS; Chloride; TDS; Chloride; TDS; Cond; TDS;	channel; TKN; Org. Enrich; Channel; Org. Enrich; Copper QHEI; Channel; Cond; Org Enrich Channel; Cond; Org Enrich Channel; Org Enrich Chloride; Cond;
LM80 LM81 LM85 LM84 LM86 LM87 LM90 LM92 LM92 LM92 LM92	0.00/0.80 0.10/0.20 2.30/2.30 2.00/1.50 0.50/0.60 2.40/2.70 1.90/2.60 1.00/2.30 0.49/0.49 0.20/0.10 3.20/3.20 0.60/0.40 Biological C Index IBI – Boat	14.6 1.20 1.42 0.29 1.31 1.99 0.22 0.45 0.55 1.68 0.59 1.95 7.81 Criteria-Irr	PHW2 PHW2 PHW1 WWH WWH WWH WWH WWH WWH WWH WWH WWH	26* 12 12 12 22* 28* 32* 32* 32* 28 30* 38* 38* 38* 38* 38* 38* 38* 38*	NA N	P F F MG G G MG	PHW2 PHW2 PHW1 Non Non Partial Partial Partial PHW3A	68.8 34.5 62.5 65.0 56.5 61.0 66.5 50.5 59.0 59.5 >75 60.74 46.59	7 2 5 5 5 5 8 4 5 5 5 8	5 4 5 5 4 2 7	1 1 1 1 1 1 1 0 0 0 0 0 0 0	8.4 6 4 4 4 4 4 4 5 15 215	5.0 Dry - nc 4.0 5.6 5.6 5.6 5.9 3.0 6.8 6.1	6.8 Unna 6.2 9 samples 5.3 7.2 7.8 7.1 8.3 3.8 Unname 6.0 7.2 6.1	1.8 med Tr 5.4 East Fo 6 (HHEI 1.4 1.6 2.2 1.5 0.0 11 Tribut 2.9 Clo 0.4 0.1	PHW2 PHW2 PHW2 PHW2 PHW2 PHW2 PHW2 PHW2	4 ck Creek at 0 ck (WWH Aqu 5 5 5 Creek (WWI 3 3 4 3 uck Creek a 0 WH Aquation 1 1	0 0 RM 4.8 (PH 0 uatic Life Us 0 0 H Existing U 0 0 0 tt RM 4.42 (0 c Life Use - H 0 0	e - Existing; se) PHW3A Exi Existing) 0 0 <4 <7	H. Urb (Cat); H. Urb (Buff); g Use) QHEI; Substr; Channel; H. Urb (Cat); H. Urb (Buff); Chloride; BOD; TDS; pH; Cond; H. Urb (Cat); H. Urb (Buff); QHEI TDS; H. Urb (Cat); H. Urb (Buff); Chloride; TDS; Cond; H. Urb (Cat); H. Urb (Buff); H. Urb (Cat); H. Urb (Cat); H. Urb (Cat); H. Urb (Buff); H. Urb (Cat); H. Urb (Buff); H. Urb (Cat); H. Urb (Buff); isting Use) H. Urb (Cat); TDS; QHEI; Channel; TKN; Chloride; Cond; Chloride; pH; H. Urb (Cat); H. Urb (Buff);	; Substr; Channel; TKN; Org. Enric y - no samples Chloride; Cond; Chloride; TDS; Chloride; TDS; Chloride; TDS; Chloride; TDS; Cond; TDS;	channel; TKN; Org. Enrich; Channel; Org. Enrich; Copper QHEI; Channel; Cond; Org Enrich Channel; Cond; Org Enrich Channel; Org Enrich Chloride; Cond;
LM80 LM81 LM85 LM84 LM86 LM87 LM90 LM92 LM92 LM92	0.00/0.80 0.10/0.20 2.30/2.30 2.00/1.50 0.50/0.60 2.40/2.70 1.90/2.60 1.00/2.30 0.49/0.49 0.20/0.10 3.20/3.20 0.60/0.40 Biological Clindex IBI – Boat IBI – Boat IBI – Wading	14.6 1.20 1.42 0.29 1.31 1.99 0.22 0.45 0.55 1.68 0.59 1.95 7.81 Criteria - Ir EWH 48 50	PHW2 PHW2 PHW1 WWH WWH WWH WWH WWH WWH WWH WWH WWH	26* 12 12 12 22* 28* 32* 32* 32* 32* 32* 38* 30* 38* 38* 38* 38* 38* 38* 38* 38* 38*	NA N	P F F MG G G MG	PHW2 PHW2 PHW1 Non Non Partial Partial Partial PHW3A	68.8 34.5 62.5 65.0 56.5 61.0 66.5 50.5 59.0 59.5 >75 60-74	7 2 5 5 5 5 8 4 4 5 5 5 8	5 4 5 5 4 2 7	1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 25 20 20 23 23 23 23 23 23 23 23 23 24 25 25 26 26 26 26 26 27 26 27 26 26 26 26 26 26 26 26 26 26 26 26 26	6 4 4 4 4 4 4 5 5 15 235	5.0 Dry - nc 4.0 5.6 5.6 5.6 5.9 3.0 6.8 6.1	6.8 Unna 6.2 5 samples 5.3 7.2 7.8 7.1 8.3 3.8 Unnamed 6.0 7.2 6.1	1.8 med Tr 5.4 East Fo 6 (HHEI 1.4 1.6 2.2 1.5 0.0 11 Tribut 2.9 0.4 0.1	PHW2 PHW2 PHW2 PHW2 PHW2 PHW2 PHW2 PHW2	4 ck Creek at 0 ck (WWH Aqu 5 5 5 Creek (WWH 3 3 4 3 uck Creek a 0 WH Aquatic 4 0 1	0 0 RM 4.8 (PH 0 uatic Life Us 0 0 H Existing U 0 0 0 tt RM 4.42 (0 c Life Use - I	e - Existing	H. Urb (Cat); H. Urb (Buff); g Use) QHEI; Substr; Channel; H. Urb (Cat); H. Urb (Buff); Chloride; BOD; TDS; pH; Cond; H. Urb (Cat); H. Urb (Buff); QHEI TDS; H. Urb (Cat); H. Urb (Buff); Chloride; TDS; Cond; H. Urb (Cat); H. Urb (Buff); H. Urb (Cat); H. Urb (Cat); H. Urb (Cat); H. Urb (Buff); H. Urb (Cat); H. Urb (Buff); H. Urb (Cat); H. Urb (Buff); isting Use) H. Urb (Cat); TDS; QHEI; Channel; TKN; Chloride; Cond; Chloride; pH; H. Urb (Cat); H. Urb (Buff);	; Substr; Channel; TKN; Org. Enric y - no samples Chloride; Cond; Chloride; TDS; Chloride; TDS; Chloride; TDS; Chloride; TDS; Cond; TDS;	channel; TKN; Org. Enrich; Channel; Org. Enrich; Copper QHEI; Channel; Cond; Org Enrich Channel; Cond; Org Enrich Channel; Org Enrich Chloride; Cond;
LM80 LM81 LM85 LM84 LM86 LM87 LM90 LM92 LM92 LM92	0.00/0.80 0.10/0.20 2.30/2.30 2.00/1.50 0.50/0.60 2.40/2.70 1.90/2.60 1.00/2.30 0.49/0.49 0.20/0.10 3.20/3.20 0.60/0.40 Biological Clindex IBI – Boat IBI – Wading IBI - HW	14.6 1.20 1.42 0.29 1.31 1.99 0.22 0.45 0.55 1.68 0.59 1.95 7.81 Criteria – Irr EWH 48 50 50	PHW2 PHW2 PHW1 WWH WWH WWH WWH WWH WWH WWH WWH WWH	26* 12 12 12 28* 32* 32* 32* 32* 32* 32* 28 28	NA N	P F F MG G G MG	PHW2 PHW2 PHW1 Non Non Partial Partial Partial PHW3A	68.8 34.5 62.5 65.0 56.5 61.0 66.5 50.5 59.0 59.5 >75 60.74 46.59	7 2 5 5 5 5 8 4 4 5 5 5 8	5 4 5 5 4 2 7	1 1 1 1 1 1 1 0 0 0 0 0 0 0	8.4 6 4 4 4 4 4 4 5 15 215	5.0 Dry - nc 4.0 5.6 5.6 5.6 5.9 3.0 6.8 6.1	6.8 Unna 6.2 9 samples 5.3 7.2 7.8 7.1 8.3 3.8 Unname 6.0 7.2 6.1	1.8 med Tr 5.4 East Fo 6 (HHEI 1.4 1.6 2.2 1.5 0.0 11 Tribut 2.9 Clo 0.4 0.1	PHW2 PHW2 PHW2 PHW2 PHW2 PHW2 PHW2 PHW2	4 ck Creek at 0 ck (WWH Aqu 5 5 5 Creek (WWI 3 3 4 3 uck Creek a 0 WH Aquation 1 1	0 0 RM 4.8 (PH 0 uatic Life Us 0 0 H Existing U 0 0 0 tt RM 4.42 (0 c Life Use - H 0 0	e - Existing; se) PHW3A Exi Existing) 0 0 <4 <7	H. Urb (Cat); H. Urb (Buff); g Use) QHEI; Substr; Channel; H. Urb (Cat); H. Urb (Buff); Chloride; BOD; TDS; pH; Cond; H. Urb (Cat); H. Urb (Buff); QHEI TDS; H. Urb (Cat); H. Urb (Buff); Chloride; TDS; Cond; H. Urb (Cat); H. Urb (Buff); H. Urb (Cat); H. Urb (Cat); H. Urb (Cat); H. Urb (Buff); H. Urb (Cat); H. Urb (Buff); H. Urb (Cat); H. Urb (Buff); isting Use) H. Urb (Cat); TDS; QHEI; Channel; TKN; Chloride; Cond; Chloride; pH; H. Urb (Cat); H. Urb (Buff);	; Substr; Channel; TKN; Org. Enric y - no samples Chloride; Cond; Chloride; TDS; Chloride; TDS; Chloride; TDS; Chloride; TDS; Cond; TDS;	channel; TKN; Org. Enrich; Channel; Org. Enrich; Copper QHEI; Channel; Cond; Org Enrich Channel; Cond; Org Enrich Channel; Org Enrich Chloride; Cond;
LM80 LM81 LM85 LM84 LM86 LM86 LM87 LM90 LM92 LM92 LM92	0.00/0.80 0.10/0.20 2.30/2.30 2.00/1.50 0.50/0.60 2.40/2.70 1.90/2.60 1.00/2.30 0.49/0.49 0.20/0.10 3.20/3.20 0.60/0.40 Biological Clindex IBI – Boat IBI – Boat IBI – Wading	14.6 1.20 1.42 0.29 1.31 1.99 0.22 0.45 0.55 1.68 0.59 1.95 7.81 Criteria - Ir EWH 48 50	PHW2 PHW2 PHW1 WWH WWH WWH WWH WWH WWH WWH WWH WWH	26* 12 12 12 22* 28* 32* 32* 32* 32* 32* 38* 30* 38* 38* 38* 38* 38* 38* 38* 38* 38*	NA N	P F F MG G G MG	PHW2 PHW2 PHW1 Non Non Partial Partial Partial PHW3A	68.8 34.5 62.5 65.0 56.5 61.0 66.5 50.5 59.0 59.5 >75 60.74 46.59	7 2 5 5 5 5 8 4 4 5 5 5 8	5 4 5 5 4 2 7	1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 25 20 20 23 23 23 23 23 23 23 23 23 24 25 25 26 26 26 26 26 27 26 27 26 26 26 26 26 26 26 26 26 26 26 26 26	6 4 4 4 4 4 4 5 5 15 235	5.0 Dry - nc 4.0 5.6 5.6 5.6 5.9 3.0 6.8 6.1	6.8 Unna 6.2 9 samples 5.3 7.2 7.8 7.1 8.3 3.8 Unname 6.0 7.2 6.1	1.8 med Tr 5.4 East Fo 6 (HHEI 1.4 1.6 2.2 1.5 0.0 11 Tribut 2.9 Clo 0.4 0.1	PHW2 PHW2 PHW2 PHW2 PHW2 PHW2 PHW2 PHW2	4 ck Creek at 0 ck (WWH Aqu 5 5 5 Creek (WWI 3 3 4 3 uck Creek a 0 WH Aquation 1 1	0 0 RM 4.8 (PH 0 uatic Life Us 0 0 H Existing U 0 0 0 tt RM 4.42 (0 c Life Use - H 0 0	e - Existing	H. Urb (Cat); H. Urb (Buff); g Use) QHEI; Substr; Channel; H. Urb (Cat); H. Urb (Buff); Chloride; BOD; TDS; pH; Cond; H. Urb (Cat); H. Urb (Buff); QHEI TDS; H. Urb (Cat); H. Urb (Buff); Chloride; TDS; Cond; H. Urb (Cat); H. Urb (Buff); H. Urb (Cat); H. Urb (Cat); H. Urb (Cat); H. Urb (Buff); H. Urb (Cat); H. Urb (Buff); H. Urb (Cat); H. Urb (Buff); isting Use) H. Urb (Cat); TDS; QHEI; Channel; TKN; Chloride; Cond; Chloride; pH; H. Urb (Cat); H. Urb (Buff);	; Substr; Channel; TKN; Org. Enric y - no samples Chloride; Cond; Chloride; TDS; Chloride; TDS; Chloride; TDS; Chloride; TDS; Cond; TDS;	channel; TKN; Org. Enrich; Channel; Org. Enrich; Copper QHEI; Channel; Cond; Org Enrich Channel; Cond; Org Enrich Channel; Org Enrich Chloride; Cond;

The delineation of causes and sources was based on integrating and synthesizing the preceding analyses of categorical and parameter-specific stressor threshold exceedances. The most influential of these in 2022 are included in Table 26 along with the fish and macroinvertebrate index scores and other indicators of stress and response. Habitat alteration is represented by the QHEI and the QHEI modified and good attributes, D.O. includes the minimums measured by Datasondes, the effect of nutrient enrichment by the diel D.O. swing narrative, the nutrient enrichment effect status, the IPS chemical threshold exceedances for water and sediment, and biological response signatures for organic enrichment and toxic tolerant indicators.

These were accounted for in the Duck Creek subwatershed and the Sycamore Creek, Polk Run, and Clough Creek partial subwatersheds separately and are the basis for Figure 4 in the Executive Summary. The Little Miami River mainstem had a very brief reach of impairment that was caused by a combination of organic enrichment and toxicity emanating from Duck Creek as shown in the Synthesis table. The predominant causal categories in the Duck Creek subwatershed in 2022 were as follows:

- **Urban Land Uses** (19 observations; weighted frequency of 21.1%) includes urban land use in the HUC12 catchment and in the 500-meter buffer expressed as the percent of that area;
- Habitat Related (29 observations; weighted frequency of 32.2%) any high influence or moderate influence modified attribute in the QHEI attributes matrix (Table 20) or a fair, poor, or very poor QHEI score;
- **Ionic Strength/Demand** (28 observations; weighted frequency of 31.1%) any exceedance of a fair, poor, or very poor threshold for a chloride, total dissolved solids, or specific conductivity parameter;
- **Toxics** (0 observations; weighted frequency of 0%) any exceedance of a sediment metal or PAH TEC or PEC threshold, fair, poor, or very poor ammonia-N, any toxic parameter criteria exceedance, and any toxic response signature in the biological data;
- Organic Enrichment/Low D.O. (7 observations; weighted frequency of 7.8%) any low D.O., fair, poor, or very poor TKN value, or any organic enrichment response signature in the biological data; and
- Nutrient Enrichment/Effects (7 observations; weighted frequency of 7.8%) excessive diel D.O. swing narrative rating, fair, poor, or very poor total phosphorus, nitrate-N, or BOD₅ result.

As expected, the leading causes are directly related to the heavily urbanized characteristics of the Duck Creek subwatershed that include a mix of physical and chemical impacts. The predominant causal categories in the Sycamore Creek, Polk Run, and Clough Creek partial subwatersheds in 2022 were as follows:

Urban Land Uses (4 observations; weighted frequency of 11.4%) – includes urban land use
in the HUC12 catchment and in the 500 meter buffer expressed as the percent of that
area;

- Habitat Related (13 observations; weighted frequency of 37.1%) any high influence or moderate influence modified attribute in the QHEI attributes matrix (Table 20) or a fair, poor, or very poor QHEI score;
- **Ionic Strength/Demand** (8 observations; weighted frequency of 22.9%) any exceedance of a fair, poor, or very poor threshold for a chloride, total dissolved solids, or specific conductivity parameter;
- **Toxics** (1 observations; weighted frequency of 2.9%) any exceedance of a sediment metal or PAH TEC or PEC threshold, fair, poor, or very poor ammonia-N, any toxic parameter criteria exceedance, and any toxic response signature in the biological data;
- Organic Enrichment/Low D.O. (3 observations; weighted frequency of 8.6%) any low D.O., fair, poor, or very poor TKN value, or any organic enrichment response signature in the biological data; and
- Nutrient Enrichment/Effects (6 observations; weighted frequency of 17.1%) excessive diel D.O. swing narrative rating, fair, poor, or very poor total phosphorus, nitrate-N, or BOD₅ result.

The influence of urban related impacts was less than in Duck Creek in these partial subwatersheds, but the influence of habitat alterations and urban pollutants were the two dominant causal categories.

The SW Ohio IPS also offers susceptibility and threat delineations for sites that attain their respective aquatic life use tier. The Little Miami River mainstem was in full attainment of the EWH use at all except the two downstream most sites, LM16A and LM16, in the EWH designated reach. The predominant threat categories in 2022 were as follows:

- **Urban Land Uses** (22 observations) threats include elevated urban land use in the HUC12 catchment and in the 500 meter buffer expressed as the percent of that area;
- Organic Enrichment/Low D.O. (13 observations) threats included low D.O. and elevated BOD₅ and nitrate-N;
- **Ionic Strength/Demand** (5 observations) threats included elevated chloride, total dissolved solids, or specific conductivity;
- Toxics (1 observation) a single threat was in the form of an elevated copper value that
 exceeded the water quality criterion for EWH; and
- **Habitat Related** (0 observations) no threat was posed by deficient or marginal habitat attributes at any of the attaining sites.

REFERENCES

- DeShon, J. D. 1995. Development and application of the invertebrate community index (ICI), pages 217-243. in W.S. Davis and T. Simon (eds.). Biological Assessment and Criteria: Tools for Risk-based Planning and Decision Making. Lewis Publishers, Boca Raton, FL.
- Dufour, A.P. 1977. *Escherichia coli*: The fecal coliform. American Society for Testing and Materials Spec. Publ. 635: 45-58.
- Gammon, J. R., A. Spacie, A., J. L. Hamelink, and R. L. Kaesler. 1981. Role of electrofishing in assessing environmental quality of the Wabash River, in Ecological assessments of effluent impacts on communities of indigenous aquatic organisms, in Bates, J. M. and Weber, C. I., Eds., ASTM STP 730, 307 pp.
- Gammon, J. R. 1973. The effect of thermal inputs on the populations of fish and macroinvertebrates in the Wabash River. Purdue University Water Resources Research Center Technical Report 32. 106 pp.
- Karr, J.R. and C.O. Yoder. 2004. Biological assessment and criteria improve TMDL planning and decision-making. Journal of Environmental Engineering 130(6): 594-604.
- Karr, J. R. 1991. Biological integrity: A long-neglected aspect of water resource management. Ecological Applications 1(1): 66-84.
- Karr, J. R., K. D. Fausch, P. L. Angermier, P. R. Yant, and I. J. Schlosser. 1986. Assessing biological integrity in running waters: a method and its rationale. Illinois Natural History Survey Special Publication 5: 28 pp.
- MacDonald, R.S. Carr, F.D. Calder, E.R. Long, and C.G. Ingersoll. 2000. Development and evaluation of sediment guidelines for Florida coastal waters. Ecotoxicology 5: 253-278.
- Metropolitan Sewer District of Greater Cincinnati (MSDGC). 2011a. Lower Little Miami fact sheet: Project Groundwork. MSDGC, Cincinnati, OH. 3 pp. www.msdgc.org.
- Metropolitan Sewer District of Greater Cincinnati (MSDGC). 2011b. 2010 Sustainability Report: Redefining the Future. MSDGC, Cincinnati, OH. 51 pp. www.msdgc.org.
- Metropolitan Sewer District of Greater Cincinnati (MSDGC). 2011c. Metropolitan Sewer District Of Greater Cincinnati, Division of Industrial Waste Laboratory Section Chemistry Quality Assurance Program For Chemical Analysis. SOP 001 (10/01/01) Revision No. 2 (06/01/11).
- Midwest Biodiversity Institute (MBI). 2018. Biological and Water Quality Assessment of the Little Miami River and Selected Tributaries 2017. Hamilton County, Ohio. Technical

- Report MBI/2018-6-5. Columbus, OH 43221-0561. 79 pp. + appendices. http://www.msdgc.org/initiatives/water quality/index.html.
- Midwest Biodiversity Institute (MBI). 2015. Integrated Prioritization System (IPS)

 Documentation and Atlas of Biological Stressor Relationships for Southwest Ohio.

 Technical Report MBI/2015-12-15. MSD Project Number 10180900. Columbus, OH

 43221-0561. 32 pp. + appendices. http://www.msdgc.org/initiatives/water_quality/index.html.
- Midwest Biodiversity Institute (MBI). 2013. 2012 Biological and Water Quality Study of the Little Miami River and Tributaries 2012 Hamilton County, Ohio. Technical Report MBI/2013-6-8. MSD Project Number 10180900. Columbus, OH 43221-0561. 143 pp. + appendices. http://www.msdgc.org/initiatives/water_quality/index.html.
- Midwest Biodiversity Institute (MBI). 2011. Watershed Monitoring and Bioassessment Plan for the MSD Greater Cincinnati Service Area, Hamilton County, Ohio. Technical Report MBI/2011-6-3. Columbus, OH. 30 pp. + appendices. http://www.msdgc.org/initiatives/water-quality/index.html.
- Miltner, R.J. 2021. Assessing the Impacts of Chloride and Sulfate Ions on Macroinvertebrate Communities in Ohio Streams. Water 2021 (13): 1815. https://doi.org/10.3390/w13131815
- Ohio Department of Natural Resources. 1960. Gazetteer of Ohio Streams. Division of Water, Columbus, Ohio. Ohio Water Plan Inventory Rept. No. 12. 179 pp.
- Ohio Environmental Protection Agency. 2020. Field Methods for Evaluating Primary Headwater Streams in Ohio. Version 4.1. Division of Surface Water, Columbus, OH. 89 pp. + appendices.
- Ohio Environmental Protection Agency (Ohio EPA). 2019a. Surface Water Field Sampling Manual for water quality parameters and flows. Final Manual April 22, 2019. Version 7.0. Division of Surface Water, Columbus, Ohio. 40 pp.
- Ohio Environmental Protection Agency (Ohio EPA). 2019b. Surface Water Field Sampling Manual for water quality parameters and flows. Final Manual April 22, 2019. Version 7.0. Division of Surface Water, Columbus, Ohio. 43 pp.
- Ohio Environmental Protection Agency (Ohio EPA). 2019c. Surface Water Field Sampling Manual Appendix III sediment sampling. Final Manual April 22, 2019. Version 7.0. Division of Surface Water, Columbus, Ohio. 53 pp.
- Ohio Environmental Protection Agency (Ohio EPA). 2018. Overview of a proposed eutrophication standard for Ohio's large rivers. Presentation for Early Stakeholder Outreach for Proposed Rule OAC 3745-1-36. August 2018. Division of Surface Water, Columbus, OH. 15 pp.

- Ohio Environmental Protection Agency. 2017. Biological and Water Quality Study of the Southwest Ohio Tributaries 2014. Butler, Hamilton, Brown, and Clermont Counties, Ohio. Ohio EPA Technical Report EAS/2017-06-01. Division of Surface Water, Columbus, Ohio. 119 pp.
- Ohio Environmental Protection Agency. 2015a. Biological criteria for the protection of aquatic life (revised June 26, 2015). Volume III: Standardized biological field sampling and laboratory methods for assessing fish and macroinvertebrate communities. Tech. Rept. EAS/2015-06-01. Division of Surface Water, Ecological Assessment Section, Columbus, Ohio. 66 pp.
- Ohio Environmental Protection Agency. 2015d. Proposed Stream Nutrient Assessment Procedure. Ohio EPA Nutrients Technical Advisory Group Assessment Procedure Subgroup. Division of Surface Water, Columbus, OH. 17 pp. http://epa.ohio.gov/dsw/wqs/NutrientReduction/NutrientTAG.aspx.
- Ohio Environmental Protection Agency. 2006. Methods for assessing habitat in flowing waters: using the qualitative habitat evaluation index (QHEI). Division of Surface Water, Ecological Assessment Section, Columbus, OH. 23 pp.
- Ohio EPA. 1999. Association between nutrients, habitat, and the aquatic biota in Ohio Rivers and streams. Ohio EPA Technical Bulletin MAS/1999-1-1. Jan. 7, 1999.
- Ohio Environmental Protection Agency. 1994. Biological and water quality study of Little Miami. Ohio EPA Tech. Rept. SWS/1993-12-9. Division of Surface Water, Water Quality and Ecological Assessment Sections, Columbus, Ohio. 86 pp.
- Ohio Environmental Protection Agency. 1989a. Biological criteria for the protection of aquatic life. volume III: standardized biological field sampling and laboratory methods for assessing fish and macroinvertebrate communities, Division of Water Quality Monitoring and Assessment, Columbus, Ohio.
- Ohio Environmental Protection Agency. 1989b. Addendum to biological criteria for the protection of aquatic life. volume II: users manual for biological field assessment of Ohio surface waters, Division of Water Quality Planning and Assessment, Surface Water Section, Columbus, Ohio.
- Ohio EPA. 1987a. Biological criteria for the protection of aquatic life. Volume I. The role of biological data in water quality assessments. Division of Water Quality Monitoring and Assessment, Surface Water Section, Columbus, Ohio.

- Ohio EPA. 1987b. Biological criteria for the protection of aquatic life. Volume II. Users manual for biological field assessment of Ohio surface waters. Division of Water Quality Monitoring and Assessment, Surface Water Section, Columbus, Ohio.
- Omernik, J. M. 1987. Ecoregions of the conterminous United States. Annals of the Association of American Geographers 77(1): 118-125.
- Persaud D., R. Jaagumagi, and A. Hayton. 1993. Guidelines for the protection and management of aquatic sediment quality in Ontario. Water Resources Branch, Ontario Ministry of the Environment, Toronto.
- Rankin, E. T. 1995. The use of habitat assessments in water resource management programs, pages 181-208. in W. Davis and T. Simon (eds.). Biological Assessment and Criteria:

 Tools for Water Resource Planning and Decision Making. Lewis Publishers, Boca Raton, FL.
- Rankin, E.T. 1989. The Qualitative Habitat Evaluation Index (QHEI): Rationale, Methods, and Application. Ohio EPA, Division of Water Quality Planning and Assessment, Ecological Analysis Section, Columbus, Ohio.
- Trautman, M. B. 1981. The fishes of Ohio. The Ohio State Univ. Press, Columbus, OH. 782 pp.
- U.S. EPA (Environmental Protection Agency). 2020. Reduction in Median Load of Total Kjeldahl Nitrogen [TKN] Due to Tree Cover. EnviroAtlas: Led by the U.S. Environmental Protection Agency. Washington, DC. 2 pp. www.epa.gov/enviroatlas.
- U.S. Environmental Protection Agency. 1995a. Environmental indicators of water quality in the United States. EPA 841-R-96-002. Office of Water, Washington, DC 20460. 25 pp.
- U.S. Environmental Protection Agency. 1995b. A conceptual framework to support development and use of environmental information in decision-making. EPA 239-R-95-012. Office of Policy, Planning, and Evaluation, Washington, DC 20460. 43 pp.
- Woods, A., J.M. Omernik, C.S. Brockman, T.D. Gerber, W.D. Hosteter, and S.H. Azevedo. 1995. Ecoregions of Ohio and Indiana. U.S. EPA, Corvallis, OR. 2 pp.
- Yoder, C.O. and E.T. Rankin. 2008. Evaluating options for documenting incremental improvement of impaired waters under the TMDL program. MBI Technical Report MBI/2008-11-1. EPA Contract No. 68-C-04-006, Work Assignment 4-68. U.S. EPA, Office of Wetlands, Oceans, and Watersheds, Washington, D.C. 44 pp. + appendices.
- Yoder, C.O. and 9 others. 2005. Changes in fish assemblage status in Ohio's non-wadeable rivers and streams over two decades, pp. 399-429. *in* R. Hughes and J. Rinne (eds.).

- Historical changes in fish assemblages of large rivers in the America's. American Fisheries Society Symposium Series.
- Yoder, C. O., and DeShon, J. E. 2003. Using biological response signatures within a framework of multiple indicators to assess and diagnose causes and sources of impairments to aquatic assemblages in selected Ohio rivers and streams. Biological response signatures: indicator patterns using aquatic communities, T. P. Simon, ed., CRC Press, Boca Raton, FL., 23–81.
- Yoder, C. O. and M. A Smith. 1999. Using fish assemblages in a state biological assessment and criteria program: essential concepts and considerations, pages 17-56. *in* T.P. Simon (ed.), Assessing the Sustainability and Biological Integrity of Water Resources Using Fish Communities. CRC Press, Boca Raton, FL.
- Yoder, C.O. and E.T. Rankin. 1998. The role of biological indicators in a state water quality management process. J. Env. Mon. Assess. 51(1-2): 61-88.
- Yoder, C.O. and E.T. Rankin. 1995. Biological response signatures and the area of degradation value: new tools for interpreting multimetric data, pages 263-286. in W. Davis and T. Simon (eds.). Biological Assessment and Criteria: Tools for Water Resource Planning and Decision Making. Lewis Publishers, Boca Raton, FL.
- Yoder, C.O. 1995. Policy issues and management applications for biological criteria, pp. 327-344. in W. Davis and T. Simon (eds.). Biological Assessment and Criteria: Tools for Water Resource Planning and Decision Making. Lewis Publishers, Boca Raton, FL.
- Yoder, C.O. 1991. The integrated biosurvey as an approach for the evaluation of aquatic life use attainment and diagnosis of impairment for Ohio surface waters. Biocriteria Symposium on Research and Regulation, U.S. EPA, Offc. Water, Criteria and Stds. Div., Washington, D.C. EPA-440/5-91-005. pp. 110-122.

Appendix A

Little Miami River 2022 Fish Assemblage Data A-1: IBI Metrics and Scores and MIwb Scores A-2: Fish Species Grand Report

A-3: Fish Species by Date

	Number of										Perce	ent of Indi	viduals			Rel.No. minus			
Site ID	River Mile	Гуре	Dra Date area	inage (sq mi)	Total species				Rnd-bodied suckers	•	Tolerant fishes	Omni- vores	Top carnivores	Insect- ivores	DELT anomalies	tolerants /(1.0 km)	IBI	Modified lwb	Source
Little	Miami	River	- (11001)																
Yea	ar: 2022																		
LM01	27.90	P 09/	/19/2022	1069	32(5)	3(3)	7(5)	8(5)	28(3)	45(5)	1(5)	10(5)	2(1)	86(5)	0.0(5)	676(5)	52	10.5	MBI
LM01	27.90	P 08/	/01/2022	1069	27(5)	1(1)	6(5)	8(5)	20(3)	29(3)	1(5)	6(5)	2(1)	85(5)	0.0(5)	848(5)	48	10.0	MBI
LM02	24.10	P 08/	/01/2022	1085	34(5)	2(3)	7(5)	9(5)	24(3)	36(3)	1(5)	12(5)	12(5)	69(5)	0.8(3)	486(5)	52	10.9	MBI
LM02	24.10	P 09	/19/2022	1085	37(5)	3(3)	10(5)	9(5)	39(5)	55(5)	1(5)	7(5)	5(1)	81(5)	1.2(3)	506(5)	52	11.0	MBI
LM03	22.30	P 08/	/02/2022	1148	27(5)	3(3)	6(5)	5(5)	23(3)	29(3)	7(5)	9(5)	5(3)	82(5)	0.5(5)	372(3)	50	10.0	MBI
LM03	22.30	P 09/	/20/2022	1148	23(5)	3(3)	5(3)	5(5)	18(1)	45(5)	2(5)	6(5)	3(1)	91(5)	0.5(3)	388(3)	44	9.0	MBI
LM05	21.50	P 08/	/02/2022	1160	35(5)	3(3)	10(5)	7(5)	18(1)	26(3)	1(5)	5(5)	5(1)	85(5)	0.8(3)	506(5)	46	10.5	MBI
LM05	21.50	P 09/	/20/2022	1160	33(5)	2(3)	8(5)	8(5)	14(1)	35(3)	0(5)	6(5)	3(1)	84(5)	0.5(5)	428(5)	48	10.0	MBI
LM07	18.50	P 08/	/02/2022	1187	28(5)	2(3)	8(5)	7(5)	30(3)	37(3)	3(5)	10(5)	7(3)	74(5)	0.6(5)	336(3)	50	10.5	MBI
LM07	18.50	P 09/	/20/2022	1187	25(5)	2(3)	8(5)	6(5)	29(3)	59(5)	0(5)	3(5)	5(3)	86(5)	0.0(5)	314(3)	52	10.1	MBI
LM08	17.70	P 08/	/02/2022	1190	27(5)	2(3)	8(5)	8(5)	33(3)	47(5)	0(5)	7(5)	11(5)	71(5)	0.0(5)	230(3)	54	10.6	MBI
LM08	17.70	P 09/	/20/2022	1190	23(5)	1(1)	7(5)	5(5)	46(5)	54(5)	0(5)	9(5)	5(3)	77(5)	0.7(3)	296(3)	50	9.9	MBI
LM09	13.10	P 08/	/03/2022	1203	34(5)	3(3)	9(5)	8(5)	27(3)	30(3)	0(5)	3(5)	3(1)	89(5)	0.0(5)	638(5)	50	10.1	MBI
LM09	13.10	P 09	/22/2022	1203	25(5)	1(1)	5(3)	5(5)	25(3)	37(3)	0(5)	8(5)	8(3)	79(5)	0.0(5)	404(3)	46	9.9	MBI
LM11	10.90	P 09	/02/2022	1707	25(5)	1(1)	5(3)	3(3)	17(1)	27(3)	0(5)	6(5)	4(1)	79(5)	0.0(5)	326(3)	40	9.5	MBI
LM11	10.90	P 08	/03/2022	1707	28(5)	6(5)	8(5)	4(5)	31(3)	33(3)	2(5)	9(5)	4(1)	83(5)	1.2(3)	330(3)	48	10.0	MBI
LM12	8.10	P 08	/03/2022	1710	30(5)	3(3)	7(5)	4(5)	7(1)	10(1)	1(5)	16(5)	5(3)	74(5)	0.7(3)	560(5)	46	9.3	MBI
LM12	8.10	P 09/	/22/2022	1710	23(5)	3(3)	3(3)	6(5)	12(1)	32(3)	2(5)	5(5)	5(1)	86(5)	1.1(3)	364(3)	42	9.2	MBI
LM13	6.83	P 08/	/03/2022	1720	28(5)	4(5)	10(5)	5(5)	13(1)	14(1)	2(5)	18(3)	11(5)	54(5)	0.0(5)	354(3)	48	10.3	MBI
LM13	6.83	P 09/	/22/2022	1720	25(5)	1(1)	9(5)	4(5)	9(1)	18(1)	0(5)	6(5)	20(5)	70(5)	1.9(3)	216(3)	44	9.4	MBI
LM15	4.10	P 08/	/03/2022	1730	28(5)	2(3)	6(5)	4(5)	7(1)	13(1)	2(5)	18(3)	3(1)	64(5)	0.7(3)	582(5)	42	10.2	MBI
LM15	4.10	P 09/	/21/2022	1730	23(5)	2(3)	6(5)	2(3)	13(1)	25(3)	1(5)	12(5)	10(3)	57(5)	0.6(5)	344(3)	46	10.1	MBI
LM16A	3.70	P 08/	/04/2022	1752	20(3)	2(3)	6(5)	2(3)	3(1)	3(1)	11(5)	31(1)	3(1)	48(3)	2.6(3)	334(3)	32	8.6	MBI
LM16A	3.70	P 09/	/21/2022	1752	14(3)	1(1)	4(3)	1(1)	1(1)	2(1)	13(5)	37(1)	18(5)	43(3)	6.0(1)	204(3)	28	9.1	MBI

^{• -} IBI is low end adjusted.

^{*} - < 200 Total individuals in sample

^{** - &}lt; 50 Total individuals in sample

	Number o										Perce	ent of Ind	ividuals			Rel.No. minus			
Site ID	River Mile		oe Date a	Drainage irea (sq mi)	Total species			Intolerant species		d Simple Lithophils	Tolerant fishes	Omni- vores	Top carnivores	Insect- ivores	DELT anomalies	tolerants /(1.0 km)	IBI	Modified lwb	Source
LM16	3.50	P	08/04/2022	2 1752	18(3)	0(1)	7(5)	3(3)	15(1)	16(1)	1(5)	16(5)	7(3)	64(5)	0.5(5)	362(3)	40	9.1	MBI
LM16	3.50	P	09/21/2022	2 1752	23(5)	1(1)	6(5)	4(5)	9(1)	23(3)	1(5)	18(3)	7(3)	63(5)	3.0(3)	332(3)	42	9.3	MBI
LM17	1.60	P	08/04/2022	2 1754	16(3)	1(1)	5(3)	1(1)	3(1)	4(1)	1(5)	12(5)	10(3)	75(5)	0.0(5)	204(3)	36	7.8	MBI
Yea	ar: 2020)																	
LM02	24.10	A	08/25/2020	1085	32(5)	4(5)	10(5)	3(3)	19(1)	22(3)	0(5)	32(1)	9(3)	53(3)	0.0(5)	69(1) *	40	9.1	OEPA
LM02	24.10	A	09/15/2020	1085	38(5)	4(5)	9(5)	9(5)	4(1)	6(1)	15(5)	16(3)	3(1)	78(5)	0.2(5)	424(5)	46	9.1	OEPA
LM09	13.07	A	08/19/2020	1203	28(5)	2(3)	9(5)	7(5)	14(1)	16(1)	1(5)	10(5)	4(1)	80(5)	0.0(5)	75(1) *	42	8.0	OEPA
LM09	13.07	A	09/22/2020	1203	30(5)	2(3)	7(5)	4(5)	11(1)	13(1)	1(5)	2(5)	12(5)	80(5)	0.0(5)	105(1) *	46	7.9	OEPA
LM16	3.50	A	08/21/2020	1752	27(5)	2(3)	5(3)	4(5)	3(1)	3(1)	0(5)	6(5)	7(3)	70(5)	0.0(5)	100(1) *	42	7.4	OEPA
Yea	ır: 2019)																	
LM16a	3.70	P	09/06/2019	1752	26(5)	5(5)	7(5)	1(1)	1(1)	2(1)	8(5)	28(1)	3(1)	49(3)	0.0(5)	620(5)	38	9.6	MBI
LM16a	3.70	P	09/24/2019	1752	30(5)	5(5)	7(5)	2(3)	1(1)	4(1)	7(5)	20(3)	4(1)	67(5)	0.0(5)	938(5)	44	10.5	MBI
LM16	3.50	P	09/06/2019	1752	30(5)	4(5)	8(5)	3(3)	5(1)	8(1)	1(5)	13(5)	4(1)	55(5)	0.6(3)	674(5)	44	9.6	MBI
LM16	3.50	P	09/24/2019	1752	31(5)	4(5)	7(5)	4(5)	5(1)	7(1)	2(5)	12(5)	4(1)	66(5)	0.0(5)	1268(5)	48	10.3	MBI
Yea	ar: 2017	7																	
LM01	27.90	P	08/28/2017	1069	37(5)	3(3)	7(5)	9(5)	30(3)	43(3)	9(5)	21(3)	2(1)	72(5)	0.0(5)	830(5)	48	10.7	MBI
LM02	24.10	P	08/29/2017	1085	34(5)	3(3)	8(5)	8(5)	31(3)	46(5)	6(5)	13(5)	6(3)	73(5)	0.0(5)	726(5)	54	11.5	MBI
LM03	22.30	P	08/29/2017	1148	34(5)	5(5)	8(5)	4(5)	20(3)	28(3)	4(5)	29(1)	4(1)	63(5)	1.3(3)	444(5)	46	10.6	MBI
LM05	21.50	P	08/29/2017	1160	35(5)	3(3)	9(5)	6(5)	24(3)	30(3)	3(5)	19(3)	6(3)	71(5)	0.7(3)	574(5)	48	11.5	MBI
LM07	18.50	P	09/08/2017	1187	37(5)	4(5)	7(5)	9(5)	18(1)	28(3)	8(5)	16(3)	5(1)	73(5)	0.0(5)	592(5)	48	10.8	MBI
LM07	18.50	P	10/06/2017	1187	36(5)	2(3)	10(5)	11(5)	32(3)	50(5)	6(5)	7(5)	5(1)	78(5)	0.0(5)	452(5)	52	10.6	MBI
LM08	17.70	P	09/08/2017	1190	28(5)	2(3)	7(5)	5(5)	39(5)	44(5)	4(5)	17(3)	4(1)	72(5)	0.0(5)	522(5)	52	10.4	MBI
LM08	17.70	P	10/06/2017	1190	26(5)	1(1)	8(5)	7(5)	47(5)	53(5)	5(5)	12(5)	6(3)	74(5)	0.0(5)	318(3)	52	9.9	MBI
LM09	13.10	P	09/11/2017	1203	30(5)	3(3)	8(5)	5(5)	44(5)	50(5)	2(5)	17(3)	5(1)	71(5)	0.0(5)	686(5)	52	10.3	MBI
LM11	10.90	P	09/11/2017	1707	32(5)	1(1)	7(5)	8(5)	17(1)	23(3)	1(5)	10(5)	13(5)	66(5)	0.4(5)	524(5)	50	10.7	MBI
LM12	8.10	P	09/11/2017	7 1710	33(5)	2(3)	7(5)	8(5)	14(1)	20(3)	1(5)	12(5)	4(1)	78(5)	0.0(5)	604(5)	48	10.1	MBI
					` '	` '	. ,		. ,	. /		` /	` ′	. /	. /	` '			

^{• -} IBI is low end adjusted.

^{*} - < 200 Total individuals in sample

^{** - &}lt; 50 Total individuals in sample

					Num	ber of				Perce	ent of Ind		Rel.No.						
Site ID	Rivei Mile		oe Date a	Drainage area (sq mi)	Total species				Rnd-bodied suckers	Simple Lithophils	Tolerant fishes	Omni- vores	Top carnivores	Insect- ivores	DELT anomalies	tolerants /(1.0 km)	IBI	Modified lwb	Source
LM13	6.83	P	09/11/2017	7 1720	29(5)	4(5)	7(5)	5(5)	7(1)	13(1)	3(5)	22(3)	4(1)	64(5)	0.0(5)	834(5)	46	10.5	MBI
LM15	4.10	P	09/11/2017	7 1730	32(5)	3(3)	8(5)	3(3)	16(1)	21(3)	1(5)	24(3)	7(3)	63(5)	0.3(5)	774(5)	46	10.6	MBI
LM16	3.50	P	09/10/2017	7 1752	36(5)	4(5)	7(5)	7(5)	5(1)	11(1)	1(5)	26(3)	6(3)	61(5)	0.4(5)	904(5)	48	9.6	MBI
LM16	3.50	P	10/04/2017	7 1752	27(5)	2(3)	7(5)	5(5)	11(1)	16(1)	1(5)	20(3)	6(3)	68(5)	0.8(3)	500(5)	44	9.7	MBI
LM17	1.60	P	09/09/2017	7 1754	23(5)	3(3)	6(5)	2(3)	2(1)	3(1)	4(5)	48(1)	5(3)	43(3)	0.0(5)	442(5)	40	9.1	MBI
LM17	1.60	P	10/04/2017	7 1754	18(3)	4(5)	5(3)	2(3)	2(1)	3(1)	3(5)	31(1)	3(1)	60(5)	0.0(5)	226(3)	36	8.5	MBI
Yea	ar: 201	3																	
LMRB07	28.90	A	09/26/2013	3 1059	28(5)	5(5)	8(5)	1(1)	29(3)	30(3)	6(5)	29(1)	8(3)	56(5)	0.5(3)	366(3)	42	10.2	MBI
LM01	27.90	A	09/27/2013	3 1069	30(5)	2(3)	5(3)	7(5)	36(3)	46(5)	8(5)	19(3)	4(1)	74(5)	0.0(5)	752(5)	48	10.5	MBI
LM01	27.90	A	08/26/2013	3 1069	29(5)	2(3)	5(3)	8(5)	41(5)	55(5)	4(5)	6(5)	2(1)	90(5)	0.3(5)	815(5)	52	10.3	OEPA
LM02	24.10	A	10/01/2013	3 1085	23(5)	2(3)	8(5)	2(3)	39(5)	44(5)	0(5)	29(1)	5(1)	59(5)	0.9(3)	434(5)	46	10.6	MBI
LM03	22.30	A	10/02/2013	3 1148	25(5)	3(3)	8(5)	3(3)	14(1)	20(1)	16(3)	26(3)	6(3)	62(5)	0.3(5)	484(5)	42	10.4	MBI
LM05	21.50	A	10/02/2013	3 1160	30(5)	2(3)	9(5)	4(5)	35(3)	41(3)	3(5)	14(5)	4(1)	71(5)	0.0(5)	562(5)	50	11.1	MBI
LM06	20.60	A	10/02/2013	3 1161	24(5)	2(3)	8(5)	3(3)	40(5)	49(5)	1(5)	23(3)	7(3)	61(5)	0.5(5)	410(3)	50	10.2	MBI
LM07	18.50	A	10/02/2013	3 1187	19(3)	2(3)	7(5)	1(1)	15(1)	22(3)	1(5)	46(1)	10(5)	36(3)	0.0(5)	286(3)	38	9.6	MBI
LM08	17.70	A	10/02/2013	3 1190	21(5)	0(1)	7(5)	1(1)	45(5)	46(5)	1(5)	8(5)	5(3)	68(5)	0.4(5)	502(5)	50	10.2	MBI
LM09	13.10	A	08/26/2013	3 1203	28(5)	2(3)	10(5)	3(3)	31(3)	38(3)	0(5)	12(5)	10(5)	70(5)	0.0(5)	514(5)	52	10.9	OEPA
LM09	13.10	A	09/30/2013	3 1203	29(5)	3(3)	6(5)	5(5)	27(3)	34(3)	2(5)	22(3)	11(5)	64(5)	1.8(3)	462(5)	50	10.3	OEPA
LM09	12.90	A	10/18/2013	3 1200	21(5)	2(3)	2(1)	4(5)	12(1)	21(1)	3(5)	20(3)	4(1)	73(5)	0.0(5)	608(5)	40	9.0	MBI
LM11	10.90	A	09/30/2013	3 1707	21(5)	2(3)	5(3)	1(1)	26(3)	29(3)	0(5)	30(1)	6(3)	50(3)	0.7(3)	558(5)	38	10.1	MBI
LM12	8.10	A	10/03/2013	3 1710	20(3)	3(3)	6(5)	2(3)	27(3)	28(3)	2(5)	23(3)	3(1)	63(5)	1.0(3)	396(3)	40	10.0	MBI
LM13	6.83	A	10/03/2013	3 1720	22(5)	3(3)	6(5)	1(1)	14(1)	15(1)	4(5)	34(1)	9(3)	45(3)	0.8(3)	254(3)	34	9.6	MBI
LMRB03	4.45	A	10/03/2013	3 1730	18(3)	0(1)	7(5)	3(3)	29(3)	51(5)	0(5)	8(5)	2(1)	83(5)	0.0(5)	398(3)	44	9.4	MBI
LM15	4.10	A	10/03/2013	3 1730	18(3)	1(1)	7(5)	1(1)	25(3)	26(3)	1(5)	53(1)	3(1)	35(3)	0.0(5)	530(5)	36	10.0	MBI
LM16	3.50	A	10/18/2013	3 1752	16(3)	0(1)	5(3)	0(1)	14(1)	19(1)	3(5)	19(3)	5(3)	66(5)	0.5(3)	354(3)	32	8.1	MBI

Year: 2012

^{• -} IBI is low end adjusted.

^{*} - < 200 Total individuals in sample

^{** -} < 50 Total individuals in sample

					Num	ber of				Perce	ent of Ind	ividuals			Rel.No. minus			
Site ID	River Mile	Гуре Date	Drainage area (sq mi)	Total species				Rnd-bodied suckers	Simple Lithophils	Tolerant fishes	Omni- vores	Top carnivores	Insect- ivores	DELT anomalies	tolerants /(1.0 km)	IBI	Modified lwb	Source
LM01	27.80	A 09/12/20	012 1070	22(5)	1(1)	6(5)	1(1)	28(3)	29(3)	1(5)	22(3)	7(3)	55(5)	3.1(1)	840(5)	40	10.6	MBI
LM01	27.80	A 07/23/20	1070	22(5)	3(3)	5(3)	1(1)	24(3)	25(3)	4(5)	17(3)	9(3)	69(5)	0.0(5)	713(5)	44	10.5	MBI
LM02	23.70	A 07/17/20	1150	25(5)	3(3)	7(5)	2(3)	17(1)	22(3)	13(5)	26(3)	10(3)	58(5)	0.0(5)	294(3)	44	10.1	MBI
LM02	23.70	A 09/13/20	1150	22(5)	4(5)	6(5)	2(3)	10(1)	11(1)	5(5)	30(1)	7(3)	62(5)	0.6(3)	934(5)	42	10.0	MBI
LM03	22.10	A 07/17/20	1148	19(3)	2(3)	4(3)	2(3)	6(1)	7(1)	10(5)	34(1)	13(5)	52(3)	0.0(5)	348(3)	36	8.9	MBI
LM03	22.10	A 09/13/20	1148	19(3)	3(3)	6(5)	1(1)	13(1)	13(1)	2(5)	21(3)	5(1)	74(5)	1.0(3)	822(5)	36	9.4	MBI
LM04	21.70	A 07/17/20	1150	18(3)	3(3)	6(5)	1(1)	36(3)	38(3)	0(5)	18(3)	10(3)	68(5)	0.0(5)	386(3)	42	9.5	MBI
LM04	21.70	A 09/13/20	1150	27(5)	3(3)	9(5)	5(5)	18(1)	19(1)	6(5)	42(1)	5(3)	48(3)	0.6(3)	582(5)	40	10.7	MBI
LM05	21.25	A 07/17/20	1160	18(3)	1(1)	7(5)	1(1)	22(3)	22(3)	14(5)	18(3)	8(3)	56(5)	1.5(3)	224(3)	38	9.5	MBI
LM05	21.25	A 09/13/20	1160	27(5)	3(3)	8(5)	3(3)	7(1)	7(1)	6(5)	12(5)	7(3)	79(5)	0.2(5)	1082(5)	46	9.9	MBI
LM06	20.60	A 07/24/20)12 1161	24(5)	4(5)	5(3)	2(3)	12(1)	12(1)	21(3)	25(3)	7(3)	65(5)	0.3(5)	564(5)	42	9.8	MBI
LM06	20.60	A 09/19/20)12 1161	27(5)	4(5)	6(5)	3(3)	4(1)	5(1)	7(5)	22(3)	8(3)	66(5)	0.3(5)	1180(5)	46	10.2	MBI
LM07	18.40	A 07/31/20	1190	24(5)	4(5)	6(5)	1(1)	9(1)	9(1)	39(1)	40(1)	10(5)	44(3)	0.5(5)	512(5)	38	9.9	MBI
LM07	18.40	A 09/19/20	1190	23(5)	4(5)	6(5)	3(3)	5(1)	6(1)	7(5)	34(1)	9(3)	53(3)	1.4(3)	906(5)	40	10.0	MBI
LM08	17.60	A 07/31/20	1190	21(5)	3(3)	7(5)	1(1)	19(1)	20(1)	5(5)	8(5)	25(5)	50(3)	0.0(5)	302(3)	42	10.2	MBI
LM08	17.60	A 09/19/20	1190	23(5)	3(3)	6(5)	3(3)	13(1)	14(1)	7(5)	29(1)	8(3)	61(5)	0.4(5)	1008(5)	42	10.2	MBI
LM09	12.90	A 08/01/20	1200	21(5)	1(1)	8(5)	2(3)	18(1)	18(1)	1(5)	2(5)	9(3)	82(5)	0.4(5)	486(5)	44	9.4	MBI
LM09	12.90	A 09/20/20	1200	23(5)	3(3)	6(5)	2(3)	9(1)	9(1)	1(5)	16(3)	8(3)	75(5)	0.3(5)	1380(5)	44	9.7	MBI
LM10	11.80	A 08/01/20	1210	22(5)	3(3)	6(5)	1(1)	10(1)	10(1)	19(3)	21(3)	11(5)	64(5)	0.2(5)	770(5)	42	9.9	MBI
LM10	11.80	A 09/20/20	1210	24(5)	3(3)	5(3)	4(5)	7(1)	8(1)	3(5)	31(1)	13(5)	54(3)	0.0(5)	1164(5)	42	9.9	MBI
LM11	11.20	A 08/01/20	1710	21(5)	3(3)	6(5)	0(1)	8(1)	8(1)	2(5)	19(3)	14(5)	57(5)	0.0(5)	446(5)	44	9.8	MBI
LM11	11.20	A 09/20/20	1710	24(5)	4(5)	7(5)	0(1)	10(1)	10(1)	4(5)	16(3)	13(5)	65(5)	0.8(3)	708(5)	44	10.0	MBI
LM12	8.30	A 07/11/20	1713	23(5)	3(3)	4(3)	1(1)	10(1)	12(1)	13(5)	15(5)	11(5)	63(5)	1.1(3)	310(3)	40	9.6	MBI
LM12	8.30	A 09/26/20	1713	22(5)	4(5)	5(3)	0(1)	5(1)	7(1)	4(5)	23(3)	22(5)	47(3)	0.0(5)	494(5)	42	9.7	MBI
LM13	7.10	A 07/11/20	1720	21(5)	4(5)	5(3)	2(3)	5(1)	7(1)	15(5)	25(3)	15(5)	51(3)	0.6(3)	308(3)	40	9.8	MBI
LM13	7.10	A 09/27/20	1720	22(5)	5(5)	4(3)	1(1)	3(1)	3(1)	4(5)	35(1)	15(5)	37(3)	0.2(5)	1150(5)	40	10.1	MBI

^{• -} IBI is low end adjusted.

^{*} - < 200 Total individuals in sample

^{** - &}lt; 50 Total individuals in sample

Number of											Perce	ent of Indi	ividuals			Rel.No. minus			
Site ID	River Mile		oe Date a	Drainage area (sq mi)	Total species				Rnd-bodied suckers	Simple Lithophils	Tolerant fishes	Omni- vores	Top carnivores	Insect- ivores	DELT anomalies	tolerants /(1.0 km)	IBI	Modified Iwb	Source
LM14	6.00	A	07/10/2012	2 1720	12(3)	0(1)	1(1)	2(3)	15(1)	16(1)	0(5)	5(5)	6(3)	87(5)	0.0(5)	248(3)	36	6.2	MBI
LM14	6.00	A	09/27/2012	2 1720	20(3)	3(3)	5(3)	0(1)	15(1)	16(1)	4(5)	51(1)	12(5)	28(3)	0.0(5)	690(5)	36	9.6	MBI
LM15	4.30	A	07/10/2012	2 1730	18(3)	3(3)	4(3)	2(3)	10(1)	11(1)	13(5)	24(3)	6(3)	60(5)	0.0(5)	198(1)	36	8.0	MBI
LM15	4.30	A	09/27/2012	2 1730	21(5)	3(3)	7(5)	1(1)	5(1)	5(1)	1(5)	79(1)	4(1)	14(1)	0.3(5)	1358(5)	34	9.0	MBI
600580	3.00	A	07/10/2012	2 1752	21(5)	3(3)	4(3)	0(1)	9(1)	10(1)	4(5)	10(5)	16(5)	59(5)	0.0(5)	188(1) *	40	9.5	MBI
600580	3.00	A	10/01/2012	2 1752	21(5)	5(5)	4(3)	0(1)	1(1)	1(1)	2(5)	60(1)	8(3)	27(3)	0.1(5)	1554(5)	38	9.8	MBI
LM17	1.40	A	07/11/2012	2 1760	15(3)	3(3)	3(3)	0(1)	3(1)	3(1)	6(5)	17(3)	24(5)	56(5)	0.0(5)	132(1) *	36	8.3	MBI
LM17	1.40	A	10/01/2012	2 1760	15(3)	2(3)	3(3)	2(3)	1(1)	1(1)	1(5)	69(1)	10(5)	21(1)	0.3(5)	698(5)	36	8.0	MBI
Yea	ar: 2008	3																	
LM06	20.60	A	10/03/2008	3 1161	32(5)	3(3)	6(5)	5(5)	10(1)	21(1)	9(5)	26(3)	6(3)	65(5)	0.3(5)	646(5)	46	10.3	MBI
M05P11	13.10	A	10/02/2008	3 1203	24(5)	3(3)	5(3)	2(3)	34(3)	43(5)	3(5)	10(5)	12(5)	77(5)	1.5(3)	256(3)	48	9.9	OEPA
LMRB03	8.80	A	09/23/2008	3 1713	35(5)	3(3)	8(5)	6(5)	17(1)	23(3)	2(5)	13(5)	4(1)	79(5)	0.1(5)	693(5)	48	5.5	OEPA
LMRB03	8.70	A	09/23/2008	3 1713	31(5)	3(3)	8(5)	6(5)	17(1)	23(3)	1(5)	17(3)	4(1)	76(5)	0.0(5)	648(5)	46	5.6	OEPA
LM12	8.20	A	10/02/2008	3 1713	34(5)	2(3)	7(5)	4(5)	8(1)	11(1)	3(5)	7(5)	4(1)	87(5)	0.6(3)	1220(5)	44	10.0	MBI
	ar: 2007																		
LMRB07			06/21/2007		32(5)	3(3)	9(5)	5(5)	33(3)	45(5)	3(5)	6(5)	5(1)	83(5)	0.3(5)	746(5)	52	10.9	OEPA
LMRB07	29.00	A	08/03/2007	7 1064	39(5)	4(5)	10(5)	8(5)	38(5)	43(3)	5(5)	11(5)	8(3)	78(5)	0.3(5)	563(5)	56	11.1	OEPA
LM01	28.10	A	09/07/2007	7 1069	33(5)	3(3)	6(5)	8(5)	25(3)	50(5)	3(5)	5(5)	7(3)	79(5)	2.0(3)	890(5)	52	10.9	OEPA
LM01	27.90	A	08/01/2007	7 1069	33(5)	3(3)	7(5)	8(5)	27(3)	44(5)	10(5)	13(5)	9(3)	69(5)	0.0(5)	564(5)	54	11.1	OEPA
LM01	27.90	A	09/07/2007	7 1069	31(5)	2(3)	7(5)	8(5)	27(3)	50(5)	4(5)	7(5)	6(3)	71(5)	0.2(5)	962(5)	54	11.4	OEPA
LM02	24.30	A	09/04/2007	7 1085	30(5)	3(3)	6(5)	7(5)	11(1)	42(3)	7(5)	13(5)	6(3)	68(5)	1.4(3)	546(5)	48	10.5	OEPA
LM02	24.10	A	07/25/2007	7 1085	30(5)	4(5)	7(5)	5(5)	8(1)	29(3)	6(5)	15(5)	8(3)	72(5)	0.0(5)	386(3)	50	10.3	OEPA
LM03	22.30	A	07/26/2007	7 1148	26(5)	2(3)	4(3)	5(5)	22(3)	44(5)	9(5)	9(5)	4(1)	84(5)	0.0(5)	718(5)	50	9.8	OEPA
LM03	22.30	A	09/11/2007	7 1148	29(5)	3(3)	6(5)	6(5)	38(5)	60(5)	2(5)	9(5)	7(3)	82(5)	0.0(5)	708(5)	56	10.0	OEPA
LM05	21.50	A	07/26/2007	7 1160	33(5)	4(5)	7(5)	7(5)	18(1)	31(3)	1(5)	3(5)	3(1)	81(5)	0.0(5)	766(5)	50	11.1	OEPA
LM05	21.50	A	09/11/2007	7 1160	38(5)	3(3)	9(5)	8(5)	20(3)	32(3)	9(5)	15(5)	6(3)	73(5)	0.6(3)	606(5)	50	11.3	OEPA

^{• -} IBI is low end adjusted.

^{*} - < 200 Total individuals in sample

^{** - &}lt; 50 Total individuals in sample

	Number of									Perce	nt of Indi			Rel.No. minus				
Site	River	. 5.	Drainage	Total			Intolerant		•	Tolerant	Omni-	Тор	Insect-	DELT	tolerants	IDI	Modified	
ID	IVIIIe	Type Date	area (sq mi)	species	species	species	species	suckers	Lithophils	fishes	vores	carnivores	ivores	anomalies	/(1.0 km)	IBI	lwb	Source
LM06	20.60	A 07/25/200)7 1161	36(5)	4(5)	7(5)	8(5)	23(3)	44(5)	7(5)	14(5)	8(3)	75(5)	0.0(5)	722(5)	56	10.7	OEPA
LM06	20.60	A 09/06/200	07 1161	33(5)	4(5)	8(5)	7(5)	32(3)	44(5)	4(5)	10(5)	8(3)	80(5)	0.0(5)	788(5)	56	10.2	OEPA
LM08	17.80	A 07/25/200)7 1187	23(5)	3(3)	5(3)	2(3)	21(3)	24(3)	8(5)	19(3)	8(3)	65(5)	0.0(5)	486(5)	46	9.7	OEPA
LM08	17.30	A 09/11/200	07 1188	36(5)	4(5)	10(5)	5(5)	24(3)	31(3)	13(5)	23(3)	18(5)	50(3)	0.0(5)	696(5)	52	11.2	OEPA
M05P11	13.10	A 07/24/200	7 1203	28(5)	2(3)	6(5)	4(5)	11(1)	14(1)	4(5)	8(5)	15(5)	67(5)	0.0(5)	786(5)	50	10.0	OEPA
M05P11	13.10	A 09/05/200	7 1203	32(5)	3(3)	8(5)	5(5)	18(1)	28(3)	5(5)	8(5)	14(5)	66(5)	0.0(5)	709(5)	52	10.6	OEPA
LM12	8.20	A 07/31/200	7 1713	29(5)	4(5)	4(3)	4(5)	6(1)	12(1)	2(5)	8(5)	13(5)	67(5)	0.0(5)	486(5)	50	9.6	OEPA
LM12	8.20	A 09/10/200	7 1713	35(5)	4(5)	8(5)	4(5)	21(3)	24(3)	1(5)	12(5)	14(5)	57(5)	1.7(3)	700(5)	54	11.0	OEPA
LMRB02	3.70	A 08/28/200	7 1752	31(5)	4(5)	6(5)	2(3)	2(1)	6(1)	5(5)	19(3)	8(3)	59(5)	0.0(5)	1464(5)	46	10.1	OEPA
LM16	3.50	A 07/24/200	7 1752	22(5)	4(5)	5(3)	1(1)	2(1)	2(1)	7(5)	43(1)	4(1)	44(3)	0.3(5)	790(5)	36	9.3	OEPA
LM16	3.50	A 09/05/200	7 1752	19(3)	4(5)	4(3)	1(1)	5(1)	8(1)	11(5)	27(3)	10(3)	39(3)	0.0(5)	346(3)	36	9.9	OEPA
600580	3.00	A 08/28/200	7 1752	30(5)	3(3)	8(5)	4(5)	20(3)	28(3)	2(5)	7(5)	14(5)	59(5)	0.5(3)	760(5)	52	10.0	MBI
LMR 2.5	2.50	P 08/28/200	1753	6(1)	0(1)	0(1)	1(1)	0(1)	0(1)	0(5)	37(1)	0(1)	29(3)	0.0(5)	126(1) *	22	5.0	OEPA
LMR 2.0	2.00	P 08/28/200	7 1754	3(1)	1(1)	0(1)	0(1)	0(1)	0(1)	0(1)	50(1)	0(1)	25(1)	0.0(1)	13(1)**	12	3.2	OEPA
LM17	1.60	A 08/28/200	7 1754	23(5)	3(3)	6(5)	2(3)	0(1)	2(1)	1(5)	25(3)	6(3)	62(5)	0.0(5)	1056(5)	44	9.5	MBI
Yea	ar: 1998																	
610510	28.30	A 07/16/199	98 1060	26(5)	2(3)	5(3)	4(5)	22(3)	27(3)	11(5)	14(5)	3(1)	78(5)	3.7(1)	520(5)	44	10.1	OEPA
610510	28.30	A 09/02/199	98 1060	28(5)	3(3)	6(5)	2(3)	26(3)	29(3)	4(5)	8(5)	10(5)	80(5)	2.9(3)	430(5)	50	10.4	OEPA
LM01	27.90	A 07/16/199	98 1069	21(5)	3(3)	5(3)	2(3)	46(5)	48(5)	5(5)	17(3)	4(1)	74(5)	2.1(3)	484(5)	46	10.2	OEPA
LM01	27.90	A 09/02/199	98 1069	20(3)	1(1)	4(3)	3(3)	39(5)	40(3)	2(5)	27(3)	7(3)	63(5)	4.5(1)	436(5)	40	9.6	OEPA
LM02	23.90	A 07/16/199	98 1145	20(3)	3(3)	5(3)	2(3)	45(5)	49(5)	5(5)	33(1)	2(1)	63(5)	3.4(1)	246(3)	38	9.1	OEPA
LM02	23.90	A 09/02/199	98 1145	21(5)	2(3)	6(5)	0(1)	59(5)	62(5)	1(5)	18(3)	8(3)	69(5)	9.9(1)	282(3)	44	9.1	OEPA
M05S39	21.90	A 07/27/199	98 1148	24(5)	3(3)	6(5)	2(3)	22(3)	30(3)	9(5)	23(3)	5(1)	70(5)	1.1(3)	334(3)	42	9.6	OEPA
M05S39	21.90	A 09/03/199	98 1148	25(5)	2(3)	7(5)	2(3)	13(1)	19(1)	6(5)	18(3)	7(3)	73(5)	3.7(1)	354(3)	38	9.8	OEPA
LM04	21.80	A 07/27/199	98 1150	12(3)	3(3)	3(3)	0(1)	11(1)	22(3)	5(5)	16(3)	5(3)	78(5)	0.0(5)	350(3)	38	8.8	OEPA
LM04	21.80	A 09/03/199	98 1150	8(1)	2(3)	1(1)	0(1)	18(1)	21(1)	14(5)	29(1)	7(3)	64(5)	3.6(5)	240(3)	30	7.8	OEPA

^{• -} IBI is low end adjusted.

^{* - &}lt; 200 Total individuals in sample

^{** - &}lt; 50 Total individuals in sample

						Numl	per of				Perce	ent of Ind	ividuals			Rel.No.			
Site ID	Rive Mile		oe Date a	Drainage area (sq mi)	Total species				Rnd-bodied suckers	I Simple Lithophils	Tolerant fishes	Omni- vores	Top carnivores	Insect- ivores	DELT anomalies	tolerants /(1.0 km)	IBI	Modified lwb	Source
LM05	21.10	A	07/27/1998	8 1160	19(3)	1(1)	7(5)	3(3)	32(3)	38(3)	3(5)	25(3)	6(3)	60(5)	0.9(5)	210(3)	42	9.5	OEPA
LM05	21.10	A	09/03/1998	8 1160	25(5)	3(3)	7(5)	2(3)	27(3)	30(3)	2(5)	15(5)	7(3)	58(5)	2.2(3)	350(3)	46	10.2	OEPA
LM07	18.50	A	07/27/1998	8 1187	26(5)	5(5)	4(3)	2(3)	7(1)	10(1)	10(5)	20(3)	8(3)	54(3)	0.0(5)	250(3)	40	9.3	OEPA
LM07	18.50	A	09/03/1998	8 1187	25(5)	3(3)	7(5)	2(3)	16(1)	27(3)	9(5)	23(3)	9(3)	51(3)	4.5(1)	204(3)	38	10.0	OEPA
LMRB06	13.50	A	07/28/1998	8 1199	21(5)	2(3)	5(3)	3(3)	19(1)	25(3)	5(5)	31(1)	4(1)	49(3)	1.5(3)	260(3)	34	9.8	OEPA
LMRB06	13.50	A	09/03/1998	8 1199	20(3)	3(3)	5(3)	1(1)	28(3)	33(3)	2(5)	17(3)	11(5)	65(5)	3.7(1)	346(3)	38	9.7	OEPA
LM11	10.90	A	07/28/1998	8 1707	21(5)	2(3)	5(3)	6(5)	11(1)	14(1)	6(5)	27(3)	4(1)	54(3)	5.1(1)	275(3)	34	9.6	OEPA
LM11	10.90	A	09/04/1998	8 1707	28(5)	3(3)	7(5)	4(5)	16(1)	19(1)	11(5)	24(3)	15(5)	53(3)	3.9(1)	368(3)	40	10.3	OEPA
LM16a	3.70	A	07/30/1998	8 1752	19(3)	2(3)	5(3)	0(1)	9(1)	11(1)	24(3)	45(1)	8(3)	19(1)	7.1(1)	172(1)	22	8.9	OEPA
LM16	3.50	A	09/05/1998	8 1752	21(5)	2(3)	6(5)	2(3)	18(1)	18(1)	10(5)	26(3)	9(3)	49(3)	8.8(1)	378(3)	36	10.0	OEPA
Yea	ar: 199	3																	
610510	28.30	A	08/09/1993	3 1060	15(3)	3(3)	5(3)	0(1)	34(3)	34(3)	21(3)	41(1)	5(3)	47(3)	4.1(1)	250(3)	30	8.7	OEPA
610510	28.30	A	08/30/1993	3 1060	16(3)	3(3)	4(3)	0(1)	31(3)	32(3)	9(5)	42(1)	5(3)	45(3)	3.8(1)	292(3)	32	9.3	OEPA
610510	28.30	A	09/27/1993	3 1060	19(3)	5(5)	5(3)	0(1)	35(3)	35(3)	6(5)	18(3)	10(5)	68(5)	4.0(1)	326(3)	40	9.1	OEPA
LM01	27.90	A	08/09/1993	3 1069	26(5)	3(3)	7(5)	2(3)	67(5)	68(5)	2(5)	9(5)	5(1)	73(5)	2.3(3)	908(5)	50	10.9	OEPA
LM01	27.90	A	08/30/1993	3 1069	25(5)	2(3)	5(3)	2(3)	52(5)	54(5)	3(5)	13(5)	8(3)	67(5)	2.1(3)	685(5)	50	10.5	OEPA
LM01	27.90	A	09/27/1993	3 1069	29(5)	3(3)	7(5)	4(5)	30(3)	32(3)	5(5)	20(3)	7(3)	57(5)	1.5(3)	767(5)	48	10.7	OEPA
LM02	23.90	A	08/09/1993	3 1145	21(5)	1(1)	7(5)	2(3)	62(5)	64(5)	1(5)	17(3)	3(1)	69(5)	1.9(3)	564(5)	46	9.9	OEPA
LM02	23.90	A	08/31/1993	3 1145	20(3)	1(1)	6(5)	3(3)	57(5)	60(5)	1(5)	16(3)	6(3)	66(5)	1.6(3)	504(5)	46	10.0	OEPA
LM02	23.90	A	09/28/1993	3 1145	27(5)	3(3)	6(5)	2(3)	34(3)	36(3)	4(5)	14(5)	9(3)	70(5)	3.4(1)	848(5)	46	10.8	OEPA
LM03	22.10	A	08/10/1993	3 1148	14(3)	2(3)	4(3)	1(1)	58(5)	61(5)	10(5)	15(5)	6(3)	73(5)	1.6(3)	222(3)	44	8.1	OEPA
LM03	22.10	A	08/31/1993	3 1148	20(3)	2(3)	8(5)	2(3)	47(5)	48(5)	2(5)	21(3)	10(3)	65(5)	1.2(3)	314(3)	46	9.2	OEPA
LM03	22.10	A	09/28/1993	3 1148	22(5)	4(5)	6(5)	1(1)	15(1)	15(1)	7(5)	19(3)	7(3)	74(5)	0.0(5)	708(5)	44	9.0	OEPA
LM05	21.50	A	08/10/1993	3 1160	21(5)	2(3)	7(5)	1(1)	51(5)	52(5)	3(5)	20(3)	5(3)	63(5)	1.1(3)	620(5)	48	10.3	OEPA
LM05	21.50	A	08/31/1993	3 1160	25(5)	2(3)	6(5)	3(3)	47(5)	51(5)	2(5)	12(5)	4(1)	67(5)	3.8(1)	622(5)	48	10.6	OEPA
LM05	21.50	A	09/28/1993	3 1160	30(5)	4(5)	7(5)	4(5)	27(3)	29(3)	2(5)	17(3)	8(3)	61(5)	2.7(3)	866(5)	50	10.4	OEPA

^{• -} IBI is low end adjusted.

A-1-7

^{*} - < 200 Total individuals in sample

^{** - &}lt; 50 Total individuals in sample

						Numl	ber of				Perce	ent of Ind	ividuals			Rel.No. minus			
Site ID	Rivei Mile		oe Date a	Drainage area (sq mi)	Total species				Rnd-bodied suckers	•	Tolerant fishes	Omni- vores	Top carnivores	Insect- ivores	DELT anomalies	tolerants /(1.0 km)	IBI	Modified lwb	Source
LM05	20.90	A	08/10/1993	3 1161	19(3)	1(1)	7(5)	2(3)	48(5)	49(5)	0(5)	32(1)	3(1)	56(5)	1.4(3)	328(3)	40	9.8	OEPA
LM05	20.90	A	08/31/1993	3 1161	23(5)	2(3)	7(5)	0(1)	45(5)	49(5)	9(5)	20(3)	11(5)	56(5)	3.2(1)	270(3)	46	9.8	OEPA
LM05	20.90	A	09/28/1993	3 1161	24(5)	2(3)	7(5)	4(5)	24(3)	25(3)	5(5)	28(1)	10(3)	59(5)	2.2(3)	434(5)	46	9.5	OEPA
LM07	18.50	A	08/09/1993	3 1187	21(5)	1(1)	5(3)	1(1)	42(5)	46(5)	4(5)	15(5)	6(3)	65(5)	3.1(1)	368(3)	42	9.7	OEPA
LM07	18.50	A	08/30/1993	3 1187	21(5)	1(1)	8(5)	1(1)	37(3)	39(3)	1(5)	14(5)	7(3)	54(3)	8.3(1)	382(3)	38	9.9	OEPA
LM07	18.50	A	09/29/1993	3 1187	29(5)	3(3)	8(5)	2(3)	20(3)	23(3)	6(5)	22(3)	11(5)	59(5)	3.5(1)	490(5)	46	10.6	OEPA
LMRB06	13.30	A	08/10/1993	3 1200	24(5)	2(3)	8(5)	4(5)	12(1)	12(1)	2(5)	46(1)	5(3)	37(3)	3.9(1)	400(3)	36	9.8	OEPA
LMRB06	13.30	A	08/31/1993	3 1200	26(5)	3(3)	8(5)	2(3)	16(1)	17(1)	3(5)	22(3)	10(3)	37(3)	0.8(3)	468(5)	40	10.4	OEPA
LMRB06	13.30	A	10/14/1993	3 1200	30(5)	3(3)	7(5)	6(5)	3(1)	4(1)	1(5)	86(1)	3(1)	9(1)	0.9(3)	2444(5)	36	9.5	OEPA
LM12	8.30	A	08/10/1993	3 1713	19(3)	1(1)	9(5)	0(1)	12(1)	14(1)	8(5)	27(3)	6(3)	42(3)	4.5(1)	284(3)	30	9.5	OEPA
LM12	8.30	A	09/01/1993	3 1713	27(5)	2(3)	8(5)	0(1)	13(1)	16(1)	2(5)	22(3)	11(5)	45(3)	2.7(3)	294(3)	38	10.1	OEPA
LM12	8.30	A	09/29/1993	3 1713	23(5)	1(1)	8(5)	3(3)	13(1)	16(1)	3(5)	51(1)	6(3)	36(3)	0.6(3)	666(5)	36	9.5	OEPA
LM12	8.00	A	09/01/1993	3 1714	31(5)	1(1)	6(5)	5(5)	15(1)	23(3)	1(5)	5(5)	4(1)	44(3)	1.1(3)	560(5)	42	10.4	OEPA
LM12	8.00	A	09/29/1993	3 1714	35(5)	2(3)	7(5)	3(3)	10(1)	12(1)	4(5)	24(3)	6(3)	61(5)	3.3(1)	829(5)	40	10.4	OEPA
LM16	3.50	A	08/11/1993	3 1752	28(5)	1(1)	10(5)	4(5)	5(1)	6(1)	5(5)	22(3)	6(3)	50(3)	1.8(3)	756(5)	40	10.2	OEPA
LM16	3.50	A	09/01/1993	3 1752	26(5)	2(3)	9(5)	3(3)	11(1)	13(1)	5(5)	17(3)	12(5)	28(3)	4.4(1)	438(5)	40	10.3	OEPA
LM16	3.50	A	09/30/1993	3 1752	23(5)	0(1)	7(5)	4(5)	2(1)	3(1)	2(5)	74(1)	4(1)	20(1)	1.3(3)	1282(5)	34	9.2	OEPA
LM17	1.60	A	08/11/1993	3 1754	9(1)	1(1)	2(1)	0(1)	0(1)	1(1)	4(5)	16(3)	2(1)	77(5)	0.0(5)	344(3)	28	6.9	OEPA
LM17	1.60	A	09/01/1993	3 1754	17(3)	4(5)	3(3)	0(1)	0(1)	10(1)	0(5)	18(3)	26(5)	40(3)	0.0(5)	124(1) *	36	8.3	OEPA
LM17	1.60	A	09/30/1993	3 1754	10(3)	3(3)	2(1)	1(1)	0(1)	0(1)	0(5)	93(1)	0(1)	6(1)	0.1(5)	1328(5)	28	6.8	OEPA
LMRB01	0.20	A	08/11/1993	3 1757	14(3)	2(3)	4(3)	0(1)	0(1)	8(1)	1(5)	28(1)	11(5)	33(3)	0.0(5)	176(1) *	32	7.8	OEPA
LMRB01	0.20	A	09/01/1993	3 1757	11(3)	1(1)	3(3)	0(1)	0(1)	4(1)	0(5)	54(1)	19(5)	12(1)	1.8(3)	114(1) *	26	7.1	OEPA
LMRB01	0.20	A	09/30/1993	3 1757	13(3)	1(1)	2(1)	0(1)	0(1)	0(1)	0(5)	84(1)	1(1)	15(1)	0.2(5)	1288(5)	26	6.9	OEPA
Yea	ar: 1989	9																	
LM10	11.40	Н	10/12/1989	9 1210	15(3)	3(3)	1(1)	0(1)	3(0)	7(1)	17(3)	27(3)	7(5)	60(5)	0.0(5)	75(1) *	32	4.5	OEPA
LMRB04	10.00	Н	10/12/1989	9 1711	9(1)	0(1)	0(1)	2(1)	0(0)	20(3)	0(5)	10(5)	0(1)	83(5)	0.0(5)	90(1) *	30	4.3	OEPA

^{• -} IBI is low end adjusted.

^{*} - < 200 Total individuals in sample

^{** - &}lt; 50 Total individuals in sample

						Numl	per of				Perce	ent of Ind	ividuals			Rel.No. minus			
Site ID	River Mile		oe Date a	Drainage area (sq mi)	Total species				Rnd-bodied suckers	Simple Lithophils	Tolerant fishes	Omni- vores	Top carnivores	Insect- ivores	DELT anomalies	tolerants /(1.0 km)	IBI	Modified lwb	Source
LM12	8.00	Н	10/12/1989	1714	16(3)	2(3)	0(1)	3(3)	0(0)	15(1)	3(5)	5(5)	1(3)	92(5)	0.0(5)	483(3)	38	4.6	OEPA
LM12	8.00	Н	11/07/1989	1714	13(3)	1(1)	0(1)	2(1)	0(0)	3(1)	2(5)	29(3)	0(1)	71(5)	0.0(5)	612(3)	30	5.3	OEPA
Yea	ar: 1988	;																	
LM06	19.30	В	08/04/1988	3 1162	22(5)	3(3)	6(5)	1(1)	7(1)	10(1)	13(5)	34(1)	21(5)	41(3)	4.1(1)	525(5)	36	9.9	OEPA
LM06	19.30	Н	08/04/1988	3 1162	4(1)	1(1)	0(1)	0(1)	0(0)	0(1)	92(1)	86(1)	6(5)	8(1)	0.0(5)	8(1) *	20	2.9	OEPA
LM09	13.00	В	07/29/1988	3 1203	19(3)	2(3)	5(3)	2(3)	16(1)	23(3)	2(5)	27(3)	23(5)	44(3)	0.8(3)	630(5)	40	10.4	OEPA
LM09	13.00	Н	07/29/1988	3 1203	5(1)	0(1)	0(1)	1(1)	0(0)	53(5)	37(1)	37(1)	0(1)	61(5)	0.0(5)	152(1)	24	4.9	OEPA
LM11	11.00	В	07/25/1988	3 1707	16(3)	2(3)	3(3)	1(1)	30(3)	36(3)	4(5)	20(3)	17(5)	54(5)	0.0(5)	880(5)	44	10.1	OEPA
LM11	11.00	Н	07/25/1988	3 1707	13(3)	2(3)	1(1)	2(1)	0(0)	85(5)	1(5)	3(5)	7(5)	90(5)	0.0(5)	1062(5)	44	6.0	OEPA
LM13	7.00	D	08/05/1988	3 1723	17(3)	3(3)	3(1)	1(1)	11(0)	12(1)	11(3)	34(3)	26(5)	38(3)	0.0(5)	98(1) *	30	8.0	OEPA
LM13	7.00	Н	08/05/1988	3 1723	12(3)	3(3)	1(1)	0(1)	0(0)	0(1)	9(3)	10(5)	3(3)	86(5)	0.0(5)	294(3)	34	6.1	OEPA
600580	3.30	В	07/11/1988	3 1752	9(1)	1(1)	2(1)	0(1)	0(1)	0(1)	0(5)	85(1)	5(1)	6(1)	0.0(5)	170(1) *	20	6.9	OEPA
Yea	ar: 1983	;																	
M05S08	29.50	A	07/25/1983	3 1064	20(3)	2(3)	8(5)	1(1)	17(1)	19(1)	7(5)	52(1)	7(3)	35(3)	0.0(5)	280(3)	34	9.0	OEPA
M05S08	29.50	A	08/29/1983	1064	20(3)	3(3)	6(5)	0(1)	15(1)	17(1)	10(5)	37(1)	10(5)	47(3)	0.0(5)	302(3)	36	9.0	OEPA
M05S08	29.50	A	09/26/1983	3 1064	22(5)	4(5)	5(3)	1(1)	5(1)	6(1)	5(5)	37(1)	13(5)	47(3)	0.0(5)	414(3)	38	9.3	OEPA
LM01	27.10	A	07/26/1983	3 1075	20(3)	4(5)	4(3)	1(1)	18(1)	19(1)	6(5)	37(1)	8(3)	45(3)	0.5(5)	356(3)	34	8.8	OEPA
LM01	27.10	A	08/30/1983	3 1075	20(3)	3(3)	5(3)	1(1)	20(3)	22(1)	4(5)	9(5)	6(3)	76(5)	1.1(3)	518(5)	40	9.5	OEPA
LM01	27.10	A	09/27/1983	3 1075	17(3)	2(3)	6(5)	1(1)	13(1)	13(1)	1(5)	20(3)	8(3)	67(5)	0.0(5)	492(5)	40	8.8	OEPA
LM02	24.20	A	07/26/1983	3 1145	14(3)	1(1)	5(3)	2(3)	47(5)	51(5)	3(5)	28(3)	6(3)	53(3)	3.8(1)	154(1) *	36	8.7	OEPA
LM02	24.20	A	08/30/1983	3 1145	24(5)	4(5)	5(3)	3(3)	30(3)	32(3)	4(5)	17(3)	6(3)	70(5)	2.0(3)	494(5)	46	9.4	OEPA
LM02	24.20	A	09/27/1983	1145	23(5)	3(3)	5(3)	2(3)	21(3)	23(3)	0(5)	48(1)	9(3)	41(3)	0.0(5)	604(5)	42	9.5	OEPA
LM05	20.90	A	07/26/1983	1161	17(3)	4(5)	5(3)	1(1)	30(3)	30(3)	1(5)	45(1)	11(5)	39(3)	2.7(3)	242(3)	38	8.6	OEPA
LM05	20.90	A	08/30/1983	3 1161	19(3)	3(3)	7(5)	1(1)	29(3)	29(3)	1(5)	24(3)	6(3)	67(5)	0.0(5)	456(5)	44	9.1	OEPA
LM05	20.90	A	09/27/1983	3 1161	14(3)	2(3)	5(3)	1(1)	12(1)	12(1)	1(5)	56(1)	5(1)	35(3)	0.0(5)	690(5)	32	9.1	OEPA
LM07	18.50	A	07/26/1983	3 1187	16(3)	2(3)	5(3)	1(1)	32(3)	33(3)	1(5)	41(1)	8(3)	46(3)	5.0(1)	276(3)	32	9.0	OEPA

^{• -} IBI is low end adjusted.

^{*} - < 200 Total individuals in sample

^{** - &}lt; 50 Total individuals in sample

Appendix Table A-1. Boatable Ohio IBI scores and metrics for data collected in lower Little Miami River study area including historical data.

					Numl	ber of				Perce	ent of Indi	viduals			Rel.No. minus			
Site ID	River	vne Date	Drainage area (sq mi)	Total			Intolerant		Simple Lithophils	Tolerant fishes	Omni- vores	Top carnivores	Insect- ivores	DELT anomalies	tolerants /(1.0 km)	IBI	Modified lwb	Source
-							<u> </u>		· · · · · · · · · · · · · · · · · · ·									
LM07	18.50	A 08/30/19	83 1187	20(3)	3(3)	6(5)	1(1)	15(1)	15(1)	1(5)	23(3)	3(1)	71(5)	0.7(3)	1002(5)	36	9.1	OEPA
LM07	18.50	A 09/27/19	83 1187	20(3)	2(3)	8(5)	2(3)	21(3)	21(1)	0(5)	40(1)	8(3)	43(3)	0.0(5)	456(5)	40	9.5	OEPA
M05P11	13.10	A 07/26/19	83 1203	16(3)	1(1)	6(5)	1(1)	10(1)	11(1)	2(5)	69(1)	14(5)	15(1)	4.4(1)	194(1) *	26	8.0	OEPA
M05P11	13.10	A 08/30/19	83 1203	22(5)	3(3)	7(5)	1(1)	7(1)	7(1)	3(5)	35(1)	6(3)	52(3)	0.0(5)	580(5)	38	8.9	OEPA
M05P11	13.10	A 09/27/19	83 1203	16(3)	2(3)	5(3)	2(3)	6(1)	6(1)	2(5)	70(1)	7(3)	20(1)	0.3(5)	622(5)	34	8.4	OEPA
LM12	8.40	A 07/27/19	83 1713	18(3)	4(5)	3(3)	1(1)	3(1)	3(1)	1(5)	11(5)	4(1)	84(5)	0.3(5)	734(5)	40	8.0	OEPA
LM12	8.40	A 08/30/19	83 1713	20(3)	3(3)	6(5)	0(1)	7(1)	7(1)	1(5)	18(3)	4(1)	73(5)	0.4(5)	910(5)	38	9.1	OEPA
LM12	8.40	A 09/28/19	83 1713	19(3)	3(3)	5(3)	0(1)	8(1)	10(1)	2(5)	63(1)	7(3)	26(1)	0.3(5)	630(5)	32	8.9	OEPA
LM17	1.60	A 07/27/19	83 1754	13(3)	2(3)	4(3)	0(1)	1(1)	1(1)	1(5)	32(1)	6(3)	61(5)	0.0(5)	352(3)	34	7.0	OEPA
LM17	1.60	A 08/31/19	83 1754	14(3)	3(3)	2(1)	0(1)	0(1)	0(1)	0(5)	36(1)	0(1)	64(5)	0.0(5)	15712(5)	32	8.8	OEPA
LM17	1.60	A 09/28/19	83 1754	16(3)	3(3)	2(1)	0(1)	0(1)	0(1)	1(5)	79(1)	9(3)	9(1)	0.0(5)	1684(5)	30	8.6	OEPA
LMRB01	0.40	A 07/27/19	83 1757	12(3)	2(3)	3(3)	0(1)	0(1)	0(1)	2(5)	5(5)	16(5)	70(5)	0.0(5)	105(1) *	38	7.1	OEPA
LMRB01	0.40	A 08/31/19	83 1757	13(3)	2(3)	2(1)	0(1)	0(1)	0(1)	0(5)	98(1)	1(1)	1(1)	0.0(5)	6903(5)	28	7.8	OEPA
LMRB01	0.40	A 09/28/19	83 1757	15(3)	2(3)	1(1)	1(1)	0(1)	1(1)	0(5)	76(1)	7(3)	11(1)	0.0(5)	1358(5)	30	7.6	OEPA

^{• -} IBI is low end adjusted.

^{* -} < 200 Total individuals in sample

^{** -} < 50 Total individuals in sample

Appendix Table A-1. Wadeable IBI scores and metrics for the Little Miami River study area including historical data.

						Number	of			P	ercent of	Individuals			Rel.No. minus		
River Mile	Туре	Date	Drainage area (sq mi)	Total species	Sunfish species	Sucker species	Intolerant species		Simple Lithophils	Tolerant fishes	Omni- vores	Top carnivores	Insect- ivores	DELT anomalies	tolerants /(0.3km)	IBI	Modified lwb
Sycam	ore Cr	reek - (110	007)														
Year:	2022	,															
0.50	D	08/11/202	22 24.0	23(5)	4(5)	4(5)	4(5)	4(5)	8(1)	10(5)	6(5)	3.8(3)	90(5)	0.0(5)	492(3)	52	7.9
0.50	D	09/23/202	22 24.0	20(5)	3(3)	3(5)	3(3)	2(3)	10(1)	10(5)	7(5)	16.2(5)	75(5)	0.0(5)	141(1)	* 46	7.4
0.10	D	08/17/202	22 24.0	23(5)	3(3)	2(3)	5(5)	4(5)	17(1)	5(5)	4(5)	5.5(5)	87(5)	0.0(5)	363(3)	50	7.5
0.10	D	09/23/202	22 24.0	21(5)	3(3)	3(5)	4(5)	3(3)	11(1)	19(5)	19(3)	4.5(3)	76(5)	0.3(3)	429(3)	44	8.1
Year:	2017																
0.50	D	09/21/201	17 24.0	17(3)	3(3)	1(1)	2(3)	3(3)	15(1)	43(3)	42(1)	1.8(3)	45(3)	0.0(5)	293(3)	32	7.2
0.50	E	07/26/201	17 24.0	24(5)	2(3)	5(5)	3(3)	4(5)	17(1)	33(3)	32(3)	1.6(3)	33(3)	0.2(3)	752(5)	42	8.6
0.10	D	07/26/201	17 24.0	22(5)	3(3)	2(3)	4(5)	3(3)	29(3)	8(5)	10(5)	3.6(3)	75(5)	0.9(3)	458(3)	46	8.7
0.10	D	09/21/201	17 24.0	19(5)	4(5)	1(1)	3(3)	3(3)	39(5)	16(5)	14(5)	8.4(5)	76(5)	0.0(5)	165(1)	* 48	7.5
Year:	2012	,															
0.50	D	07/30/201	12 24.0	18(5)	4(5)	1(1)	2(3)	3(3)	6(1)	44(3)	32(3)	2.5(3)	65(5)	0.5(5)	167(1)	38	6.9
0.50	D	09/25/201	12 24.0	19(5)	4(5)	2(3)	2(3)	3(3)	5(1)	21(5)	6(5)	9.9(5)	82(5)	0.5(3)	263(3)	46	7.7
0.20	D	07/30/201	12 24.0	19(5)	4(5)	3(5)	2(3)	3(3)	18(3)	5(5)	0(5)	6.7(5)	88(5)	0.0(5)	339(3)	52	8.2
0.20	D	09/25/201	12 24.0	19(5)	4(5)	2(3)	2(3)	4(5)	16(1)	5(5)	0(5)	11.4(5)	80(5)	0.5(5)	314(3)	50	7.5
Year:	2007																
0.50	E	08/16/200	07 24.0	24(5)	2(3)	2(3)	4(5)	5(5)	23(3)	6(5)	3(5)	3.8(3)	33(3)	0.1(5)	2526(5)	50	8.8
0.50	E	09/12/200	07 24.0	25(5)	4(5)	4(5)	4(5)	4(5)	23(3)	8(5)	5(5)	11.0(5)	51(3)	0.0(5)	1218(5)	56	9.1
0.10	D	08/16/200	07 24.0	28(5)	4(5)	6(5)	3(3)	5(5)	42(5)	33(3)	33(3)	2.6(3)	46(3)	0.0(5)	1465(5)	50	9.4
0.10	D	09/12/200	07 24.0	25(5)	2(3)	3(5)	3(3)	4(5)	27(3)	6(5)	7(5)	5.3(5)	73(5)	0.0(5)	1878(5)	54	9.4

na - Qualitative data, Modified Iwb not applicable.

^{• -} IBI is low end adjusted.

^{* - &}lt; 200 Total individuals in sample

^{** - &}lt; 50 Total individuals in sample

[•] One or more species excluded from IBI calculation.

Appendix Table A-1. Wadeable IBI scores and metrics for the Little Miami River study area including historical data.

						Number o	of			Р	ercent of	f Individuals			Rel.No. minus		
River Mile	Туре	Date	Drainage area (sq mi)	Total species	Sunfish species		Intolerant species		Simple Lithophils	Tolerant fishes	Omni- vores	Top carnivores	Insect- ivores	DELT anomalies	tolerants /(0.3km)	IBI	Modified lwb
Year:	1998																
0.40	E	09/10/199	98 24.0	13(3)	4(5)	1(1)	0(1)	1(1)	3(1)	15(5)	8(5)	7.8(5)	44(3)	0.0(5)	292(3)	38	7.5
0.40	D	07/21/199	98 24.0	18(5)	3(3)	2(3)	0(1)	1(1)	12(1)	42(3)	31(3)	0.5(1)	26(3)	0.0(5)	400(3)	32	7.6
0.24	D	07/21/199	98 24.0	10(3)	3(3)	0(1)	0(1)	0(1)	20(3)	10(5)	0(5)	25.0(5)	65(5)	0.0(5)	108(1)	* 38	5.5
0.24	D	09/10/199	98 24.0	13(3)	1(1)	0(1)	0(1)	1(1)	31(3)	34(3)	28(3)	0.6(1)	53(5)	0.0(5)	696(3)	30	7.7
0.20	D	09/10/199	98 24.0	15(3)	4(5)	1(1)	0(1)	1(1)	28(3)	29(5)	24(3)	1.6(3)	71(5)	0.0(5)	446(3)	38	8.0
0.20	D	07/21/199	98 24.0	10(3)	3(3)	0(1)	0(1)	1(1)	6(1)	36(3)	8(5)	5.2(5)	82(5)	0.0(5)	124(1)	* 34	6.1
Year:	1993																
0.40	D	07/28/199	24.0	12(3)	1(1)	2(3)	0(1)	2(3)	28(3)	35(3)	26(3)	0.2(1)	4(1)	0.0(5)	838(5)	32	6.1
0.40	D	09/09/199	24.0	17(3)	3(3)	4(5)	1(1)	2(3)	15(1)	26(5)	13(5)	0.1(1)	12(1)	0.1(5)	1326(5)	38	7.2
0.24	D	07/28/199	24.0	8(1)	0(1)	2(3)	0(1)	2(3)	29(3)	56(1)	13(5)	0.0(1)	3(1)	0.0(5)	1140(5)	30	6.6
0.24	D	09/09/199	24.0	8(1)	1(1)	1(1)	0(1)	1(1)	30(3)	44(3)	11(5)	0.6(1)	6(1)	0.0(5)	875(5)	28	6.6
0.20	D	07/27/199	24.0	17(3)	3(3)	3(5)	1(1)	1(1)	10(1)	15(5)	20(3)	2.4(3)	10(1)	0.4(5)	324(3)	34	7.3
0.20	D	09/09/199	24.0	21(5)	3(3)	5(5)	0(1)	2(3)	32(3)	15(5)	13(5)	5.2(5)	49(3)	1.3(3)	297(3)	44	8.1
Year:	1983																
0.40	S	07/27/198	33 24.0	10(3)	2(3)	1(1)	0(1)	1(1)	19(3)	51(1)	3(5)	0.0(1)	13(1)	0.4(3)	613(3)	26	6.9
0.40	S	10/06/198	33 24.0	10(3)	2(3)	1(1)	0(1)	0(1)	21(3)	48(3)	25(3)	0.3(1)	12(1)	0.0(5)	597(3)	28	6.9
0.10	S	07/28/198	33 24.0	4(1)	2(3)	1(1)	0(1)	0(1)	4(1)	11(1)	64(1)	0.0(1)	36(1)	0.0(3)	83(1)	* 16	• 4.9
0.10	S	10/06/198	33 24.0	7(1)	2(3)	1(1)	0(1)	0(1)	60(1)	13(1)	21(3)	0.0(1)	72(1)	0.0(3)	137(1)	* 18	• 5.5

na - Qualitative data, Modified Iwb not applicable.

^{• -} IBI is low end adjusted.

^{* - &}lt; 200 Total individuals in sample

^{** - &}lt; 50 Total individuals in sample

[•] One or more species excluded from IBI calculation.

Appendix Table A-1. Headwater IBI scores and metrics for the Little Miami River study area including historical data also sampled in 2022.

						Numb	er of				Perc	ent of Individ	uals		Rel.No.	
Site ID	River Mile Type		Drainage area (sq mi)	Total species	Minnow species	Headwater species	Sensitive species	Darter & Sculpin species	Simple Lithophils	Tolerant fishes	Omni- vores	Pioneering fishes	Insect- ivores	DELT anomalies	minus tolerants /(0.3km)	IBI
(11-0	002) - Cloug	gh Creek														
Year:	2022															
LM95	3.20 F	07/21/202	2 1.9	5(3)	3(3)	1(1)	0(1)	1(1)	3(3)	74(1)	1(5)	32(3)	1(1)	0.0(5)	186(3)	30
LM98	0.60 F	07/21/202	2 7.8	10(3)	5(3)	2(3)	1(1)	3(3)	4(3)	48(3)	6(5)	13(5)	14(1)	0.0(5)	488(3)	38
(11-0 Year:	0 04) - Duck 2022	Creek														
LM71	6.10 F	07/14/202	2 2.2	0(1)	0(1)	0(1)	0(1)	0(1)	0(1)	0(1)	0(1)	0(1)	0(1)	0.0(1)	0(1) * *	12
LM72	5.14 F	07/13/202	2 5.0	3(1)	2(1)	1(1)	0(1)	0(1)	1(1)	100(1)	0(5)	96(1)	93(5)	1.4(5)	0(1) *	24
LM73	4.58 F	07/22/202	2 5.8	1(1)	0(1)	0(1)	0(1)	0(1)	0(1)	100(1)	0(1)	100(1)	100(1)	0.0(1)	0(1) * *	12
LM74	3.90 F	07/21/202	2 9.5	8(3)	5(3)	1(1)	0(1)	0(1)	2(1)	85(1)	4(5)	81(1)	54(5)	0.2(5)	154(1)	28
LM75	3.40 E	07/13/202	2 11.5	1(1)	1(1)	1(1)	0(1)	0(1)	1(1)	100(1)	0(1)	0(1)	0(1)	0.0(1)	0(1) * *	1.
LM76	2.80 E	07/13/202	2 11.7	5(1)	3(1)	1(1)	0(1)	0(1)	2(1)	97(1)	1(5)	87(1)	79(5)	0.0(5)	8(1)	24
LM77	2.00 E	07/22/202	2 14.3	14(3)	7(5)	2(3)	3(3)	3(3)	4(3)	63(1)	12(5)	39(3)	33(3)	1.0(3)	152(1)	30
LM79	0.50 E	07/22/202	2 14.6	6(1)	1(1)	0(1)	1(1)	0(1)	0(1)	69(1)	0(5)	36(3)	98(5)	0.0(5)	28(1) *	20
(11-0 Year:	0 07) - Syca i 2022	more Cre	ek													
LM50	1.10 E	09/09/202	2 12.5	9(3)	5(3)	2(3)	0(1)	1(1)	2(1)	64(1)	36(1)	57(1)	7(1)	0.0(5)	432(3)	2
(11-0 Year:	0 49) - Unna 2022	med Trib	utary to Sy	/camore	Cr. at RI	M 1.12										
LM55	1.20 F	07/22/202	2 5.3	3(1)	2(1)	0(1)	0(1)	0(1)	0(1)	48(3)	0(5)	48(3)	1(1)	0.5(5)	336(3)	20
LM56	0.20 F	09/09/202	2 5.6	8(3)	5(3)	2(3)	0(1)	1(1)	2(1)	70(1)	14(3)	51(3)	5(1)	0.0(5)	212(3)	28
(11 - 0 Year:	051) - East 2022	Fork Duc	k Creek													
LM81	2.30 F	07/13/202	2 0.5	1(1)	0(1)	0(1)	0(1)	0(1)	0(1)	0(1)	0(1)	0(1)	0(1)	0.0(1)	0(1) * *	1:

^{• -} IBI is low end adjusted.

05/30/2023

^{* - &}lt; 200 Total individuals in sample

^{** - &}lt; 50 Total individuals in sample

[•] One or more species excluded from IBI calculation.

Appendix Table A-1. Headwater IBI scores and metrics for the Little Miami River study area including historical data also sampled in 2022.

						Numb	er of				Perc	ent of Individ	uals		Rel.No.	
Site ID	River Mile Type	Dra Date area	ainage (sq mi)	Total species	Minnow species	Headwater species	Sensitive species	Darter & Sculpin species	Simple Lithophils	Tolerant fishes	Omni- vores	Pioneering fishes	Insect- ivores	DELT anomalies	minus tolerants /(0.3km)	ΙB
LM85	2.00 F	07/13/2022	1.3	3(1)	3(3)	1(1)	0(1)	0(1)	1(1)	90(1)	0(5)	57(1)	0(1)	3.3(5)	6(1) *	22
LM84	0.50 F	07/14/2022	1.9	3(1)	3(3)	1(1)	0(1)	0(1)	1(1)	70(1)	0(5)	8(5)	0(1)	0.0(5)	196(3)	28
(11-0 Year:	,	med Tributa	ry to Dı	uck Cree	k at RM 4	4.8										
LM83	0.80 F	07/13/2022	1.2	1(1)	0(1)	0(1)	0(1)	0(1)	0(1)	0(1)	0(1)	0(1)	0(1)	0.0(1)	0(1) * *	12
(11-0 Year:	,	Duck Creek														
LM86	2.40 F	07/14/2022	0.2	3(1)	3(3)	1(1)	0(1)	0(1)	1(3)	77(1)	0(5)	21(5)	0(1)	0.0(5)	226(5)	3
LM87	1.90 F	07/14/2022	0.4	4(3)	3(3)	1(1)	0(1)	0(1)	2(5)	88(1)	3(5)	39(3)	0(1)	0.0(5)	86(3)	3
LM90	1.00 F	07/22/2022	0.5	4(3)	3(3)	1(1)	0(1)	0(1)	2(3)	82(1)	2(5)	45(3)	0(1)	0.0(5)	186(5)	3
LM92	0.49 F	07/21/2022	1.6	0(1)	0(1)	0(1)	0(1)	0(1)	0(1)	0(1)	0(1)	0(1)	0(1)	0.0(1)	0(1) * *	: 1
(11-0 Year:	,	med Tributa	ry to Lii	ttle Duck	Creek at	RM 4.42										
LM82	0.20 F	07/13/2022	0.5	2(1)	2(3)	1(1)	0(1)	0(1)	1(3)	100(1)	0(5)	26(5)	0(1)	0.0(5)	0(1)	2
′11-0 Year:	-	med Tributa	ry (1.82	2) to Trib	utary to S	Sycamore C	Creek (1.1,)								
LM54	2.40 F	07/14/2022	1.6	1(1)	0(1)	0(1)	0(1)	0(1)	0(1)	0(1)	0(1)	0(1)	0(1)	0.0(1)	0(1) * *	: 1
(11-0 Year:	1 04) - Duck 2017	Creek														
LM71	6.10 E	07/25/2017	2.2	1(1)	1(1)	0(1)	0(1)	0(1)	0(1)	100(1)	0(1)	100(1)	0(1)	0.0(1)	0(1) * *	1
LM72	5.14 F	07/25/2017	5.0	6(3)	5(3)	1(1)	0(1)	0(1)	1(1)	97(1)	12(5)	84(1)	16(1)	0.0(5)	8(1)	2
LM73	4.58 F	07/27/2017	5.8	1(1)	1(1)	1(1)	0(1)	0(1)	1(1)	100(1)	0(1)	0(1)	0(1)	0.0(1)	0(1) * *	^k 1
LM74	3.90 E	07/25/2017	9.5	0(1)	0(1)	0(1)	0(1)	0(1)	0(1)	0(1)	0(1)	0(1)	0(1)	0.0(1)	0(1) * *	: 1
LM74	3.90 F	09/20/2017	9.5	0(1)	0(1)	0(1)	0(1)	0(1)	0(1)	0(1)	0(1)	0(1)	0(1)	0.0(1)	0(1) * *	s 1

^{• -} IBI is low end adjusted.

05/30/2023

^{* - &}lt; 200 Total individuals in sample

^{** - &}lt; 50 Total individuals in sample

[•] One or more species excluded from IBI calculation.

Appendix Table A-1. Headwater IBI scores and metrics for the Little Miami River study area including historical data also sampled in 2022.

						Numb	er of				Perc	ent of Individ	uals		Rel.No.	
Site ID	River Mile Type		Drainage area (sq mi)	Total species	Minnow species	Headwater species	Sensitive species	Darter & Sculpin species	Simple Lithophils	Tolerant fishes	Omni- vores	Pioneering fishes	Insect- ivores	DELT anomalies	minus tolerants /(0.3km)	ΙΒ
LM75	3.40 E	07/25/201	7 11.5	0(1)	0(1)	0(1)	0(1)	0(1)	0(1)	0(1)	0(1)	0(1)	0(1)	0.0(1)	0(1) * *	12
LM75	3.40 E	09/20/201	7 11.5	0(1)	0(1)	0(1)	0(1)	0(1)	0(1)	0(1)	0(1)	0(1)	0(1)	0.0(1)	0(1) * *	12
LM76	2.80 E	07/25/201	7 11.7	8(3)	5(3)	1(1)	0(1)	1(1)	3(1)	80(1)	13(5)	37(3)	2(1)	0.0(5)	102(1)	20
LM76	2.80 E	09/20/201	7 11.7	7(1)	5(3)	1(1)	0(1)	0(1)	2(1)	82(1)	9(5)	34(3)	3(1)	0.0(5)	54(1)	24
LM77	2.00 E	07/27/201	7 14.3	9(3)	5(3)	1(1)	0(1)	0(1)	2(1)	86(1)	14(5)	43(3)	6(1)	0.0(5)	60(1)	2
LM77	2.00 E	09/20/201	7 14.3	12(3)	5(3)	1(1)	1(1)	2(1)	4(3)	77(1)	12(5)	35(3)	4(1)	0.0(5)	184(1)	28
LM79	0.50 E	09/20/201	7 14.6	13(3)	6(3)	1(1)	3(3)	0(1)	4(3)	62(1)	40(1)	46(3)	36(3)	0.0(5)	136(1)	2
LM79	0.50 E	07/27/201	7 14.6	15(3)	8(5)	1(1)	2(1)	1(1)	5(3)	49(3)	26(3)	44(3)	36(3)	0.0(5)	186(1)	3
Year:																
LM50		07/24/201		9(3)	6(3)	2(3)	1(1)	2(1)	4(3)	41(3)	11(5)	22(5)	11(1)	0.0(5)	3734(5)	2
LM50	1.10 E	09/21/201	7 12.5	6(1)	4(3)	2(3)	0(1)	1(1)	2(1)	36(3)	8(5)	17(5)	12(1)	0.0(5)	1162(5)	3
LM51	0.50 E	09/26/201	7 22.8	0(0)	0(0)	0(0)	0(0)	0(0)	0(0)	0(0)	0(0)	0(0)	0(0)	0.0(0)	0(0) * *	(
(11-0 Year:	49) - Unna 2017	med Trib	utary to Sy	/camore	Cr. at RN	Л 1.12										
LM55	1.20 F	07/24/201	7 5.3	2(1)	2(1)	0(1)	0(1)	0(1)	0(1)	56(3)	0(5)	56(1)	0(1)	0.0(5)	260(3)	2
LM56	0.20 F	07/24/201	7 5.6	7(3)	5(3)	2(3)	0(1)	1(1)	2(1)	46(3)	9(5)	38(3)	3(1)	0.0(5)	744(5)	3
(11-0 Year:	51) - East 2017	Fork Duc	k Creek													
LM81	2.30 F	08/30/201	7 0.4	1(1)	0(1)	0(1)	0(1)	0(1)	0(1)	0(1)	0(1)	0(1)	0(1)	0.0(1)	0(1) * *	1
LM85	2.00 F	07/26/201	7 1.3	3(1)	3(3)	1(1)	0(1)	0(1)	1(1)	82(1)	0(5)	49(3)	0(1)	0.0(5)	70(3)	2
LM84	0.50 F	07/27/201	7 2.4	3(1)	3(3)	1(1)	0(1)	0(1)	1(1)	69(1)	0(5)	34(3)	0(1)	0.0(5)	52(1) *	2

Year: 2017

 ^{◆ -} IBI is low end adjusted.
 A1 - 15
 05/30/2023

^{* - &}lt; 200 Total individuals in sample

^{** - &}lt; 50 Total individuals in sample

^{• -} One or more species excluded from IBI calculation.

Appendix Table A-1. Headwater IBI scores and metrics for the Little Miami River study area including historical data also sampled in 2022.

						Numb	er of				Perd	ent of Individ	uals		Rel.No.	
Site ID	River Mile Type	Date	Drainage area (sq mi)	Total species	Minnow species	Headwater species	Sensitive species	Darter & Sculpin species	Simple Lithophils	Tolerant fishes	Omni- vores	Pioneering fishes	Insect- ivores	DELT anomalies	minus tolerants /(0.3km)	IBI
LM83	0.80 F	07/25/20	17 1.2	1(1)	0(1)	0(1)	0(1)	0(1)	0(1)	0(1)	0(1)	0(1)	0(1)	0.0(1)	0(1) * *	12
	0.20 E	07/25/20	17 0.0	1(1)	1(1)	0(1)	0(1)	0(1)	0(1)	100(1)	0(1)	100(1)	0(1)	0.0(1)	0(1) * *	12
(11-0	76) - Little	Duck Cı	reek													
Year:	2017															
LM86	2.40 F	07/26/20	17 0.5	4(3)	3(3)	1(1)	0(1)	0(1)	2(5)	79(1)	1(5)	15(5)	0(1)	0.0(5)	126(5)	36
LM87	1.90 F	07/26/20	17 0.4	4(3)	3(3)	1(1)	0(1)	0(1)	2(5)	83(1)	2(5)	32(3)	0(1)	0.0(5)	144(5)	34
LM90	1.00 F	07/27/20	17 1.1	4(3)	3(3)	1(1)	0(1)	0(1)	2(3)	88(1)	1(5)	42(3)	0(1)	0.0(5)	48(3)	30
LM92	0.49 F	07/27/20	17 1.6	1(1)	0(1)	0(1)	0(1)	0(1)	0(1)	0(1)	0(1)	0(1)	0(1)	0.0(1)	0(1) * *	12
(11-0 Year:	,	med Trii	butary to Lit	ttle Duck	Creek a	t RM 4.42										
LM82	0.20 F	08/30/20	17 0.3	1(1)	1(1)	1(1)	0(1)	0(1)	1(3)	100(1)	0(5)	0(5)	0(1)	0.0(5)	0(1)	26
(11-0 Year:	,	med Trii	b (1.82) to T	Trib to S	ycamore	Creek (1.1,)									
LM54	2.40 F	07/26/20	17 1.5	1(1)	0(1)	0(1)	0(1)	0(1)	0(1)	0(1)	0(1)	0(1)	0(1)	0.0(1)	0(1) * *	12
(11-0 Year:	1 02) - Cloug 2012	gh Creek	(
LM99	4.60 F	08/30/20	12 0.9	2(1)	2(3)	1(1)	0(1)	0(1)	1(3)	100(1)	0(3)	64(1)	0(1)	0.0(3)	0(1) *	20
LM95	3.20 F	08/29/20	12 2.0	5(3)	4(3)	1(1)	1(1)	1(1)	2(3)	79(1)	0(5)	40(3)	1(1)	0.0(5)	98(3)	30
LM96	3.00 F	08/29/20	12 5.4	9(5)	6(5)	1(1)	1(1)	1(3)	3(3)	73(1)	11(3)	48(3)	12(1)	0.0(5)	404(5)	36
LM97	1.20 E	08/30/20	12 7.5	10(3)	6(5)	1(1)	1(1)	1(1)	4(3)	74(1)	47(1)	65(1)	18(1)	0.0(5)	500(3)	26
LM98	0.60 F	08/30/20	12 7.8	7(3)	5(3)	1(1)	1(1)	1(1)	2(1)	72(1)	20(3)	32(3)	16(1)	0.0(5)	212(3)	26
(11-0 Year:	04) - Duck 2012	Creek														
	6.00 E	08/30/20	12 2.2	0(1)	0(1)	0(1)	0(1)	0(1)	0(1)	0(1)	0(1)	0(1)	0(1)	0.0(1)	0(1) * *	10

^{• -} IBI is low end adjusted.

05/30/2023

^{* - &}lt; 200 Total individuals in sample

^{** - &}lt; 50 Total individuals in sample

[•] One or more species excluded from IBI calculation.

Appendix Table A-1. Headwater IBI scores and metrics for the Little Miami River study area including historical data also sampled in 2022.

						Numb	er of				Perc	ent of Individ	uals		Rel.No.	
Site ID	River Mile Type	Dr Date area	ainage a (sq mi)	Total species	Minnow species	Headwater species	Sensitive species	Darter & Sculpin species	Simple Lithophils	Tolerant fishes	Omni- vores	Pioneering fishes	Insect- ivores	DELT anomalies	minus tolerants /(0.3km)	IBI
LM78	5.20 E	08/15/2012	3.5	0(1)	0(1)	0(1)	0(1)	0(1)	0(1)	0(1)	0(1)	0(1)	0(1)	0.0(1)	2(1) * *	12
LM72	4.60 E	08/07/2012	5.1	4(1)	3(3)	0(1)	0(1)	0(1)	0(1)	97(1)	1(5)	97(1)	95(5)	0.7(5)	8(1)	26
LM73	4.40 F	08/07/2012	5.8	1(1)	0(1)	0(1)	0(1)	0(1)	0(1)	100(1)	0(1)	100(1)	100(1)	0.0(1)	0(1) * *	12
LM75	3.30 F	08/07/2012	11.4	0(1)	0(1)	0(1)	0(1)	0(1)	0(1)	0(1)	0(1)	0(1)	0(1)	0.0(1)	0(1) * *	12
LM76	2.90 F	08/15/2012	11.8	4(1)	3(1)	1(1)	0(1)	0(1)	1(1)	30(5)	2(5)	6(5)	74(5)	0.0(5)	180(1)	32
LM77	1.80 E	08/15/2012	14.3	9(3)	7(5)	1(1)	0(1)	0(1)	1(1)	56(1)	7(5)	38(3)	41(3)	0.0(5)	604(3)	32
LM79	0.90 E	08/15/2012	14.6	1(1)	0(1)	0(1)	0(1)	0(1)	0(1)	0(1)	0(1)	0(1)	0(1)	0.0(1)	0(1) * *	-9
(11-0 Year:	, .	more Creek														
LM47	3.50 F	08/21/2012	3.5	4(1)	3(3)	1(1)	0(1)	0(1)	2(1)	86(1)	0(5)	54(3)	0(1)	0.0(5)	262(3)	26
LM48	2.40 F	08/22/2012	4.8	3(1)	3(3)	1(1)	0(1)	0(1)	1(1)	77(1)	0(5)	53(3)	0(1)	0.0(5)	262(3)	26
LM49	1.60 F	08/22/2012	6.6	5(1)	4(3)	1(1)	0(1)	0(1)	2(1)	71(1)	5(5)	36(3)	0(1)	1.2(3)	198(3)	24
LM50	0.70 E	08/06/2012	12.7	11(3)	5(3)	2(3)	2(1)	1(1)	4(3)	60(1)	41(1)	50(3)	3(1)	0.0(5)	264(3)	28
(11-0 Year:	,	med Tributa	ary to Sy	<i>r</i> camore	Cr. at RN	<i>l</i> 1.12										
LM55	1.00 F	08/25/2012	5.3	3(1)	3(3)	0(1)	0(1)	0(1)	0(1)	45(3)	1(5)	45(3)	0(1)	5.1(1)	408(3)	24
LM56	0.30 F	08/25/2012	5.6	6(1)	4(3)	2(3)	0(1)	1(1)	2(1)	53(3)	7(5)	48(3)	0(1)	0.0(5)	586(5)	32
LM53	0.10 E	09/25/2012	5.7	5(1)	4(3)	2(3)	0(1)	1(1)	1(1)	69(1)	24(3)	61(1)	1(1)	0.0(5)	432(3)	24
(11-0 Year:	,															
	2.70 E	08/29/2012	0.0	0(1)	0(1)	0(1)	0(1)	0(1)	0(1)	0(1)	0(1)	0(1)	0(1)	0.0(1)	0(1) * *	-9
LM85	1.90 E	08/16/2012	1.5	3(1)	3(3)	1(1)	0(1)	0(1)	1(1)	79(1)	0(3)	71(1)	0(1)	0.0(3)	6(1) * *	18
LM84	0.50 E	08/16/2012	2.4	4(1)	4(3)	1(1)	0(1)	0(1)	1(1)	73(1)	3(5)	68(1)	0(1)	0.9(5)	58(3)	24

^{• -} IBI is low end adjusted.

^{* - &}lt; 200 Total individuals in sample

^{** - &}lt; 50 Total individuals in sample

^{• -} One or more species excluded from IBI calculation.

Appendix Table A-1. Headwater IBI scores and metrics for the Little Miami River study area including historical data also sampled in 2022.

			_			Numb	er of				Perc	ent of Individ	uals		Rel.No.	
Site ID	River Mile Type	Dra Date area	ninage (sq mi)	Total species	Minnow species	Headwater species	Sensitive species	Darter & Sculpin species	Simple Lithophils	Tolerant fishes	Omni- vores	Pioneering fishes	Insect- ivores	DELT anomalies	minus tolerants /(0.3km)	IBI
LM74	0.15 E	08/07/2012	3.4	8(3)	6(5)	1(1)	0(1)	0(1)	2(1)	69(1)	14(3)	58(1)	18(3)	0.2(5)	306(3)	28
(11-0) Year: 2	,	med Tributa	y to Du	ıck Cree	k at RM 4	4.8										
LM83	0.80 F	08/02/2012	1.2	1(1)	0(1)	0(1)	0(1)	0(1)	0(1)	0(1)	0(1)	0(1)	0(1)	0.0(1)	0(1) * *	-9
LM80	0.20 F	08/15/2012	1.4	1(1)	0(1)	0(1)	0(1)	0(1)	0(1)	100(1)	0(1)	100(1)	100(1)	0.0(1)	0(1) * *	12
(11-0) Year: 2	,	Duck Creek														
LM86	2.70 E	08/16/2012	0.4	4(3)	3(3)	1(1)	0(1)	0(1)	2(5)	82(1)	0(5)	39(3)	0(1)	0.1(5)	320(5)	34
LM87	2.60 E	08/09/2012	0.5	4(3)	3(3)	1(1)	0(1)	0(1)	2(5)	74(1)	2(5)	41(3)	0(1)	0.0(5)	246(5)	34
LM90	2.40 F	08/09/2012	0.5	4(3)	3(3)	1(1)	0(1)	0(1)	2(5)	73(1)	0(5)	47(3)	0(1)	0.0(5)	394(5)	34
LM88	1.80 F	08/09/2012	0.8	1(1)	0(1)	0(1)	0(1)	0(1)	0(1)	0(1)	0(1)	0(1)	0(1)	0.0(1)	0(1) * *	-9
LM89	1.40 F	08/09/2012	1.1	5(3)	3(3)	1(1)	0(1)	0(1)	2(3)	73(1)	1(5)	69(1)	1(1)	0.0(5)	496(5)	30
LM89	1.00 F	08/02/2012	1.1	1(1)	0(1)	0(1)	0(1)	0(1)	0(1)	0(1)	0(1)	0(1)	0(1)	0.0(1)	0(1) * *	-9
LM92	0.20 F	08/09/2012	1.7	1(1)	0(1)	0(1)	0(1)	0(1)	0(1)	0(1)	0(1)	0(1)	0(1)	0.0(1)	0(1) * *	-9
11-0 2 Year: <i>2</i>	,	med Tributa	y to Lit	tle Duck	Creek at	t RM 4.42										
LM82	0.10 F	08/15/2012	1.4	1(1)	0(1)	0(1)	0(1)	0(1)	0(1)	0(1)	0(1)	0(1)	0(1)	0.0(1)	0(1) * *	-9
/11-08 Year: /	,	med Trib (1.	82) to 7	rib to Sy	/camore	Creek (1.1))									
LM54 (11-0 0 Year: 2	02) - Cloug	08/29/2012 Ih Creek	1.6	1(1)	0(1)	0(1)	0(1)	0(1)	0(1)	0(1)	0(1)	0(1)	0(1)	0.0(1)	0(1) * *	-9
LM98	0.40 E	08/22/2007	8.0	8(3)	6(5)	1(1)	1(1)	1(1)	4(3)	14(5)	6(5)	10(5)	3(1)	0.0(5)	18400(5)	40
/11-00 Year: /	0 4) - Duck 2007	Creek														

^{• -} IBI is low end adjusted.

^{* - &}lt; 200 Total individuals in sample

^{** - &}lt; 50 Total individuals in sample

[•] One or more species excluded from IBI calculation.

Appendix Table A-1. Headwater IBI scores and metrics for the Little Miami River study area including historical data also sampled in 2022.

						Numb	er of				Perc	ent of Individ	uals		Rel.No.	
Site ID	River Mile Type	Di Date are	rainage a (sq mi)	Total species	Minnow species	Headwater species	Sensitive species	Darter & Sculpin species	Simple Lithophils	Tolerant fishes	Omni- vores	Pioneering fishes	Insect-ivores	DELT anomalies	minus tolerants /(0.3km)	IBI
LM75	3.40 E	08/22/2007	7.3	1(1)	1(1)	1(1)	0(1)	0(1)	1(1)	100(1)	0(1)	0(1)	0(1)	0.0(1)	0(1) * *	12
LM91	1.30 E	08/22/2007	14.5	9(5)	5(5)	1(1)	1(3)	0(1)	2(5)	75(1)	40(1)	63(1)	3(1)	0.0(5)	156(5)	34
(11-0 Year:	,	more Creek														
LM50	1.10 E	09/12/2007	14.7	8(3)	5(3)	2(3)	1(1)	2(1)	3(1)	23(5)	5(5)	16(5)	2(1)	0.0(5)	6318(5)	38
(11-0 Year:	1994 - Duck 1994	Creek														
LM76	2.80 F	09/29/1994	11.8	0(1)	0(1)	0(1)	0(1)	0(1)	0(1)	0(1)	0(1)	0(1)	0(1)	0.0(1)	0(1) * *	12
LM79	0.80 E	09/29/1994	14.7	6(1)	2(1)	0(1)	1(1)	0(1)	1(1)	1(5)	0(5)	1(5)	99(5)	0.0(5)	510(3)	34
(11-0 Year:	-	Fork Duck (Creek													
LM84	0.50 F	09/29/1994	2.4	3(1)	3(3)	1(1)	0(1)	0(1)	1(1)	89(1)	0(5)	16(5)	0(1)	0.0(5)	38(1)	20
(11 -0 Year:	1991 1991	gh Creek														
LM95	3.20 F	09/11/1991	2.1	3(1)	3(3)	1(1)	0(1)	0(1)	1(1)	94(1)	0(5)	17(5)	0(1)	0.0(5)	42(1)	26
(11-0 Year:	, •	more Creek														
LM49	1.40 F	09/06/1991	9.4	9(3)	7(5)	1(1)	1(1)	0(1)	4(3)	35(3)	2(5)	23(5)	1(1)	0.0(5)	920(5)	38
LM50	0.70 E	09/06/1991	15.1	16(5)	6(3)	1(1)	2(1)	3(3)	6(3)	48(3)	6(5)	33(3)	4(1)	0.0(5)	1131(5)	38
(11-0 Year:	,	med Tributa	ary to Sy	ycamore	Cr. at RI	M 1.12										
LM53	0.10 E	09/05/1991	5.7	4(1)	3(3)	0(1)	0(1)	0(1)	0(1)	50(1)	17(1)	50(1)	0(1)	0.0(1)	6(1) * *	14
(11-0 Year:	1 04) - Duck 1983	Creek														
500620	0.70 D	08/08/1983	14.7	2(1)	1(1)	0(1)	0(1)	0(1)	0(1)	100(1)	0(1)	100(1)	50(1)	0.0(1)	0(1) * *	12

^{• -} IBI is low end adjusted.

^{* - &}lt; 200 Total individuals in sample

^{** - &}lt; 50 Total individuals in sample

^{• -} One or more species excluded from IBI calculation.

Appendix Table A-1. Headwater IBI scores and metrics for the Little Miami River study area including historical data also sampled in 2022.

					Numb	er of				Perd	cent of Individ	luals		Rel.No.		
							Darter &							minus		
Site	River	Drainage	Total	Minnow	Headwater	Sensitive	Sculpin	Simple	Tolerant	Omni-	Pioneering	Insect-	DELT	tolerants		
ID	Mile Type	Date area (sq mi	i) species	species	species	species	species	Lithophils	fishes	vores	fishes	ivores	anomalies	/(0.3km)	IBI	
600620	0.70 D	10/06/1983 14.7	4(1)	3(1)	0(1)	0(1)	0(1)	1(1)	10(1)	10(1)	10(1)	86(1)	0.0(1)	28(1) * *	12	_•

^{* - &}lt; 200 Total individuals in sample

^{** - &}lt; 50 Total individuals in sample

Appendix A-2: Midwest Biodiversity Institute Fish Species List - Grand Totals

Rivers: Little Miami River

Years: 2022

Numbe	er of Samples: 27	ſ	Data So	urces:		99		Data Ty	pes:	Р	
Species Code:	Species Name:	Feed Guild	Toler- ance	Breed Guild	IBI Group	No. Fish	Rel. No.	% by No.	Rel. Wt.	% by Wt.	Av. Wt.
10-004	LONGNOSE GAR	Р		М		66	4.9	1.19	2238	3.39	458.3
18-002	MOONEYE	1	R	M		16	1.2	0.29	89	0.14	75.6
20-001	SKIPJACK HERRING	Р		M		21	1.6	0.38	27	0.04	17.3
20-003	GIZZARD SHAD	0		M		390	28.9	7.01	3108	4.70	107.6
40-003	BLACK BUFFALO	- 1		M	С	50	3.7	0.90	5672	8.58	1533.0
40-004	SMALLMOUTH BUFFALO	1		M	С	298	22.1	5.35	9986	15.10	452.8
40-005	QUILLBACK CARPSUCKER	0		M	С	30	2.2	0.54	1235	1.87	556.6
40-006	RIVER CARPSUCKER	0		M	С	103	7.6	1.85	4214	6.37	552.9
40-007	HIGHFIN CARPSUCKER	0		M	С	1	0.1	0.02	37	0.06	500.0
40-008	SILVER REDHORSE	1	М	S	R	11	0.8	0.20	680	1.03	836.3
40-009	BLACK REDHORSE	1	I	S	R	43	3.2	0.77	870	1.32	273.5
40-010	GOLDEN REDHORSE	1	М	S	R	130	9.6	2.34	3016	4.56	313.5
40-013	RIVER REDHORSE	1	I	S	R	28	2.1	0.50	2430	3.68	1173.2
40-015	NORTHERN HOG SUCKER	1	М	S	R	271	20.1	4.87	3607	5.46	179.8
40-023	SMALLMOUTH REDHORSE	1	М	S	R	606	44.8	10.89	9050	13.69	201.8
43-001	COMMON CARP	0	Т	M	G	48	3.6	0.86	3215	4.86	905.2
43-006	SILVER CHUB	- 1		M	N	2	0.2	0.04	1	0.00	7.5
43-009	GRAVEL CHUB	1	М	S	N	73	5.4	1.31	23	0.04	4.4
43-015	SUCKERMOUTH MINNOW	1		S	N	5	0.4	0.09	1	0.00	4.0
43-020	EMERALD SHINER	1		M	N	1436	106.3	25.80	108	0.16	1.0
43-022	ROSYFACE SHINER	1	I	S	N	35	2.6	0.63	2	0.00	1.0
43-025	STRIPED SHINER	1		S	N	1	0.1	0.02	0	0.00	2.0
43-031	STEELCOLOR SHINER	1	Р	M	N	40	3.0	0.72	18	0.03	6.3
43-032	SPOTFIN SHINER	1		M	N	76	5.6	1.37	19	0.03	3.4
43-034	SAND SHINER	1	М	M	N	44	3.3	0.79	6	0.01	1.9
43-035	MIMIC SHINER	1	I	M	N	147	10.9	2.64	11	0.02	1.1
43-041	BULLHEAD MINNOW	0		С	N	1	0.1	0.02	0	0.00	2.0
43-043	BLUNTNOSE MINNOW	0	Т	С	N	23	1.7	0.41	4	0.01	2.3
43-044	CENTRAL STONEROLLER	Н		Ν	N	71	5.3	1.28	32	0.05	6.1
43-047	GRASS CARP			M	E	2	0.2	0.04	1383	2.09	9350.0
43-063	CHANNEL SHINER	I	1	M	N	66	4.9	1.19	236	0.36	48.4
47-002	CHANNEL CATFISH			С	F	151	11.2	2.71	6423	9.71	574.8
47-007	FLATHEAD CATFISH	Р		С	F	32	2.4	0.58	916	1.39	386.9
47-008	STONECAT MADTOM	1	I	С		63	4.7	1.13	22	0.03	4.8
47-009	MOUNTAIN MADTOM	1	R	С		145	10.7	2.61	10	0.02	0.9
74-005	Striped X White Bass				Е	33	2.4	0.59	1687	2.55	690.9
77-001	WHITE CRAPPIE	1		С	S	4	0.3	0.07	18	0.03	62.5
77-002	BLACK CRAPPIE	1		С	S	2	0.2	0.04	40	0.06	275.0
77-003	ROCK BASS	С		С	S	2	0.2	0.04	8	0.01	57.5
77-004	SMALLMOUTH BASS	С	M	С	F	88	6.5	1.58	691	1.05	106.2

A2 - 1 05/21/2023

Appendix A-2: Midwest Biodiversity Institute Fish Species List - Grand Totals

Rivers: Little Miami River

Years: 2022

No Species: 62

Nat. Species:

55 **Hybrids**: 4

Numb	er of Samples: 27	[Data So	urces:		99		Data Ty _l	oes:	Р	
Species Code:	Species Name:	Feed Guild	Toler- ance	Breed Guild	IBI Group	No. Fish	Rel. No.	% by No.	Rel. Wt.	% by Wt.	Av. Wt.
77-005	SPOTTED BASS	С		С	F	64	4.7	1.15	176	0.27	37.3
77-006	LARGEMOUTH BASS	С		С	F	34	2.5	0.61	62	0.09	24.7
77-008	GREEN SUNFISH	1	Т	С	S	24	1.8	0.43	24	0.04	13.5
77-009	BLUEGILL SUNFISH	1	Р	С	S	49	3.6	0.88	70	0.11	19.3
77-010	ORANGESPOTTED SUNFISH	1		С	S	1	0.1	0.02	0	0.00	5.0
77-011	LONGEAR SUNFISH	1	M	С	S	100	7.4	1.80	66	0.10	8.9
77-012	REDEAR SUNFISH	- 1		С	Е	1	0.1	0.02	2	0.00	30.0
77-015	GREEN SF X BLUEGILL SF					1	0.1	0.02	1	0.00	15.0
77-017	LONGEAR SF X BLUEGILL SF					1	0.1	0.02	2	0.00	30.0
80-001	SAUGER	Р		S	F	6	0.4	0.11	114	0.17	258.3
80-002	WALLEYE	Р		S	F	1	0.1	0.02	29	0.04	400.0
80-007	SLENDERHEAD DARTER	1	R	S	D	28	2.1	0.50	6	0.01	2.9
80-011	LOGPERCH	1	M	S	D	118	8.7	2.12	120	0.18	13.7
80-014	JOHNNY DARTER	- 1		С	D	1	0.1	0.02	0	0.00	1.0
80-015	GREENSIDE DARTER	1	M	S	D	81	6.0	1.46	27	0.04	4.6
80-016	BANDED DARTER	1	1	S	D	102	7.6	1.83	8	0.01	1.1
80-017	VARIEGATE DARTER	1	1	S	D	78	5.8	1.40	27	0.04	4.7
80-022	RAINBOW DARTER	1	M	S	D	37	2.7	0.66	4	0.01	1.5
80-024	FANTAIL DARTER	- 1		С	D	5	0.4	0.09	0	0.00	2.6
80-026	SAUGER X WALLEYE	Р			Е	6	0.4	0.11	325	0.49	733.3
85-001	FRESHWATER DRUM		Р	М		172	12.7	3.09	3831	5.79	301.0
99-040	UNSPECIFIED SUCKER					1	0.1	0.02	74	0.11	1000.0

Total Counted:

A2 - 2 05/21/2023

5565 Total Rel. Wt.:

66126

Appendix A-3: Midwest Biodiversity Institute Fish Species List - Grand Totals

Rivers: Duck Creek; East Fork Duck Creek; Trib to Duck Creek @ RM 4.8; Little Duck Creek; Trib to Little Duck Cr. @ RM 4.42

Years: 2022

Numbe	er of Samples: 18	3	Data Sc	urces:		99		Data Ty	oes:	E; F	
Species Code:	Species Name:	Feed Guild		Breed Guild	IBI Group	No. Fish	Rel. No.	% by No.	Rel. Wt.	% by Wt.	Av. Wt.
40-016	WHITE SUCKER	0	Т	S	W	28	3.1	0.95	0	*** **	0.0
43-011	WESTERN BLACKNOSE DA	ACE G	Т	S	N	1114	123.7	37.89	0	*** **	0.0
43-013	CREEK CHUB	G	Т	Ν	N	751	83.4	25.54	0	*** **	0.0
43-032	SPOTFIN SHINER	1		М	N	6	0.7	0.20	0	*** **	0.0
43-034	SAND SHINER	1	М	М	N	3	0.3	0.10	0	*** **	0.0
43-039	SILVERJAW MINNOW	1		М	N	46	5.1	1.56	0	*** **	0.0
43-043	BLUNTNOSE MINNOW	0	Т	С	Ν	38	4.2	1.29	0	*** **	0.0
43-044	CENTRAL STONEROLLER	Н		N	N	428	47.5	14.56	0	*** **	0.0
47-004	YELLOW BULLHEAD	1	Т	С		27	3.0	0.92	0	*** **	0.0
77-006	LARGEMOUTH BASS	С		С	F	1	0.1	0.03	0	*** **	0.0
77-008	GREEN SUNFISH	1	Т	С	S	461	51.2	15.68	0	*** **	0.0
77-009	BLUEGILL SUNFISH	1	Р	С	S	7	8.0	0.24	0	*** **	0.0
77-011	LONGEAR SUNFISH	1	М	С	S	25	2.8	0.85	0	*** **	0.0
80-022	RAINBOW DARTER	1	М	S	D	3	0.3	0.10	0	*** **	0.0
80-023	ORANGETHROAT DARTER	R I		S	D	1	0.1	0.03	0	*** **	0.0
80-024	FANTAIL DARTER	1		С	D	1	0.1	0.03	0	*** **	0.0
99-997	Dry Site					0	0.0	0.00	0	*** **	*****
99-999	NO FISH					0	0.0	0.00	0	*** **	*****

No Species: 18 Nat. Species: 18 Hybrids: 0 Total Counted: 2940 Total Rel. Wt.: 0

A3 - 1 05/21/2023

Appendix A-4: Midwest Biodiversity Institute Fish Species List - Grand Totals

Rivers: Clough Creek; Sycamore Creek; Polk Run; Trib. to Sycamore Creek (RM 1.12); Trib 1.82 to Trib to Sycamore Cr RM1.12

Years: 2022

Numbe	er of Samples: 11	[Data So	urces:		99		Data Ty	pes:	D; E; F	
Species Code:	Cassica Names	Feed Guild	Toler- ance	Breed Guild	IBI Group	No. Fish	Rel. No.	% by No.	Rel. Wt.	% by Wt.	Av. Wt.
20-003	GIZZARD SHAD	0		М		7	1.3	0.21	100	2.57	78.5
40-005	QUILLBACK CARPSUCKER	0		M	С	2	0.4	0.06	336	8.65	925.0
40-006	RIVER CARPSUCKER	0		M	С	2	0.4	0.06	354	9.11	975.0
40-008	SILVER REDHORSE	- 1	М	S	R	1	0.2	0.03	245	6.31	1350.0
40-009	BLACK REDHORSE	I	1	S	R	3	0.6	0.09	218	5.61	400.0
40-010	GOLDEN REDHORSE	I	М	S	R	1	0.2	0.03	1	0.05	10.0
40-015	NORTHERN HOG SUCKER	I	М	S	R	4	0.7	0.12	263	6.78	362.5
40-016	WHITE SUCKER	0	Т	S	W	29	5.3	0.86	473	12.15	89.6
43-011	WESTERN BLACKNOSE DACE	G	Т	S	N	432	78.6	12.86	0	0.00	0.0
43-013	CREEK CHUB	G	Т	N	N	459	83.5	13.66	0	0.00	0.0
43-015	SUCKERMOUTH MINNOW	I		S	N	2	0.4	0.06	0	0.02	2.5
43-020	EMERALD SHINER	I		M	N	519	94.5	15.45	35	0.91	0.3
43-021	SILVER SHINER	I	I	S	N	5	0.9	0.15	1	0.04	1.8
43-022	ROSYFACE SHINER	I	I	S	N	33	6.0	0.98	2	0.06	0.3
43-025	STRIPED SHINER	I		S	N	8	1.5	0.24	11	0.30	8.1
43-032	SPOTFIN SHINER	- 1		M	Ν	26	4.7	0.77	5	0.14	1.1
43-034	SAND SHINER	- 1	М	M	N	42	7.6	1.25	3	0.09	0.4
43-035	MIMIC SHINER	I	I	M	N	73	13.3	2.17	11	0.29	0.8
43-039	SILVERJAW MINNOW	I		M	N	36	6.6	1.07	0	0.01	0.0
43-042	FATHEAD MINNOW	0	Т	С	N	1	0.2	0.03	0	0.01	2.0
43-043	BLUNTNOSE MINNOW	0	Т	С	N	388	70.6	11.55	17	0.45	0.2
43-044	CENTRAL STONEROLLER	Н		N	N	756	137.6	22.51	7	0.19	0.0
47-002	CHANNEL CATFISH			С	F	1	0.2	0.03	327	8.41	1800.0
47-004	YELLOW BULLHEAD	I	Т	С		3	0.6	0.09	1	0.05	3.3
47-007	FLATHEAD CATFISH	Р		С	F	1	0.2	0.03	0	0.01	3.0
54-003	NORTHERN STUDFISH	I		M		3	0.6	0.09	0	0.02	1.6
77-004	SMALLMOUTH BASS	С	М	С	F	49	8.9	1.46	882	22.67	98.9
77-005	SPOTTED BASS	С		С	F	4	0.7	0.12	49	1.26	67.5
77-006	LARGEMOUTH BASS	С		С	F	14	2.6	0.42	15	0.40	6.0
77-007	WARMOUTH SUNFISH	С		С	S	1	0.2	0.03	5	0.14	30.0
77-008	GREEN SUNFISH	- 1	Т	С	S	82	14.9	2.44	119	3.06	7.9
77-009	BLUEGILL SUNFISH	I	Р	С	S	75	13.7	2.23	100	2.57	7.3
77-011	LONGEAR SUNFISH	- 1	М	С	S	105	19.1	3.13	226	5.82	11.8
77-012	REDEAR SUNFISH	I		С	Е	3	0.6	0.09	33	0.86	61.6
77-015	GREEN SF X BLUEGILL SF					4	0.7	0.12	10	0.28	15.0
80-015	GREENSIDE DARTER	I	М	S	D	24	4.4	0.71	11	0.29	2.5
80-016	BANDED DARTER	I	I	S	D	7	1.3	0.21	1	0.04	1.2
80-022	RAINBOW DARTER	- 1	М	S	D	76	13.8	2.26	12	0.32	0.9
80-023	ORANGETHROAT DARTER	I		S	D	5	0.9	0.15	0	0.00	0.0
80-024	FANTAIL DARTER	I		С	D	73	13.3	2.17	1	0.03	0.1

A4 - 1 05/21/2023

Appendix A-4: Midwest Biodiversity Institute Fish Species List - Grand Totals

Rivers: Clough Creek; Sycamore Creek; Polk Run; Trib. to Sycamore Creek (RM 1.12); Trib 1.82 to Trib to Sycamore Cr RM1.12

Years: 2022

Numbe	er of Samples:	11	Data	a Soui	rces:		99		Data Ty _l	pes:	D; E; F	
Species Code:	Species Name:			oler- nce	Breed Guild	IBI Group	No. Fish	Rel. No.	% by No.	Rel. Wt.	% by Wt.	Av. Wt.
99-997	Dry Site						0	0.0	0.00	0	0.00	*****

No Species: 41 Nat. Species: 39 Hybrids: 1 Total Counted: 3359 Total Rel. Wt.: 3893

A4 - 2 05/21/2023

Site ID: LM01 River: 11-001 Little Miami River RM: 27.90 Date: 08/01/2022

Time Fished: 2064 Distance: 0.500 Drainge (sq mi): 1070.0 Depth: 0

Location: dst. SR 23/3 Little Miami State Park Lat: 39.31667 Long: -84.25168

Species											
Code:	Species Name:	Feed Guild	Toler- ance	Breed Guild	IBI Group	No. Fish	Rel. No.	% by No.	Rel. Wt.	% by Wt.	Av. Wt.
18-002	MOONEYE	I	R	М		3	6.0	0.70	820	0.72	136.6
20-003	GIZZARD SHAD	0		М		21	42.0	4.92	5880	5.13	140.0
40-003	BLACK BUFFALO	1		М	С	1	2.0	0.23	7600	6.63	3800.0
40-004	SMALLMOUTH BUFFALO	1		М	С	3	6.0	0.70	9800	8.55	1633.3
40-009	BLACK REDHORSE	1	1	S	R	12	24.0	2.81	12500	10.90	520.8
40-010	GOLDEN REDHORSE	1	М	S	R	4	8.0	0.94	4200	3.66	525.0
40-015	NORTHERN HOG SUCKER	I	M	S	R	15	30.0	3.51	6840	5.97	228.0
40-023	SMALLMOUTH REDHORSE	I	M	S	R	54	108.0	12.65	39760	34.68	368.1
43-020	EMERALD SHINER	I		М	N	132	264.0	30.91	240	0.21	0.9
43-022	ROSYFACE SHINER	I	I	S	N	8	16.0	1.87	24	0.02	1.5
43-031	STEELCOLOR SHINER	I	Р	М	N	2	4.0	0.47	12	0.01	3.0
43-032	SPOTFIN SHINER	I		М	N	2	4.0	0.47	12	0.01	3.0
43-035	MIMIC SHINER	I	1	М	N	78	156.0	18.27	180	0.16	1.1
43-043	BLUNTNOSE MINNOW	0	Т	С	N	3	6.0	0.70	20	0.02	3.3
43-044	CENTRAL STONEROLLER	Н		Ν	Ν	11	22.0	2.58	100	0.09	4.5
47-002	CHANNEL CATFISH			С	F	3	6.0	0.70	1400	1.22	233.3
47-008	STONECAT MADTOM	I	1	С		3	6.0	0.70	20	0.02	3.3
47-009	MOUNTAIN MADTOM	I	R	С		15	30.0	3.51	62	0.05	2.0
77-004	SMALLMOUTH BASS	С	M	С	F	4	8.0	0.94	1080	0.94	135.0
77-006	LARGEMOUTH BASS	С		С	F	1	2.0	0.23	10	0.01	5.0
77-009	BLUEGILL SUNFISH	I	Р	С	S	2	4.0	0.47	100	0.09	25.0
80-011	LOGPERCH	I	M	S	D	2	4.0	0.47	60	0.05	15.0
80-015	GREENSIDE DARTER	I	M	S	D	6	12.0	1.41	50	0.04	4.1
80-016	BANDED DARTER	I	1	S	D	10	20.0	2.34	10	0.01	0.5
80-017	VARIEGATE DARTER	I	1	S	D	11	22.0	2.58	106	0.09	4.8
80-022	RAINBOW DARTER	I	M	S	D	2	4.0	0.47	6	0.01	1.5
80-026	SAUGER X WALLEYE	Р			Е	3	6.0	0.70	4400	3.84	733.3
85-001	FRESHWATER DRUM		Р	М		16	32.0	3.75	19340	16.87	604.3

No Species: 27 Nat. Species: 27 Hybrids: 1 Total Counted: 427 Total Rel. Wt.: 114632

IBI: 48.0 **Mlwb:** 10.0

A5 - 1 05/21/2023

Site ID: LM01 River: 11-001 Little Miami River RM: 27.90 Date: 09/19/2022

Time Fished: 2856 Distance: 0.500 Drainge (sq mi): 1070.0 Depth: 0

Location: dst. SR 23/3 Little Miami State Park Lat: 39.31667 Long: -84.25168

Species											
Code:	Species Name:	Feed Guild	Toler- ance	Breed Guild	IBI Group	No. Fish	Rel. No.	% by No.	Rel. Wt.	% by Wt.	Av. Wt.
10-004	LONGNOSE GAR	Р		М		2	4.0	0.59	2200	1.85	550.0
20-003	GIZZARD SHAD	0		М		22	44.0	6.47	8200	6.88	186.3
40-004	SMALLMOUTH BUFFALO	1		М	С	4	8.0	1.18	11200	9.40	1400.0
40-005	QUILLBACK CARPSUCKER	0		М	С	4	8.0	1.18	6800	5.70	850.0
40-006	RIVER CARPSUCKER	0		М	С	5	10.0	1.47	9100	7.63	910.0
40-009	BLACK REDHORSE	I	1	S	R	6	12.0	1.76	8040	6.74	670.0
40-010	GOLDEN REDHORSE	I	M	S	R	5	10.0	1.47	4800	4.03	480.0
40-015	NORTHERN HOG SUCKER	I	M	S	R	32	64.0	9.41	15500	13.00	242.1
40-023	SMALLMOUTH REDHORSE	I	M	S	R	52	104.0	15.29	40780	34.21	392.1
43-009	GRAVEL CHUB	1	M	S	Ν	1	2.0	0.29	10	0.01	5.0
43-015	SUCKERMOUTH MINNOW	1		S	Ν	1	2.0	0.29	10	0.01	5.0
43-020	EMERALD SHINER	1		М	Ν	89	178.0	26.18	220	0.18	1.2
43-022	ROSYFACE SHINER	I	1	S	N	10	20.0	2.94	22	0.02	1.1
43-031	STEELCOLOR SHINER	1	Р	М	Ν	10	20.0	2.94	130	0.11	6.5
43-032	SPOTFIN SHINER	1		М	Ν	2	4.0	0.59	8	0.01	2.0
43-035	MIMIC SHINER	1	1	М	Ν	2	4.0	0.59	6	0.01	1.5
43-043	BLUNTNOSE MINNOW	0	Т	С	Ν	2	4.0	0.59	20	0.02	5.0
43-044	CENTRAL STONEROLLER	Н		Ν	Ν	2	4.0	0.59	30	0.03	7.5
47-002	CHANNEL CATFISH			С	F	3	6.0	0.88	3410	2.86	568.3
47-008	STONECAT MADTOM	1	1	С		13	26.0	3.82	200	0.17	7.6
47-009	MOUNTAIN MADTOM	I	R	С		15	30.0	4.41	40	0.03	1.3
77-002	BLACK CRAPPIE	I		С	S	1	2.0	0.29	400	0.34	200.0
77-003	ROCK BASS	С		С	S	1	2.0	0.29	200	0.17	100.0
77-004	SMALLMOUTH BASS	С	M	С	F	5	10.0	1.47	680	0.57	68.0
77-011	LONGEAR SUNFISH	I	M	С	S	1	2.0	0.29	60	0.05	30.0
80-007	SLENDERHEAD DARTER	I	R	S	D	3	6.0	0.88	30	0.03	5.0
80-011	LOGPERCH	I	M	S	D	10	20.0	2.94	420	0.35	21.0
80-015	GREENSIDE DARTER	1	M	S	D	14	28.0	4.12	160	0.13	5.7
80-016	BANDED DARTER	1	1	S	D	5	10.0	1.47	10	0.01	1.0
80-017	VARIEGATE DARTER	1	1	S	D	14	28.0	4.12	200	0.17	7.1
80-022	RAINBOW DARTER	1	M	S	D	1	2.0	0.29	6	0.01	3.0
85-001	FRESHWATER DRUM		Р	М		3	6.0	0.88	6320	5.30	1053.3

No Species: 32 Nat. Species: 32 Hybrids: 0 Total Counted: 340 Total Rel. Wt.: 119212

IBI: 52.0 **Mlwb:** 10.5

A5 - 2 05/21/2023

Site ID: LM02 River: 11-001 Little Miami River RM: 24.10 Date: 08/01/2022

Time Fished: 3226 Distance: 0.500 Drainge (sq mi): 1090.0 Depth: 0

Location: ust. O'Bannon Creek Lat: 39.27409 Long: -84.25833

Species Code:	Species Name:	Feed	Toler-	Breed	IBI	No.	Rel.	% by	Rel.	% by	Av.
	•	Guild	ance	Guild	Group	Fish	No.	No.	Wt.	Wt.	<u>Wt</u> .
10-004	LONGNOSE GAR	Р		M		6	12.0	2.45	8100	5.32	675.0
20-001	SKIPJACK HERRING	P		M		1	2.0	0.41	40	0.03	20.0
20-003	GIZZARD SHAD	0		М		26	52.0	10.61	6320	4.15	121.5
40-004	SMALLMOUTH BUFFALO	ı		М	С	12	24.0	4.90	46100	30.28	1920.8
40-006	RIVER CARPSUCKER	0		М	С	2	4.0	0.82	2600	1.71	650.0
40-009	BLACK REDHORSE	I	I	S	R	5	10.0	2.04	7100	4.66	710.0
40-010	GOLDEN REDHORSE	I	M	S	R	3	6.0	1.22	3000	1.97	500.0
40-013	RIVER REDHORSE	I	I	S	R	5	10.0	2.04	34300	22.53	3430.0
40-015	NORTHERN HOG SUCKER	I	M	S	R	19	38.0	7.76	6900	4.53	181.5
40-023	SMALLMOUTH REDHORSE	1	М	S	R	28	56.0	11.43	17100	11.23	305.3
43-001	COMMON CARP	0	Т	М	G	1	2.0	0.41	3900	2.56	1950.0
43-020	EMERALD SHINER	I		М	N	24	48.0	9.80	40	0.03	8.0
43-022	ROSYFACE SHINER	I	I	S	N	5	10.0	2.04	16	0.01	1.6
43-031	STEELCOLOR SHINER	I	Р	М	N	3	6.0	1.22	40	0.03	6.6
43-032	SPOTFIN SHINER	1		М	N	6	12.0	2.45	60	0.04	5.0
43-035	MIMIC SHINER	- 1	I	М	N	14	28.0	5.71	50	0.03	1.7
43-043	BLUNTNOSE MINNOW	0	Т	С	N	1	2.0	0.41	2	0.00	1.0
43-044	CENTRAL STONEROLLER	Н		Ν	N	7	14.0	2.86	40	0.03	2.8
47-002	CHANNEL CATFISH			С	F	2	4.0	0.82	5400	3.55	1350.0
47-007	FLATHEAD CATFISH	Р		С	F	6	12.0	2.45	3300	2.17	275.0
47-008	STONECAT MADTOM	I	I	С		3	6.0	1.22	10	0.01	1.6
47-009	MOUNTAIN MADTOM	1	R	С		8	16.0	3.27	20	0.01	1.2
77-004	SMALLMOUTH BASS	С	М	С	F	5	10.0	2.04	1110	0.73	111.0
77-006	LARGEMOUTH BASS	С		С	F	10	20.0	4.08	240	0.16	12.0
77-009	BLUEGILL SUNFISH	I	Р	С	S	7	14.0	2.86	400	0.26	28.5
77-011	LONGEAR SUNFISH	I	М	С	S	2	4.0	0.82	100	0.07	25.0
77-015	GREEN SF X BLUEGILL SF					1	2.0	0.41	30	0.02	15.0
77-017	LONGEAR SF X BLUEGILL SF	•				1	2.0	0.41	60	0.04	30.0
80-001	SAUGER	Р		S	F	1	2.0	0.41	1000	0.66	500.0
80-007	SLENDERHEAD DARTER	1	R	S	D	2	4.0	0.82	10	0.01	2.5
80-011	LOGPERCH	1	М	S	D	4	8.0	1.63	70	0.05	8.7
80-015	GREENSIDE DARTER	ı	М	S	D	3	6.0	1.22	40	0.03	6.6
80-016	BANDED DARTER	ı	ı	S	D	9	18.0	3.67	20	0.01	1.1
80-017	VARIEGATE DARTER	ı	ı	S	D	1	2.0	0.41	20	0.01	10.0
80-022	RAINBOW DARTER	ı	M	S	D	4	8.0	1.63	20	0.01	2.5
80-024	FANTAIL DARTER	ı		C	D	1	2.0	0.41	4	0.00	2.0
80-026	SAUGER X WALLEYE	Р		Ū	E	1	2.0	0.41	1300	0.85	650.0
85-001	FRESHWATER DRUM	•	Р	М	_	6	12.0	2.45	3400	2.23	283.3

05/21/2023

No Species: 35 Nat. Species: 34 Hybrids: 3 Total Counted: 245 Total Rel. Wt.: 152262

IBI: 52.0 **Mlwb:** 10.9

A5 - 3 05/21/2023

Site ID: LM02 River: 11-001 Little Miami River RM: 24.10 Date: 09/19/2022

Time Fished: 2995 Distance: 0.500 Drainge (sq mi): 1090.0 Depth: 0

Location: ust. O'Bannon Creek Lat: 39.27409 Long: -84.25833

Species Code:	Species Name:	Feed Guild	Toler- ance	Breed Guild	IBI Group	No. Fish	Rel. No.	% by No.	Rel. Wt.	% by Wt.	Av. Wt.
10-004	LONGNOSE GAR	Р		М		2	4.0	0.78	2200	1.07	550.0
20-003	GIZZARD SHAD	0		М		6	12.0	2.34	3100	1.50	258.3
40-004	SMALLMOUTH BUFFALO	1		М	С	11	22.0	4.30	50300	24.38	2286.3
40-005	QUILLBACK CARPSUCKER	0		М	С	1	2.0	0.39	1500	0.73	750.0
40-006	RIVER CARPSUCKER	0		М	С	8	16.0	3.13	13300	6.45	831.2
40-007	HIGHFIN CARPSUCKER	0		М	С	1	2.0	0.39	1000	0.48	500.0
40-008	SILVER REDHORSE	1	M	S	R	2	4.0	0.78	6700	3.25	1675.0
40-009	BLACK REDHORSE	1	ı	S	R	4	8.0	1.56	3500	1.70	437.5
40-010	GOLDEN REDHORSE	1	M	S	R	12	24.0	4.69	15000	7.27	625.0
40-013	RIVER REDHORSE	1	I	S	R	3	6.0	1.17	13700	6.64	2283.3
40-015	NORTHERN HOG SUCKER	1	M	S	R	18	36.0	7.03	7260	3.52	201.6
40-023	SMALLMOUTH REDHORSE	1	M	S	R	61	122.0	23.83	49860	24.16	408.6
43-001	COMMON CARP	0	Т	М	G	2	4.0	0.78	9200	4.46	2300.0
43-009	GRAVEL CHUB	1	M	S	N	1	2.0	0.39	10	0.00	5.0
43-020	EMERALD SHINER	1		М	N	26	52.0	10.16	90	0.04	1.7
43-022	ROSYFACE SHINER	1	I	S	N	10	20.0	3.91	30	0.01	1.5
43-031	STEELCOLOR SHINER	1	Р	М	N	2	4.0	0.78	16	0.01	4.0
43-032	SPOTFIN SHINER	1		М	N	2	4.0	0.78	12	0.01	3.0
43-034	SAND SHINER	1	М	М	N	1	2.0	0.39	4	0.00	2.0
43-035	MIMIC SHINER	1	I	М	N	7	14.0	2.73	40	0.02	2.8
43-044	CENTRAL STONEROLLER	Н		Ν	N	1	2.0	0.39	20	0.01	10.0
47-002	CHANNEL CATFISH			С	F	6	12.0	2.34	14200	6.88	1183.3
47-007	FLATHEAD CATFISH	Р		С	F	2	4.0	0.78	440	0.21	110.0
47-008	STONECAT MADTOM	1	I	С		2	4.0	0.78	20	0.01	5.0
47-009	MOUNTAIN MADTOM	1	R	С		10	20.0	3.91	20	0.01	1.0
74-005	Striped X White Bass				Е	2	4.0	0.78	1200	0.58	300.0
77-004	SMALLMOUTH BASS	С	M	С	F	6	12.0	2.34	120	0.06	10.0
77-005	SPOTTED BASS	С		С	F	1	2.0	0.39	240	0.12	120.0
77-008	GREEN SUNFISH	- 1	Т	С	S	1	2.0	0.39	120	0.06	60.0
77-009	BLUEGILL SUNFISH	I	Р	С	S	2	4.0	0.78	40	0.02	10.0
77-011	LONGEAR SUNFISH	1	M	С	S	3	6.0	1.17	30	0.01	5.0
80-001	SAUGER	Р		S	F	1	2.0	0.39	500	0.24	250.0
80-007	SLENDERHEAD DARTER	1	R	S	D	1	2.0	0.39	4	0.00	2.0
80-011	LOGPERCH	I	М	S	D	7	14.0	2.73	40	0.02	2.8
80-015	GREENSIDE DARTER	I	M	S	D	6	12.0	2.34	60	0.03	5.0
80-016	BANDED DARTER	I	I	S	D	4	8.0	1.56	10	0.00	1.2
80-017	VARIEGATE DARTER	I	I	S	D	6	12.0	2.34	70	0.03	5.8
80-022	RAINBOW DARTER	I	М	S	D	6	12.0	2.34	20	0.01	1.6
85-001	FRESHWATER DRUM		Р	М		9	18.0	3.52	12380	6.00	687.7

05/21/2023

No Species: 38 Nat. Species: 37 Hybrids: 1 Total Counted: 256 Total Rel. Wt.: 206356

IBI: 52.0 **Mlwb:** 11.0

A5 - 5 05/21/2023

Site ID: LM03 River: 11-001 Little Miami River RM: 22.30 Date: 08/02/2022

Time Fished: 2872 Distance: 0.500 Drainge (sq mi): 1150.0 Depth: 0

Location: ust. Polk Run Lat: 39.25309 Long: -84.28187

Cassias											
Species Code:	Species Name:	Feed Guild	Toler- ance	Breed Guild	IBI Group	No. Fish	Rel. No.	% by No.	Rel. Wt.	% by Wt.	Av. Wt.
10-004	LONGNOSE GAR	Р		М	-	3	6.0	1.50	3800	5.30	633.3
20-003	GIZZARD SHAD	0		М		7	7 14.0	3.50	3280	4.57	234.2
40-004	SMALLMOUTH BUFFALO	1		М	С	Ę	5 10.0	2.50	12800	17.85	1280.0
40-006	RIVER CARPSUCKER	0		М	С	•	2.0	0.50	1400	1.95	700.0
40-009	BLACK REDHORSE	1	1	S	R	Ę	5 10.0	2.50	5100	7.11	510.0
40-010	GOLDEN REDHORSE	1	M	S	R	Ç	18.0	4.50	11400	15.89	633.3
40-015	NORTHERN HOG SUCKER	I	M	S	R	10	20.0	5.00	1700	2.37	85.0
40-023	SMALLMOUTH REDHORSE	I	M	S	R	2′	42.0	10.50	13490	18.81	321.1
43-020	EMERALD SHINER	1		М	Ν	57	7 114.0	28.50	100	0.14	0.8
43-025	STRIPED SHINER	- 1		S	Ν	•	2.0	0.50	4	0.01	2.0
43-032	SPOTFIN SHINER	I		М	N	Ę	5 10.0	2.50	40	0.06	4.0
43-034	SAND SHINER	1	M	М	Ν	13	3 26.0	6.50	40	0.06	1.5
43-035	MIMIC SHINER	I	1	М	N	10	20.0	5.00	30	0.04	1.5
43-043	BLUNTNOSE MINNOW	0	Т	С	Ν	10	20.0	5.00	34	0.05	1.7
43-044	CENTRAL STONEROLLER	Н		Ν	N	•	2.0	0.50	4	0.01	2.0
47-002	CHANNEL CATFISH			С	F	4	8.0	2.00	9920	13.83	1240.0
47-007	FLATHEAD CATFISH	Р		С	F	2	2 4.0	1.00	500	0.70	125.0
47-009	MOUNTAIN MADTOM	1	R	С		•	2.0	0.50	2	0.00	1.0
77-004	SMALLMOUTH BASS	С	M	С	F	3	6.0	1.50	860	1.20	143.3
77-006	LARGEMOUTH BASS	С		С	F	2	2 4.0	1.00	30	0.04	7.5
77-008	GREEN SUNFISH	1	Т	С	S	4	8.0	2.00	80	0.11	10.0
77-009	BLUEGILL SUNFISH	1	Р	С	S	8	3 16.0	4.00	220	0.31	13.7
77-011	LONGEAR SUNFISH	1	M	С	S	2	2 4.0	1.00	180	0.25	45.0
80-007	SLENDERHEAD DARTER	1	R	S	D	2	2 4.0	1.00	30	0.04	7.5
80-011	LOGPERCH	1	M	S	D	7	7 14.0	3.50	280	0.39	20.0
80-016	BANDED DARTER	1	I	S	D	3	6.0	1.50	2	0.00	0.3
85-001	FRESHWATER DRUM		Р	М		4	8.0	2.00	6400	8.92	800.0

No Species: 27 Nat. Species: 27 Hybrids: 0 Total Counted: 200 Total Rel. Wt.: 71726

IBI: 50.0 **Mlwb:** 10.0

A5 - 7 05/21/2023

Site ID: LM03 River: 11-001 Little Miami River RM: 22.30 Date: 09/20/2022

Time Fished: 3128 Distance: 0.500 Drainge (sq mi): 1150.0 Depth: 0

Location: ust. Polk Run Lat: 39.25309 Long: -84.28187

Species											
Code:	Species Name:	Feed Guild	Toler- ance	Breed Guild	IBI Group	No. Fish	Rel. No.	% by No.	Rel. Wt.	% by Wt.	Av. Wt.
40-004	SMALLMOUTH BUFFALO	I		М	С	1	2.0	0.51	2900	4.50	1450.0
40-006	RIVER CARPSUCKER	0		М	С	11	22.0	5.56	20100	31.17	913.6
40-010	GOLDEN REDHORSE	1	M	S	R	24	48.0	12.12	27500	42.65	572.9
40-015	NORTHERN HOG SUCKER	I	M	S	R	3	6.0	1.52	1200	1.86	200.0
40-023	SMALLMOUTH REDHORSE	1	M	S	R	9	18.0	4.55	10400	16.13	577.7
43-020	EMERALD SHINER	1		М	Ν	53	106.0	26.77	130	0.20	1.2
43-031	STEELCOLOR SHINER	1	Р	М	Ν	1	2.0	0.51	4	0.01	2.0
43-035	MIMIC SHINER	1	I	М	Ν	2	4.0	1.01	6	0.01	1.5
47-008	STONECAT MADTOM	1	I	С		7	14.0	3.54	40	0.06	2.8
47-009	MOUNTAIN MADTOM	1	R	С		7	14.0	3.54	30	0.05	2.1
77-004	SMALLMOUTH BASS	С	M	С	F	1	2.0	0.51	500	0.78	250.0
77-005	SPOTTED BASS	С		С	F	2	4.0	1.01	20	0.03	5.0
77-006	LARGEMOUTH BASS	С		С	F	1	2.0	0.51	10	0.02	5.0
77-008	GREEN SUNFISH	1	Т	С	S	4	8.0	2.02	80	0.12	10.0
77-009	BLUEGILL SUNFISH	1	Р	С	S	2	4.0	1.01	160	0.25	40.0
77-011	LONGEAR SUNFISH	1	M	С	S	15	30.0	7.58	100	0.16	3.3
80-001	SAUGER	Р		S	F	1	2.0	0.51	600	0.93	300.0
80-007	SLENDERHEAD DARTER	1	R	S	D	6	12.0	3.03	34	0.05	2.8
80-011	LOGPERCH	1	M	S	D	19	38.0	9.60	380	0.59	10.0
80-015	GREENSIDE DARTER	1	M	S	D	18	36.0	9.09	120	0.19	3.3
80-016	BANDED DARTER	1	I	S	D	9	18.0	4.55	16	0.02	0.8
80-024	FANTAIL DARTER	1		С	D	1	2.0	0.51	4	0.01	2.0
85-001	FRESHWATER DRUM		Р	М		1	2.0	0.51	150	0.23	75.0

No Species: 23 Nat. Species: 23 Hybrids: 0 Total Counted: 198 Total Rel. Wt.: 64484

IBI: 44.0 **Mlwb:** 9.0

A5 - 8 05/21/2023

Site ID: LM05 River: 11-001 Little Miami River RM: 21.50 Date: 08/02/2022

Time Fished: 3120 Distance: 0.500 Drainge (sq mi): 1160.0 Depth: 0

Location: dst. Polk Run

Lat: 39.24452 Long: -84.29638

Cassina											
Species Code:	Species Name:	Feed Guild	Toler- ance	Breed Guild	IBI Group	No. Fish	Rel. No.	% by No.	Rel. Wt.	% by Wt.	Av. Wt.
10-004	LONGNOSE GAR	P	arice	M	Огоир	1	2.0	0.39	1200	0.83	600.0
20-001	SKIPJACK HERRING	Р		М		1	2.0	0.39	40	0.03	20.0
20-003	GIZZARD SHAD	0		М		7	14.0	2.75	1720	1.18	122.8
40-003	BLACK BUFFALO	1		М	С	5	10.0	1.96	27600	19.00	2760.0
40-004	SMALLMOUTH BUFFALO	1		М	С	14	28.0	5.49	46600	32.08	1664.2
40-005	QUILLBACK CARPSUCKER	0		М	С	1	2.0	0.39	1200	0.83	600.0
40-006	RIVER CARPSUCKER	0		М	С	4	8.0	1.57	6000	4.13	750.0
40-008	SILVER REDHORSE	1	M	S	R	2	4.0	0.78	6000	4.13	1500.0
40-009	BLACK REDHORSE	1	1	S	R	1	2.0	0.39	16	0.01	8.0
40-010	GOLDEN REDHORSE	1	M	S	R	8	16.0	3.14	8700	5.99	543.7
40-013	RIVER REDHORSE	1	1	S	R	2	4.0	0.78	11000	7.57	2750.0
40-015	NORTHERN HOG SUCKER	1	M	S	R	19	38.0	7.45	5300	3.65	139.4
40-023	SMALLMOUTH REDHORSE	1	M	S	R	13	26.0	5.10	10500	7.23	403.8
43-009	GRAVEL CHUB	1	M	S	Ν	9	18.0	3.53	102	0.07	5.6
43-020	EMERALD SHINER	1		М	Ν	83	166.0	32.55	120	0.08	0.7
43-032	SPOTFIN SHINER	1		М	Ν	17	34.0	6.67	126	0.09	3.7
43-034	SAND SHINER	1	M	М	N	9	18.0	3.53	40	0.03	2.2
43-035	MIMIC SHINER	1	I	М	Ν	9	18.0	3.53	20	0.01	1.1
43-043	BLUNTNOSE MINNOW	0	Т	С	N	1	2.0	0.39	4	0.00	2.0
43-044	CENTRAL STONEROLLER	Н		Ν	N	2	4.0	0.78	10	0.01	2.5
47-002	CHANNEL CATFISH			С	F	8	16.0	3.14	10600	7.30	662.5
47-007	FLATHEAD CATFISH	Р		С	F	3	6.0	1.18	1002	0.69	167.0
47-008	STONECAT MADTOM	1	I	С		2	4.0	0.78	10	0.01	2.5
47-009	MOUNTAIN MADTOM	I	R	С		8	16.0	3.14	10	0.01	0.6
77-004	SMALLMOUTH BASS	С	M	С	F	5	10.0	1.96	1200	0.83	120.0
77-006	LARGEMOUTH BASS	С		С	F	1	2.0	0.39	200	0.14	100.0
77-008	GREEN SUNFISH	1	Т	С	S	1	2.0	0.39	20	0.01	10.0
77-009	BLUEGILL SUNFISH	1	Р	С	S	1	2.0	0.39	20	0.01	10.0
77-011	LONGEAR SUNFISH	1	M	С	S	1	2.0	0.39	20	0.01	10.0
77-012	REDEAR SUNFISH	I		С	Е	1	2.0	0.39	60	0.04	30.0
80-001	SAUGER	Р		S	F	1	2.0	0.39	300	0.21	150.0
80-011	LOGPERCH	I	M	S	D	1	2.0	0.39	20	0.01	10.0
80-015	GREENSIDE DARTER	1	M	S	D	3	6.0	1.18	20	0.01	3.3
80-016	BANDED DARTER	1	I	S	D	5	10.0	1.96	20	0.01	2.0
80-017	VARIEGATE DARTER	1	I	S	D	3	6.0	1.18	20	0.01	3.3
85-001	FRESHWATER DRUM		Р	М		3	6.0	1.18	5460	3.76	910.0

No Species: 36 Nat. Species: 35 Hybrids: 0 Total Counted: 255 Total Rel. Wt.: 145280

IBI: 46.0 **Mlwb:** 10.5

A5 - 9 05/21/2023

Site ID: LM05 River: 11-001 Little Miami River RM: 21.50 Date: 09/20/2022

Time Fished: 2700 Distance: 0.500 Drainge (sq mi): 1160.0 Depth: 0

Location: dst. Polk Run

Lat: 39.24452 Long: -84.29638

Species											
Code:	Species Name:	Feed Guild	Toler- ance	Breed Guild	IBI Group	lo. sh	Rel. No.	% by No.	Rel. Wt.	% by Wt.	Av. Wt.
10-004	LONGNOSE GAR	Р		М		2	4.0	0.93	2100	1.21	525.0
20-001	SKIPJACK HERRING	Р		М		1	2.0	0.47	60	0.03	30.0
20-003	GIZZARD SHAD	0		М		4	8.0	1.87	1400	0.81	175.0
40-003	BLACK BUFFALO	1		М	С	1	2.0	0.47	5400	3.11	2700.0
40-004	SMALLMOUTH BUFFALO	1		М	С	30	60.0	14.02	103800	59.81	1730.0
40-005	QUILLBACK CARPSUCKER	0		М	С	6	12.0	2.80	9700	5.59	808.3
40-006	RIVER CARPSUCKER	0		М	С	3	6.0	1.40	5400	3.11	900.0
40-009	BLACK REDHORSE	1	1	S	R	2	4.0	0.93	2900	1.67	725.0
40-010	GOLDEN REDHORSE	1	M	S	R	5	10.0	2.34	4800	2.77	480.0
40-015	NORTHERN HOG SUCKER	1	M	S	R	6	12.0	2.80	3500	2.02	291.6
40-023	SMALLMOUTH REDHORSE	1	M	S	R	17	34.0	7.94	14920	8.60	438.8
43-009	GRAVEL CHUB	1	M	S	N	9	18.0	4.21	120	0.07	6.6
43-020	EMERALD SHINER	1		М	N	50	100.0	23.36	140	0.08	1.4
43-022	ROSYFACE SHINER	1	I	S	N	2	4.0	0.93	2	0.00	0.5
43-031	STEELCOLOR SHINER	1	Р	М	Ν	1	2.0	0.47	6	0.00	3.0
43-032	SPOTFIN SHINER	1		М	N	3	6.0	1.40	10	0.01	1.6
43-034	SAND SHINER	I	M	М	N	1	2.0	0.47	2	0.00	1.0
43-044	CENTRAL STONEROLLER	Н		Ν	N	5	10.0	2.34	100	0.06	10.0
43-063	CHANNEL SHINER	1	I	М	N	2	4.0	0.93	6	0.00	1.5
47-002	CHANNEL CATFISH			С	F	3	6.0	1.40	1900	1.09	316.6
47-008	STONECAT MADTOM	I	I	С		2	4.0	0.93	20	0.01	5.0
47-009	MOUNTAIN MADTOM	I	R	С		9	18.0	4.21	20	0.01	1.1
77-005	SPOTTED BASS	С		С	F	2	4.0	0.93	40	0.02	10.0
77-009	BLUEGILL SUNFISH	I	Р	С	S	1	2.0	0.47	50	0.03	25.0
77-011	LONGEAR SUNFISH	I	M	С	S	5	10.0	2.34	70	0.04	7.0
80-002	WALLEYE	Р		S	F	1	2.0	0.47	800	0.46	400.0
80-007	SLENDERHEAD DARTER	1	R	S	D	1	2.0	0.47	20	0.01	10.0
80-011	LOGPERCH	I	M	S	D	13	26.0	6.07	540	0.31	20.7
80-015	GREENSIDE DARTER	1	M	S	D	7	14.0	3.27	60	0.03	4.2
80-016	BANDED DARTER	I	I	S	D	7	14.0	3.27	20	0.01	1.4
80-017	VARIEGATE DARTER	1	I	S	D	4	8.0	1.87	30	0.02	3.7
80-022	RAINBOW DARTER	1	М	S	D	1	2.0	0.47	2	0.00	1.0
85-001	FRESHWATER DRUM		Р	М		 8	16.0	3.74	15600	8.99	975.0

No Species: 33 Nat. Species: 33 Hybrids: 0 Total Counted: 214 Total Rel. Wt.: 173538

IBI: 48.0 **Mlwb:** 10.0

A5 - 10 05/21/2023

Site ID: LM07 River: 11-001 Little Miami River RM: 18.50 Date: 08/02/2022

Time Fished: 2363 Distance: 0.500 Drainge (sq mi): 1190.0 Depth: 0

Location: Camargo Rd. Lat: 39.21684 Long: -84.31488

0											
Species Code:	Species Name:	Feed Guild	Toler- ance	Breed Guild	IBI Group	No. Fish	Rel. No.	% by No.	Rel. Wt.	% by Wt.	Av. Wt.
10-004	LONGNOSE GAR	Р		М		2	4.0	1.15	1900	1.05	475.0
20-003	GIZZARD SHAD	0		М		10	20.0	5.75	4300	2.37	215.0
40-003	BLACK BUFFALO	1		М	С	7	14.0	4.02	40000	22.05	2857.1
40-004	SMALLMOUTH BUFFALO	1		М	С	10	20.0	5.75	38000	20.95	1900.0
40-005	QUILLBACK CARPSUCKER	0		М	С	1	2.0	0.57	1800	0.99	900.0
40-006	RIVER CARPSUCKER	0		М	С	3	6.0	1.72	5300	2.92	883.3
40-009	BLACK REDHORSE	1	I	S	R	1	2.0	0.57	1000	0.55	500.0
40-010	GOLDEN REDHORSE	1	M	S	R	12	24.0	6.90	10660	5.88	444.1
40-015	NORTHERN HOG SUCKER	1	M	S	R	12	24.0	6.90	6100	3.36	254.1
40-023	SMALLMOUTH REDHORSE	1	M	S	R	28	56.0	16.09	29100	16.04	519.6
43-020	EMERALD SHINER	1		М	N	23	46.0	13.22	80	0.04	1.7
43-031	STEELCOLOR SHINER	I	Р	М	N	2	4.0	1.15	50	0.03	12.5
43-032	SPOTFIN SHINER	I		М	N	4	8.0	2.30	30	0.02	3.7
43-035	MIMIC SHINER	I	I	М	N	1	2.0	0.57	4	0.00	2.0
43-043	BLUNTNOSE MINNOW	0	Т	С	N	3	6.0	1.72	16	0.01	2.6
47-002	CHANNEL CATFISH			С	F	12	24.0	6.90	25400	14.00	1058.3
47-007	FLATHEAD CATFISH	Р		С	F	2	4.0	1.15	2480	1.37	620.0
47-008	STONECAT MADTOM	1	I	С		3	6.0	1.72	30	0.02	5.0
47-009	MOUNTAIN MADTOM	I	R	С		8	16.0	4.60	4	0.00	0.2
77-004	SMALLMOUTH BASS	С	M	С	F	8	16.0	4.60	1580	0.87	98.7
77-008	GREEN SUNFISH	I	Т	С	S	3	6.0	1.72	40	0.02	6.6
77-011	LONGEAR SUNFISH	1	M	С	S	2	4.0	1.15	30	0.02	7.5
80-007	SLENDERHEAD DARTER	1	R	S	D	1	2.0	0.57	6	0.00	3.0
80-011	LOGPERCH	1	M	S	D	1	2.0	0.57	10	0.01	5.0
80-015	GREENSIDE DARTER	1	M	S	D	5	10.0	2.87	40	0.02	4.0
80-016	BANDED DARTER	I	I	S	D	3	6.0	1.72	6	0.00	1.0
80-017	VARIEGATE DARTER	I	I	S	D	2	4.0	1.15	16	0.01	4.0
85-001	FRESHWATER DRUM		Р	М		5	10.0	2.87	13400	7.39	1340.0

No Species: 28 Nat. Species: 28 Hybrids: 0 Total Counted: 174 Total Rel. Wt.: 181382

IBI: 50.0 **Mlwb:** 10.5

A5 - 11 05/21/2023

Site ID: LM07 River: 11-001 Little Miami River RM: 18.50 Date: 09/20/2022

Time Fished: 2351 Distance: 0.500 Drainge (sq mi): 1190.0 Depth: 0

Location: Camargo Rd. Lat: 39.21684 Long: -84.31488

Onnaina												
Species Code:	Species Name:	Feed	Toler-	Breed	IBI	No		Rel.	% by	Rel.	% by	Av.
	•	Guild	ance	Guild	Group	Fis		No.	No.	Wt.	Wt.	Wt.
20-003	GIZZARD SHAD	0		М			1	2.0	0.64	800	0.70	400.0
40-003	BLACK BUFFALO	I		М	С		1	2.0	0.64	6600	5.78	3300.0
40-004	SMALLMOUTH BUFFALO	- 1		М	С	1	2	24.0	7.64	41200	36.09	1716.6
40-005	QUILLBACK CARPSUCKER	0		М	С		2	4.0	1.27	3700	3.24	925.0
40-006	RIVER CARPSUCKER	0		М	С		2	4.0	1.27	3000	2.63	750.0
40-009	BLACK REDHORSE	1	I	S	R		1	2.0	0.64	1000	0.88	500.0
40-010	GOLDEN REDHORSE	1	M	S	R		3	6.0	1.91	3100	2.72	516.6
40-015	NORTHERN HOG SUCKER	1	M	S	R	2	23	46.0	14.65	9900	8.67	215.2
40-023	SMALLMOUTH REDHORSE	1	M	S	R	1	9	38.0	12.10	14330	12.55	377.1
43-009	GRAVEL CHUB	1	M	S	N		2	4.0	1.27	6	0.01	1.5
43-020	EMERALD SHINER	1		М	N	1	4	28.0	8.92	60	0.05	2.1
43-032	SPOTFIN SHINER	I		М	N		4	8.0	2.55	40	0.04	5.0
47-002	CHANNEL CATFISH			С	F		4	8.0	2.55	15700	13.75	1962.5
47-008	STONECAT MADTOM	1	I	С			5	10.0	3.18	40	0.04	4.0
47-009	MOUNTAIN MADTOM	1	R	С			5	10.0	3.18	6	0.01	0.6
77-004	SMALLMOUTH BASS	С	M	С	F		8	16.0	5.10	1280	1.12	80.0
77-009	BLUEGILL SUNFISH	1	Р	С	S		1	2.0	0.64	60	0.05	30.0
77-011	LONGEAR SUNFISH	1	M	С	S		1	2.0	0.64	20	0.02	10.0
80-007	SLENDERHEAD DARTER	1	R	S	D		6	12.0	3.82	10	0.01	8.0
80-011	LOGPERCH	1	M	S	D	1	0	20.0	6.37	340	0.30	17.0
80-015	GREENSIDE DARTER	I	M	S	D		4	8.0	2.55	30	0.03	3.7
80-016	BANDED DARTER	1	I	S	D	1	3	26.0	8.28	20	0.02	0.7
80-017	VARIEGATE DARTER	1	1	S	D	1	0	20.0	6.37	120	0.11	6.0
80-022	RAINBOW DARTER	1	M	S	D		1	2.0	0.64	2	0.00	1.0
85-001	FRESHWATER DRUM		Р	М			5	10.0	3.18	12800	11.21	1280.0

No Species: 25 Nat. Species: 25 Hybrids: 0 Total Counted: 157 Total Rel. Wt.: 114164

IBI: 52.0 **Mlwb:** 10.1

A5 - 12 05/21/2023

Site ID: LM08 River: 11-001 Little Miami River RM: 17.70 Date: 08/02/2022

Time Fished: 1959 Distance: 0.500 Drainge (sq mi): 1190.0 Depth: 0

Location: canoe access dst. SR126 Lat: 39.20921 Long: -84.30232

0											
Species Code:	Species Name:	Feed Guild	Toler- ance	Breed Guild	IBI Group	No. Fish	Rel. No.	% by No.	Rel. Wt.	% by Wt.	Av. Wt.
10-004	LONGNOSE GAR	P	ance	M	Oroup	4		3.48	9300	6.30	1162.5
18-002	MOONEYE	1	R	М		1		0.87	300	0.20	150.0
20-003	GIZZARD SHAD	0		М		6	12.0	5.22	2300	1.56	191.6
40-003	BLACK BUFFALO	1		М	С	4	8.0	3.48	28300	19.16	3537.5
40-004	SMALLMOUTH BUFFALO	1		М	С	3	6.0	2.61	9100	6.16	1516.6
40-006	RIVER CARPSUCKER	0		М	С	2	4.0	1.74	3800	2.57	950.0
40-009	BLACK REDHORSE	1	1	S	R	2	4.0	1.74	1400	0.95	350.0
40-010	GOLDEN REDHORSE	1	M	S	R	3	6.0	2.61	3600	2.44	600.0
40-013	RIVER REDHORSE	1	1	S	R	5	10.0	4.35	33600	22.75	3360.0
40-015	NORTHERN HOG SUCKER	1	M	S	R	12	24.0	10.43	12100	8.19	504.1
40-023	SMALLMOUTH REDHORSE	1	M	S	R	16	32.0	13.91	12400	8.40	387.5
43-020	EMERALD SHINER	1		М	N	2	4.0	1.74	12	0.01	3.0
43-031	STEELCOLOR SHINER	1	Р	М	N	2	4.0	1.74	12	0.01	3.0
43-032	SPOTFIN SHINER	1		М	N	6	12.0	5.22	50	0.03	4.1
47-002	CHANNEL CATFISH			С	F	5	10.0	4.35	10300	6.97	1030.0
47-007	FLATHEAD CATFISH	Р		С	F	3	6.0	2.61	6000	4.06	1000.0
47-008	STONECAT MADTOM	1	1	С		3	6.0	2.61	10	0.01	1.6
47-009	MOUNTAIN MADTOM	1	R	С		3	6.0	2.61	8	0.01	1.3
74-005	Striped X White Bass				Е	1	2.0	0.87	1800	1.22	900.0
77-004	SMALLMOUTH BASS	С	M	С	F	6	12.0	5.22	1400	0.95	116.6
77-009	BLUEGILL SUNFISH	1	Р	С	S	2	4.0	1.74	40	0.03	10.0
77-011	LONGEAR SUNFISH	1	M	С	S	2	4.0	1.74	100	0.07	25.0
80-007	SLENDERHEAD DARTER	1	R	S	D	1	2.0	0.87	10	0.01	5.0
80-011	LOGPERCH	1	M	S	D	3	6.0	2.61	160	0.11	26.6
80-015	GREENSIDE DARTER	1	M	S	D	3	6.0	2.61	50	0.03	8.3
80-016	BANDED DARTER	1	1	S	D	3	6.0	2.61	6	0.00	1.0
80-017	VARIEGATE DARTER	1	1	S	D	6	12.0	5.22	20	0.01	1.6
85-001	FRESHWATER DRUM		Р	М		6	12.0	5.22	11500	7.79	958.3

No Species: 27 Nat. Species: 27 Hybrids: 1 Total Counted: 115 Total Rel. Wt.: 147678

IBI: 54.0 **Mlwb:** 10.6

A5 - 13 05/21/2023

Site ID: LM08 River: 11-001 Little Miami River RM: 17.70 Date: 09/20/2022

Time Fished: 1659 Distance: 0.500 Drainge (sq mi): 1190.0 Depth: 0

Location: canoe access dst. SR126 Lat: 39.20921 Long: -84.30232

Species											
Code:	Species Name:	Feed Guild	Toler- ance	Breed Guild	IBI Group	No. Fish		% by No.	Rel. Wt.	% by Wt.	Av. Wt.
10-004	LONGNOSE GAR	Р		М		2	2 4.0	1.35	7700	5.26	1925.0
20-003	GIZZARD SHAD	0		M		9	18.0	6.08	3800	2.60	211.1
40-004	SMALLMOUTH BUFFALO	1		M	С	10	20.0	6.76	41000	28.01	2050.0
40-006	RIVER CARPSUCKER	0		M	С	;	5 10.0	3.38	10200	6.97	1020.0
40-009	BLACK REDHORSE	1	1	S	R	2	2 4.0	1.35	1800	1.23	450.0
40-010	GOLDEN REDHORSE	1	M	S	R	10	20.0	6.76	10200	6.97	510.0
40-013	RIVER REDHORSE	1	I	S	R	:	2 4.0	1.35	12300	8.40	3075.0
40-015	NORTHERN HOG SUCKER	1	M	S	R	(12.0	4.05	2000	1.37	166.6
40-023	SMALLMOUTH REDHORSE	1	M	S	R	48	96.0	32.43	39200	26.78	408.3
43-020	EMERALD SHINER	1		M	N	1	22.0	7.43	40	0.03	1.8
43-031	STEELCOLOR SHINER	1	Р	M	Ν	;	5 10.0	3.38	110	0.08	11.0
43-032	SPOTFIN SHINER	1		M	Ν		2.0	0.68	4	0.00	2.0
47-002	CHANNEL CATFISH			С	F	4	8.0	2.70	200	0.14	25.0
47-007	FLATHEAD CATFISH	Р		С	F	2	2 4.0	1.35	1600	1.09	400.0
47-008	STONECAT MADTOM	1	1	С		4	8.0	2.70	70	0.05	8.7
47-009	MOUNTAIN MADTOM	1	R	С		2	2 4.0	1.35	24	0.02	6.0
77-004	SMALLMOUTH BASS	С	M	С	F	4	8.0	2.70	4040	2.76	505.0
77-011	LONGEAR SUNFISH	1	M	С	S		2.0	0.68	20	0.01	10.0
80-011	LOGPERCH	1	M	S	D	-	7 14.0	4.73	220	0.15	15.7
80-015	GREENSIDE DARTER	1	M	S	D		2.0	0.68	4	0.00	2.0
80-017	VARIEGATE DARTER	1	1	S	D	2	2 4.0	1.35	30	0.02	7.5
80-022	RAINBOW DARTER	I	M	S	D	:	2 4.0	1.35	4	0.00	1.0
85-001	FRESHWATER DRUM		Р	M		8	3 16.0	5.41	11800	8.06	737.5

No Species: 23 Nat. Species: 23 Hybrids: 0 Total Counted: 148 Total Rel. Wt.: 146366

IBI: 50.0 **Mlwb:** 9.9

A5 - 14 05/21/2023

Site ID: LM09 River: 11-001 Little Miami River RM: 13.10 Date: 08/03/2022

Time Fished: 2979 Distance: 0.500 Drainge (sq mi): 1200.0 Depth: 0

Location: Wooster Pike- Milford Lat: 39.16896 Long: -84.29664

Species											
Code:	Species Name:	Feed Guild	Toler- ance	Breed Guild	IBI Group	No. Fish	Rel. No.	% by No.	Rel. Wt.	% by Wt.	Av. Wt.
10-004	LONGNOSE GAR	Р		М	•	1	2.0	0.31	900	0.58	450.0
18-002	MOONEYE	1	R	М		1	2.0	0.31	300	0.19	150.0
20-003	GIZZARD SHAD	0		М		6	12.0	1.88	2500	1.62	208.3
40-003	BLACK BUFFALO	1		М	С	1	2.0	0.31	7600	4.93	3800.0
40-004	SMALLMOUTH BUFFALO	1		М	С	13	26.0	4.06	43100	27.94	1657.6
40-006	RIVER CARPSUCKER	0		М	С	3	6.0	0.94	5400	3.50	900.0
40-008	SILVER REDHORSE	I	M	S	R	2	4.0	0.63	7700	4.99	1925.0
40-009	BLACK REDHORSE	1	- 1	S	R	1	2.0	0.31	1900	1.23	950.0
40-010	GOLDEN REDHORSE	1	M	S	R	7	14.0	2.19	6600	4.28	471.4
40-013	RIVER REDHORSE	1	1	S	R	1	2.0	0.31	5600	3.63	2800.0
40-015	NORTHERN HOG SUCKER	1	М	S	R	11	22.0	3.44	4300	2.79	195.4
40-023	SMALLMOUTH REDHORSE	I	M	S	R	65	130.0	20.31	44200	28.66	340.0
43-009	GRAVEL CHUB	I	M	S	Ν	1	2.0	0.31	10	0.01	5.0
43-020	EMERALD SHINER	I		М	Ν	135	270.0	42.19	270	0.18	1.0
43-031	STEELCOLOR SHINER	1	Р	М	N	5	10.0	1.56	60	0.04	6.0
43-032	SPOTFIN SHINER	I		М	Ν	7	14.0	2.19	60	0.04	4.2
43-034	SAND SHINER	I	M	М	Ν	1	2.0	0.31	4	0.00	2.0
43-035	MIMIC SHINER	I	I	М	Ν	4	8.0	1.25	20	0.01	2.5
43-044	CENTRAL STONEROLLER	Н		Ν	Ν	2	4.0	0.63	20	0.01	5.0
47-002	CHANNEL CATFISH			С	F	9	18.0	2.81	13350	8.66	741.6
47-007	FLATHEAD CATFISH	Р		С	F	2	4.0	0.63	10	0.01	2.5
47-008	STONECAT MADTOM	I	1	С		5	10.0	1.56	36	0.02	3.6
47-009	MOUNTAIN MADTOM	I	R	С		8	16.0	2.50	20	0.01	1.2
77-004	SMALLMOUTH BASS	С	M	С	F	5	10.0	1.56	3800	2.46	380.0
77-008	GREEN SUNFISH	I	Т	С	S	1	2.0	0.31	20	0.01	10.0
77-009	BLUEGILL SUNFISH	I	Р	С	S	1	2.0	0.31	30	0.02	15.0
77-011	LONGEAR SUNFISH	I	M	С	S	6	12.0	1.88	260	0.17	21.6
80-007	SLENDERHEAD DARTER	I	R	S	D	1	2.0	0.31	10	0.01	5.0
80-011	LOGPERCH	I	M	S	D	1	2.0	0.31	20	0.01	10.0
80-015	GREENSIDE DARTER	I	M	S	D	1	2.0	0.31	10	0.01	5.0
80-016	BANDED DARTER	I	1	S	D	4	8.0	1.25	20	0.01	2.5
80-022	RAINBOW DARTER	1	М	S	D	2	4.0	0.63	10	0.01	2.5
85-001	FRESHWATER DRUM		Р	М		6	12.0	1.88	4100	2.66	341.6
99-040	UNSPECIFIED SUCKER					1	2.0	0.31	2000	1.30	1000.0

No Species: 34 Nat. Species: 34 Hybrids: 0 Total Counted: 320 Total Rel. Wt.: 154240

IBI: 50.0 **Mlwb:** 10.1

A5 - 15 05/21/2023

Site ID: LM09 River: 11-001 Little Miami River RM: 13.10 Date: 09/22/2022

Time Fished: 2463 Distance: 0.500 Drainge (sq mi): 1200.0 Depth: 0

Location: Wooster Pike- Milford Lat: 39.16896 Long: -84.29664

Species												
Code:	Species Name:	Feed Guild	Toler- ance	Breed Guild	IBI Group	No Fis		Rel. No.	% by No.	Rel. Wt.	% by Wt.	Av. Wt.
10-004	LONGNOSE GAR	P	ance	M	Gloup	1 10	1	2.0	0.50	1400	0.87	700.0
20-003	GIZZARD SHAD	0		М		1	11	22.0	5.45	5800	3.61	263.6
40-004	SMALLMOUTH BUFFALO	ı		М	С	3	37	74.0	18.32	65300	40.68	882.4
40-006	RIVER CARPSUCKER	0		М	С		5	10.0	2.48	9000	5.61	900.0
40-010	GOLDEN REDHORSE	1	M	S	R		3	6.0	1.49	3900	2.43	650.0
40-015	NORTHERN HOG SUCKER	1	M	S	R	1	14	28.0	6.93	4600	2.87	164.2
40-023	SMALLMOUTH REDHORSE	I	M	S	R	3	34	68.0	16.83	29580	18.43	435.0
43-020	EMERALD SHINER	1		М	N	2	28	56.0	13.86	120	0.07	2.1
43-031	STEELCOLOR SHINER	1	Р	М	N		1	2.0	0.50	8	0.00	4.0
43-041	BULLHEAD MINNOW	0		С	N		1	2.0	0.50	4	0.00	2.0
43-044	CENTRAL STONEROLLER	Н		Ν	N		2	4.0	0.99	60	0.04	15.0
43-047	GRASS CARP			М	E		1	2.0	0.50	20000	12.46	10000.0
47-007	FLATHEAD CATFISH	Р		С	F		1	2.0	0.50	30	0.02	15.0
47-008	STONECAT MADTOM	1	1	С			6	12.0	2.97	66	0.04	5.5
47-009	MOUNTAIN MADTOM	1	R	С			9	18.0	4.46	14	0.01	0.7
77-004	SMALLMOUTH BASS	С	M	С	F	1	13	26.0	6.44	4000	2.49	153.8
77-005	SPOTTED BASS	С		С	F		1	2.0	0.50	20	0.01	10.0
77-011	LONGEAR SUNFISH	1	M	С	S		3	6.0	1.49	20	0.01	3.3
80-007	SLENDERHEAD DARTER	1	R	S	D		3	6.0	1.49	10	0.01	1.6
80-011	LOGPERCH	1	M	S	D		8	16.0	3.96	220	0.14	13.7
80-015	GREENSIDE DARTER	1	M	S	D		5	10.0	2.48	70	0.04	7.0
80-016	BANDED DARTER	1	1	S	D		1	2.0	0.50	8	0.00	4.0
80-017	VARIEGATE DARTER	1	I	S	D		6	12.0	2.97	80	0.05	6.6
80-022	RAINBOW DARTER	1	M	S	D		1	2.0	0.50	4	0.00	2.0
80-024	FANTAIL DARTER	I		С	D		1	2.0	0.50	4	0.00	2.0
85-001	FRESHWATER DRUM		Р	М			6	12.0	2.97	16200	10.09	1350.0

No Species: 26 Nat. Species: 25 Hybrids: 0 Total Counted: 202 Total Rel. Wt.: 160518

IBI: 46.0 **Mlwb:** 9.9

A5 - 16 05/21/2023

Site ID: LM11 River: 11-001 Little Miami River RM: 10.90 Date: 08/03/2022

Time Fished: 2464 Distance: 0.500 Drainge (sq mi): 1710.0 Depth: 0

Location: intersection of Mt. Carmel and Round Bottom Rd. Lat: 39.14930 Long: -84.31542

Cassias												
Species Code:	Species Name:	Feed Guild	Toler- ance	Breed Guild	IBI Group	No Fish			% by No.	Rel. Wt.	% by Wt.	Av. Wt.
10-004	LONGNOSE GAR	Р		М			2	4.0	1.18	1700	1.52	425.0
20-001	SKIPJACK HERRING	Р		М			2	4.0	1.18	30	0.03	7.5
20-003	GIZZARD SHAD	0		М		1	1 2	2.0	6.51	3000	2.69	136.3
40-003	BLACK BUFFALO	1		М	С		5 1	0.0	2.96	28200	25.28	2820.0
40-004	SMALLMOUTH BUFFALO	1		М	С		7 1	4.0	4.14	15500	13.89	1107.1
40-005	QUILLBACK CARPSUCKER	0		М	С		1	2.0	0.59	1600	1.43	800.0
40-006	RIVER CARPSUCKER	0		М	С		4	8.0	2.37	6700	6.01	837.5
40-010	GOLDEN REDHORSE	1	М	S	R		3	6.0	1.78	3000	2.69	500.0
40-013	RIVER REDHORSE	1	I	S	R		2	4.0	1.18	8000	7.17	2000.0
40-015	NORTHERN HOG SUCKER	1	М	S	R		9 1	8.0	5.33	3800	3.41	211.1
40-023	SMALLMOUTH REDHORSE	1	M	S	R	3	8 7	6.0	22.49	29700	26.62	390.7
43-020	EMERALD SHINER	I		М	N	3	6 7	2.0	21.30	80	0.07	1.1
43-032	SPOTFIN SHINER	1		М	N		2	4.0	1.18	8	0.01	2.0
43-035	MIMIC SHINER	I	I	М	N		2	4.0	1.18	6	0.01	1.5
43-044	CENTRAL STONEROLLER	Н		Ν	N		2	4.0	1.18	20	0.02	5.0
47-002	CHANNEL CATFISH			С	F		2	4.0	1.18	5100	4.57	1275.0
47-009	MOUNTAIN MADTOM	I	R	С			7 1	4.0	4.14	10	0.01	0.7
77-001	WHITE CRAPPIE	1		С	S		4	8.0	2.37	1400	1.25	175.0
77-002	BLACK CRAPPIE	1		С	S		1	2.0	0.59	700	0.63	350.0
77-004	SMALLMOUTH BASS	С	M	С	F		2	4.0	1.18	700	0.63	175.0
77-006	LARGEMOUTH BASS	С		С	F		1	2.0	0.59	20	0.02	10.0
77-008	GREEN SUNFISH	I	Т	С	S		4	8.0	2.37	60	0.05	7.5
77-009	BLUEGILL SUNFISH	I	Р	С	S		7 1	4.0	4.14	240	0.22	17.1
77-010	ORANGESPOTTED SUNFISH	I		С	S		1	2.0	0.59	10	0.01	5.0
77-011	LONGEAR SUNFISH	I	M	С	S	1	0 2	0.0	5.92	140	0.13	7.0
80-011	LOGPERCH	1	M	S	D		1	2.0	0.59	40	0.04	20.0
80-016	BANDED DARTER	I	I	S	D		2	4.0	1.18	6	0.01	1.5
85-001	FRESHWATER DRUM		Р	М			1	2.0	0.59	1800	1.61	900.0

No Species: 28 Nat. Species: 28 Hybrids: 0 Total Counted: 169 Total Rel. Wt.: 111570

IBI: 48.0 **Mlwb:** 10.0

A5 - 17 05/21/2023

Site ID: LM11 River: 11-001 Little Miami River RM: 10.90 Date: 09/02/2022

Time Fished: 2683 Distance: 0.500 Drainge (sq mi): 1710.0 Depth: 0

Location: intersection of Mt. Carmel and Round Bottom Rd. Lat: 39.14930 Long: -84.31542

Species											
Code:	Species Name:	Feed Guild	Toler- ance	Breed Guild	IBI Group	No. Fish	Rel. No.	% by No.	Rel. Wt.	% by Wt.	Av. Wt.
10-004	LONGNOSE GAR	Р		М		1		0.61	800	1.12	400.0
20-001	SKIPJACK HERRING	Р		М		1	2.0	0.61	50	0.07	25.0
20-003	GIZZARD SHAD	0		М		9	18.0	5.52	2500	3.51	138.8
40-004	SMALLMOUTH BUFFALO	I		М	С	8	16.0	4.91	27400	38.47	1712.5
40-006	RIVER CARPSUCKER	0		М	С	1	2.0	0.61	2000	2.81	1000.0
40-010	GOLDEN REDHORSE	I	M	S	R	5	10.0	3.07	6000	8.42	600.0
40-015	NORTHERN HOG SUCKER	I	M	S	R	11	22.0	6.75	4700	6.60	213.6
40-023	SMALLMOUTH REDHORSE	1	M	S	R	11	22.0	6.75	8000	11.23	363.6
43-009	GRAVEL CHUB	I	M	S	Ν	7	14.0	4.29	28	0.04	2.0
43-020	EMERALD SHINER	1		М	Ν	50	100.0	30.67	230	0.32	2.3
43-032	SPOTFIN SHINER	I		М	Ν	2	4.0	1.23	8	0.01	2.0
43-044	CENTRAL STONEROLLER	Н		Ν	Ν	10	20.0	6.13	120	0.17	6.0
47-002	CHANNEL CATFISH			С	F	5	10.0	3.07	10000	14.04	1000.0
47-007	FLATHEAD CATFISH	Р		С	F	1	2.0	0.61	6000	8.42	3000.0
47-008	STONECAT MADTOM	I	I	С		2	4.0	1.23	20	0.03	5.0
47-009	MOUNTAIN MADTOM	1	R	С		19	38.0	11.66	30	0.04	0.7
74-005	Striped X White Bass				Е	1	2.0	0.61	900	1.26	450.0
77-004	SMALLMOUTH BASS	С	M	С	F	2	4.0	1.23	300	0.42	75.0
77-005	SPOTTED BASS	С		С	F	2	4.0	1.23	200	0.28	50.0
77-009	BLUEGILL SUNFISH	I	Р	С	S	1	2.0	0.61	30	0.04	15.0
80-011	LOGPERCH	1	M	S	D	2	4.0	1.23	80	0.11	20.0
80-014	JOHNNY DARTER	I		С	D	1	2.0	0.61	2	0.00	1.0
80-016	BANDED DARTER	I	I	S	D	7	14.0	4.29	20	0.03	1.4
80-022	RAINBOW DARTER	1	M	S	D	1	2.0	0.61	4	0.01	2.0
80-024	FANTAIL DARTER	I		С	D	1	2.0	0.61	10	0.01	5.0
85-001	FRESHWATER DRUM		Р	М		2	4.0	1.23	1800	2.53	450.0

No Species: 25 Nat. Species: 25 Hybrids: 1 Total Counted: 163 Total Rel. Wt.: 71232

IBI: 40.0 **Mlwb:** 9.5

A5 - 18 05/21/2023

Site ID: LM12 River: 11-001 Little Miami River RM: 8.10 Date: 08/03/2022

Time Fished: 2739 Distance: 0.500 Drainge (sq mi): 1710.0 Depth: 0

Location: Newtown Rd. Lat: 39.13730 Long: -84.35377

Species											
Code:	Species Name:	Feed Guild	Toler- ance	Breed Guild	IBI Group	No. Fish	Rel. No.	% by No.	Rel. Wt.	% by Wt.	Av. Wt.
10-004	LONGNOSE GAR	Р		М		3	6.0	1.06	2400	3.09	400.0
20-001	SKIPJACK HERRING	Р		М		3	6.0	1.06	120	0.15	20.0
20-003	GIZZARD SHAD	0		М		43	86.0	15.25	6980	8.99	81.1
40-003	BLACK BUFFALO	1		М	С	5	10.0	1.77	22500	28.96	2250.0
40-004	SMALLMOUTH BUFFALO	1		М	С	4	8.0	1.42	8500	10.94	1062.5
40-005	QUILLBACK CARPSUCKER	0		М	С	1	2.0	0.35	1700	2.19	850.0
40-008	SILVER REDHORSE	1	M	S	R	2	4.0	0.71	1200	1.54	300.0
40-010	GOLDEN REDHORSE	1	M	S	R	1	2.0	0.35	1300	1.67	650.0
40-015	NORTHERN HOG SUCKER	1	M	S	R	11	22.0	3.90	5120	6.59	232.7
40-023	SMALLMOUTH REDHORSE	1	M	S	R	6	12.0	2.13	5500	7.08	458.3
43-001	COMMON CARP	0	Т	М	G	1	2.0	0.35	6000	7.72	3000.0
43-009	GRAVEL CHUB	1	M	S	N	3	6.0	1.06	66	0.08	11.0
43-020	EMERALD SHINER	1		М	N	150	300.0	53.19	400	0.51	1.3
43-032	SPOTFIN SHINER	1		М	N	2	4.0	0.71	10	0.01	2.5
43-034	SAND SHINER	1	М	М	Ν	6	12.0	2.13	20	0.03	1.6
43-044	CENTRAL STONEROLLER	Н		Ν	Ν	3	6.0	1.06	24	0.03	4.0
47-002	CHANNEL CATFISH			С	F	2	4.0	0.71	3200	4.12	800.0
47-007	FLATHEAD CATFISH	Р		С	F	1	2.0	0.35	4	0.01	2.0
47-008	STONECAT MADTOM	1	1	С		1	2.0	0.35	6	0.01	3.0
47-009	MOUNTAIN MADTOM	1	R	С		4	8.0	1.42	6	0.01	0.7
74-005	Striped X White Bass				Е	2	4.0	0.71	7000	9.01	1750.0
77-004	SMALLMOUTH BASS	С	M	С	F	3	6.0	1.06	600	0.77	100.0
77-006	LARGEMOUTH BASS	С		С	F	5	10.0	1.77	100	0.13	10.0
77-008	GREEN SUNFISH	1	Т	С	S	1	2.0	0.35	50	0.06	25.0
77-009	BLUEGILL SUNFISH	1	Р	С	S	4	8.0	1.42	200	0.26	25.0
77-011	LONGEAR SUNFISH	1	M	С	S	4	8.0	1.42	110	0.14	13.7
80-011	LOGPERCH	1	M	S	D	1	2.0	0.35	30	0.04	15.0
80-015	GREENSIDE DARTER	1	M	S	D	1	2.0	0.35	4	0.01	2.0
80-016	BANDED DARTER	1	1	S	D	1	2.0	0.35	4	0.01	2.0
80-017	VARIEGATE DARTER	1	I	S	D	1	2.0	0.35	6	0.01	3.0
80-022	RAINBOW DARTER	1	М	S	D	1	2.0	0.35	4	0.01	2.0
85-001	FRESHWATER DRUM		Р	М		6	12.0	2.13	4520	5.82	376.6

No Species: 31 Nat. Species: 30 Hybrids: 1 Total Counted: 282 Total Rel. Wt.: 77684

IBI: 46.0 **Mlwb:** 9.3

A5 - 19 05/21/2023

Site ID: LM12 River: 11-001 Little Miami River RM: 8.10 Date: 09/22/2022

Time Fished: 2491 Distance: 0.500 Drainge (sq mi): 1710.0 Depth: 0

Location: Newtown Rd. Lat: 39.13730 Long: -84.35377

Species Code:	Charica Nama	Feed	Toler-	Breed	IBI	No.	Rel.	% by	Rel.	% by	Av.
	Species Name:	Guild	ance	Guild	Group	Fish	No.	No.	Wt.	Wt.	Wt.
10-004	LONGNOSE GAR	Р		М		1	2.0	0.54	1300	2.10	650.0
20-003	GIZZARD SHAD	0		М		9	18.0	4.86	2900	4.67	161.1
40-004	SMALLMOUTH BUFFALO	- 1		М	С	6	12.0	3.24	29400	47.39	2450.0
40-015	NORTHERN HOG SUCKER	- 1	М	S	R	11	22.0	5.95	5340	8.61	242.7
40-023	SMALLMOUTH REDHORSE	1	М	S	R	12	24.0	6.49	8440	13.60	351.6
43-009	GRAVEL CHUB	1	М	S	Ν	9	18.0	4.86	60	0.10	3.3
43-020	EMERALD SHINER	1		М	N	57	114.0	30.81	160	0.26	1.4
43-035	MIMIC SHINER	1	1	М	N	2	4.0	1.08	2	0.00	0.5
43-063	CHANNEL SHINER	1	1	М	N	8	16.0	4.32	40	0.06	2.5
47-002	CHANNEL CATFISH			С	F	4	8.0	2.16	9800	15.80	1225.0
47-008	STONECAT MADTOM	1	1	С		1	2.0	0.54	6	0.01	3.0
47-009	MOUNTAIN MADTOM	1	R	С		5	10.0	2.70	10	0.02	1.0
77-004	SMALLMOUTH BASS	С	М	С	F	1	2.0	0.54	10	0.02	5.0
77-005	SPOTTED BASS	С		С	F	6	12.0	3.24	40	0.06	3.3
77-006	LARGEMOUTH BASS	С		С	F	1	2.0	0.54	50	0.08	25.0
77-008	GREEN SUNFISH	1	Т	С	S	3	6.0	1.62	100	0.16	16.6
77-009	BLUEGILL SUNFISH	1	Р	С	S	1	2.0	0.54	20	0.03	10.0
77-011	LONGEAR SUNFISH	1	М	С	S	18	36.0	9.73	140	0.23	3.8
80-011	LOGPERCH	1	М	S	D	4	8.0	2.16	70	0.11	8.7
80-016	BANDED DARTER	1	I	S	D	13	26.0	7.03	20	0.03	0.7
80-017	VARIEGATE DARTER	1	I	S	D	2	4.0	1.08	10	0.02	2.5
80-022	RAINBOW DARTER	1	М	S	D	8	16.0	4.32	20	0.03	1.2
85-001	FRESHWATER DRUM		Р	М		3	6.0	1.62	4100	6.61	683.3

No Species: 23 Nat. Species: 23 Hybrids: 0 Total Counted: 185 Total Rel. Wt.: 62038

IBI: 42.0 **Mlwb:** 9.2

A5 - 20 05/21/2023

Site ID: LM13 River: 11-001 Little Miami River RM: 6.83 Date: 08/03/2022

Time Fished: 2683 Distance: 0.500 Drainge (sq mi): 1720.0 Depth: 0

Location: RR Trestle-Mariemont Lat: 39.14088 Long: -84.36737

Species												
Code:	Species Name:	Feed Guild	Toler- ance	Breed Guild	IBI Group	No Fis		Rel. No.	% by No.	Rel. Wt.	% by Wt.	Av. Wt.
10-004	LONGNOSE GAR	Р		М			6	12.0	3.33	5000	5.02	416.6
20-003	GIZZARD SHAD	0		М		2	25	50.0	13.89	5970	6.00	119.4
40-003	BLACK BUFFALO	1		М	С		3	6.0	1.67	15200	15.27	2533.3
40-004	SMALLMOUTH BUFFALO	1		М	С		5	10.0	2.78	12700	12.76	1270.0
40-005	QUILLBACK CARPSUCKER	0		М	С		3	6.0	1.67	6000	6.03	1000.0
40-006	RIVER CARPSUCKER	0		М	С		4	8.0	2.22	6400	6.43	800.0
40-008	SILVER REDHORSE	I	M	S	R		1	2.0	0.56	2800	2.81	1400.0
40-009	BLACK REDHORSE	I	I	S	R		1	2.0	0.56	10	0.01	5.0
40-010	GOLDEN REDHORSE	I	M	S	R		2	4.0	1.11	1800	1.81	450.0
40-013	RIVER REDHORSE	I	I	S	R		3	6.0	1.67	12800	12.86	2133.3
40-015	NORTHERN HOG SUCKER	I	M	S	R		4	8.0	2.22	1800	1.81	225.0
40-023	SMALLMOUTH REDHORSE	I	M	S	R	1	3	26.0	7.22	11400	11.45	438.4
43-020	EMERALD SHINER	I		М	N	5	0	100.0	27.78	170	0.17	1.7
43-032	SPOTFIN SHINER	1		М	N		2	4.0	1.11	20	0.02	5.0
43-043	BLUNTNOSE MINNOW	0	Т	С	N		1	2.0	0.56	2	0.00	1.0
43-063	CHANNEL SHINER	- 1	I	М	N		2	4.0	1.11	6	0.01	1.5
47-002	CHANNEL CATFISH			С	F		9	18.0	5.00	13300	13.36	738.8
47-009	MOUNTAIN MADTOM	- 1	R	С			2	4.0	1.11	2	0.00	0.5
77-003	ROCK BASS	С		С	S		1	2.0	0.56	30	0.03	15.0
77-004	SMALLMOUTH BASS	С	M	С	F		3	6.0	1.67	20	0.02	3.3
77-005	SPOTTED BASS	С		С	F		4	8.0	2.22	706	0.71	88.2
77-006	LARGEMOUTH BASS	С		С	F		6	12.0	3.33	120	0.12	10.0
77-008	GREEN SUNFISH	- 1	Т	С	S		2	4.0	1.11	80	0.08	20.0
77-009	BLUEGILL SUNFISH	I	Р	С	S		4	8.0	2.22	60	0.06	7.5
77-011	LONGEAR SUNFISH	1	M	С	S		2	4.0	1.11	20	0.02	5.0
80-011	LOGPERCH	1	M	S	D		1	2.0	0.56	10	0.01	5.0
80-017	VARIEGATE DARTER	1	1	S	D		1	2.0	0.56	6	0.01	3.0
85-001	FRESHWATER DRUM		Р	М		2	20	40.0	11.11	3120	3.13	78.0

No Species: 28 Nat. Species: 28 Hybrids: 0 Total Counted: 180 Total Rel. Wt.: 99552

IBI: 48.0 **Mlwb:** 10.3

A5 - 21 05/21/2023

Site ID: LM13 River: 11-001 Little Miami River RM: 6.83 Date: 09/22/2022

Time Fished: 2065 Distance: 0.500 Drainge (sq mi): 1720.0 Depth: 0

Location: RR Trestle-Mariemont Lat: 39.14088 Long: -84.36737

Chasias											
Species Code:	Species Name:	Feed	Toler-	Breed	IBI	No. Fish	Rel. No.	% by	Rel. Wt.	% by Wt.	Av.
10-004	LONGNOSE GAR	Guild P	ance	Guild M	Group	7		No. 3.70	3400	2.33	Wt. 425.0
20-003	GIZZARD SHAD	0		M		5		4.63	1650	1.13	165.0
40-003	BLACK BUFFALO	ı		М	С	2		1.85	20200	13.87	5050.0
40-004	SMALLMOUTH BUFFALO			M	С	22		20.37	82800	56.86	1881.8
40-005	QUILLBACK CARPSUCKER	0		M	С	1		0.93	1800	1.24	900.0
40-006	RIVER CARPSUCKER	0		M	С	1	_	0.93	1700	1.17	850.0
40-008	SILVER REDHORSE	ı	М	S	R	1		0.93	1000	0.69	500.0
40-010	GOLDEN REDHORSE		M	S	R	1	_	0.93	1700	1.17	850.0
40-013	RIVER REDHORSE	- ;	I	S	R	3	_	2.78	17900	12.29	2983.3
40-015	NORTHERN HOG SUCKER		M	S	R	2		1.85	1400	0.96	350.0
40-013	SMALLMOUTH REDHORSE	'	M	S	R	3	_	2.78	3400	2.33	566.6
			IVI								
43-020	EMERALD SHINER			M	N	13		12.04	60	0.04	2.3
43-032	SPOTFIN SHINER	1		М	N	1		0.93	4	0.00	2.0
43-063	CHANNEL SHINER	I	I	М	N	11	22.0	10.19	60	0.04	2.7
47-002	CHANNEL CATFISH			С	F	1	2.0	0.93	2600	1.79	1300.0
47-007	FLATHEAD CATFISH	Р		С	F	1	2.0	0.93	3400	2.33	1700.0
77-004	SMALLMOUTH BASS	С	M	С	F	1	2.0	0.93	10	0.01	5.0
77-005	SPOTTED BASS	С		С	F	16	32.0	14.81	590	0.41	18.4
77-011	LONGEAR SUNFISH	1	M	С	S	8	16.0	7.41	160	0.11	10.0
80-011	LOGPERCH	1	M	S	D	5	10.0	4.63	60	0.04	6.0
80-015	GREENSIDE DARTER	1	M	S	D	1	2.0	0.93	16	0.01	8.0
80-016	BANDED DARTER	1	I	S	D	1	2.0	0.93	2	0.00	1.0
80-017	VARIEGATE DARTER	1	ı	S	D	1	2.0	0.93	8	0.01	4.0
80-022	RAINBOW DARTER	ı	M	S	D	1	2.0	0.93	2	0.00	1.0
85-001	FRESHWATER DRUM		Р	М		2	4.0	1.85	1700	1.17	425.0

No Species: 25 Nat. Species: 25 Hybrids: 0 Total Counted: 108 Total Rel. Wt.: 145622

IBI: 44.0 **Mlwb:** 9.4

A5 - 22 05/21/2023

Site ID: LM15 River: 11-001 Little Miami River RM: 4.10 Date: 08/03/2022

Time Fished: 2731 Distance: 0.500 Drainge (sq mi): 1730.0 Depth: 0

Location: Ust. Duck Creek Lat: 39.11782 Long: -84.39946

Species											
Code:	Species Name:	Feed Guild	Toler- ance	Breed Guild	IBI Group	No. Fish	Rel. No.	% by No.	Rel. Wt.	% by Wt.	Av. Wt.
10-004	LONGNOSE GAR	Р		М		2	4.0	0.67	1400	0.88	350.0
18-002	MOONEYE	I	R	М		2	4.0	0.67	400	0.25	100.0
20-001	SKIPJACK HERRING	Р		М		1	2.0	0.34	20	0.01	10.0
20-003	GIZZARD SHAD	0		М		41	82.0	13.80	7240	4.56	88.2
40-003	BLACK BUFFALO	1		М	С	8	16.0	2.69	46400	29.23	2900.0
40-004	SMALLMOUTH BUFFALO	I		М	С	10	20.0	3.37	24100	15.18	1205.0
40-006	RIVER CARPSUCKER	0		М	С	7	14.0	2.36	11600	7.31	828.5
40-010	GOLDEN REDHORSE	I	M	S	R	2	4.0	0.67	1016	0.64	254.0
40-015	NORTHERN HOG SUCKER	1	M	S	R	8	16.0	2.69	5130	3.23	320.6
40-023	SMALLMOUTH REDHORSE	I	M	S	R	10	20.0	3.37	10600	6.68	530.0
43-001	COMMON CARP	0	Т	М	G	6	12.0	2.02	21400	13.48	1783.3
43-009	GRAVEL CHUB	I	М	S	N	10	20.0	3.37	124	0.08	6.2
43-015	SUCKERMOUTH MINNOW	1		S	N	4	8.0	1.35	30	0.02	3.7
43-020	EMERALD SHINER	I		М	N	90	180.0	30.30	180	0.11	1.0
43-031	STEELCOLOR SHINER	1	Р	М	N	2	4.0	0.67	12	0.01	3.0
43-032	SPOTFIN SHINER	I		М	N	4	8.0	1.35	20	0.01	2.5
43-034	SAND SHINER	I	M	М	N	13	26.0	4.38	60	0.04	2.3
43-035	MIMIC SHINER	I	I	М	N	10	20.0	3.37	40	0.03	2.0
43-044	CENTRAL STONEROLLER	Н		Ν	N	6	12.0	2.02	38	0.02	3.1
43-063	CHANNEL SHINER	I	I	М	N	7	14.0	2.36	34	0.02	2.4
47-002	CHANNEL CATFISH			С	F	21	42.0	7.07	19574	12.33	466.0
47-007	FLATHEAD CATFISH	Р		С	F	1	2.0	0.34	400	0.25	200.0
74-005	Striped X White Bass				Е	10	20.0	3.37	6700	4.22	335.0
77-004	SMALLMOUTH BASS	С	М	С	F	1	2.0	0.34	200	0.13	100.0
77-005	SPOTTED BASS	С		С	F	2	4.0	0.67	202	0.13	50.5
77-006	LARGEMOUTH BASS	С		С	F	1	2.0	0.34	20	0.01	10.0
77-009	BLUEGILL SUNFISH	I	Р	С	S	2	4.0	0.67	180	0.11	45.0
77-011	LONGEAR SUNFISH	I	M	С	S	3	6.0	1.01	40	0.03	6.6
80-017	VARIEGATE DARTER	1	I	S	D	6	12.0	2.02	20	0.01	1.6
85-001	FRESHWATER DRUM		Р	М		7	14.0	2.36	1570	0.99	112.1

No Species: 29 Nat. Species: 28 Hybrids: 1 Total Counted: 297 Total Rel. Wt.: 158750

IBI: 42.0 **Mlwb:** 10.2

A5 - 23 05/21/2023

Site ID: LM15 River: 11-001 Little Miami River RM: 4.10 Date: 09/21/2022

Time Fished: 2409 Distance: 0.500 Drainge (sq mi): 1730.0 Depth: 0

Location: Ust. Duck Creek Lat: 39.11782 Long: -84.39946

Species											
Code:	Species Name:	Feed Guild	Toler- ance	Breed Guild	IBI Group	No. Fish	Rel. No.	% by No.	Rel. Wt.	% by Wt.	Av. Wt.
10-004	LONGNOSE GAR	Р		М	•	1	2.0	0.58	7000	4.65	3500.0
20-003	GIZZARD SHAD	0		М		11	22.0	6.36	3400	2.26	154.5
40-003	BLACK BUFFALO	1		М	С	1	2.0	0.58	6800	4.52	3400.0
40-004	SMALLMOUTH BUFFALO	1		М	С	24	48.0	13.87	66600	44.27	1387.5
40-005	QUILLBACK CARPSUCKER	Ο		М	С	3	6.0	1.73	5200	3.46	866.6
40-006	RIVER CARPSUCKER	0		М	С	5	10.0	2.89	9000	5.98	900.0
40-015	NORTHERN HOG SUCKER	1	M	S	R	15	30.0	8.67	8450	5.62	281.6
40-023	SMALLMOUTH REDHORSE	1	M	S	R	7	14.0	4.05	5900	3.92	421.4
43-001	COMMON CARP	0	Т	М	G	1	2.0	0.58	12800	8.51	6400.0
43-009	GRAVEL CHUB	1	M	S	N	14	28.0	8.09	100	0.07	3.5
43-020	EMERALD SHINER	1		М	N	20	40.0	11.56	80	0.05	2.0
43-031	STEELCOLOR SHINER	1	Р	М	N	4	8.0	2.31	50	0.03	6.2
43-044	CENTRAL STONEROLLER	Н		Ν	N	17	34.0	9.83	300	0.20	8.8
47-002	CHANNEL CATFISH			С	F	13	26.0	7.51	11106	7.38	427.1
47-007	FLATHEAD CATFISH	Р		С	F	1	2.0	0.58	1000	0.66	500.0
77-004	SMALLMOUTH BASS	С	M	С	F	2	4.0	1.16	400	0.27	100.0
77-005	SPOTTED BASS	С		С	F	11	22.0	6.36	2560	1.70	116.3
77-006	LARGEMOUTH BASS	С		С	F	1	2.0	0.58	50	0.03	25.0
77-009	BLUEGILL SUNFISH	1	Р	С	S	1	2.0	0.58	20	0.01	10.0
77-011	LONGEAR SUNFISH	1	M	С	S	6	12.0	3.47	110	0.07	9.1
80-007	SLENDERHEAD DARTER	1	R	S	D	1	2.0	0.58	4	0.00	2.0
80-017	VARIEGATE DARTER	1	I	S	D	1	2.0	0.58	6	0.00	3.0
80-022	RAINBOW DARTER	1	M	S	D	5	10.0	2.89	10	0.01	1.0
80-026	SAUGER X WALLEYE	Р			Е	1	2.0	0.58	3000	1.99	1500.0
85-001	FRESHWATER DRUM		Р	М		7	14.0	4.05	6500	4.32	464.2

No Species: 24 Nat. Species: 23 Hybrids: 1 Total Counted: 173 Total Rel. Wt.: 150446

IBI: 46.0 **Mlwb:** 10.1

A5 - 24 05/21/2023

Site ID: LM16A River: 11-001 Little Miami River RM: 3.70 Date: 08/04/2022

Time Fished: 2619 Distance: 0.500 Drainge (sq mi): 1740.0 Depth: 0

Location: Dst. Duck Creek Lat: 39.11173 Long: -84.40057

Species											
Code:	Species Name:	Feed Guild	Toler- ance	Breed Guild	IBI Group	No. Fish	Rel. No.	% by	Rel. Wt.	% by Wt.	Av.
40.000	<u>'</u>	Guila			Group			No.			<u>Wt</u> .
18-002	MOONEYE	ı	R	М		3	6.0	1.60	80	0.09	13.3
20-001	SKIPJACK HERRING	Р		М		2	4.0	1.07	20	0.02	5.0
20-003	GIZZARD SHAD	0		М		30	60.0	16.04	4360	5.07	72.6
40-003	BLACK BUFFALO	1		М	С	1	2.0	0.53	6400	7.45	3200.0
40-004	SMALLMOUTH BUFFALO	1		М	С	8	16.0	4.28	14700	17.11	918.7
40-005	QUILLBACK CARPSUCKER	0		М	С	1	2.0	0.53	500	0.58	250.0
40-006	RIVER CARPSUCKER	0		М	С	7	14.0	3.74	12200	14.20	871.4
40-010	GOLDEN REDHORSE	1	М	S	R	3	6.0	1.60	30	0.03	5.0
40-023	SMALLMOUTH REDHORSE	1	М	S	R	2	4.0	1.07	1800	2.09	450.0
43-001	COMMON CARP	0	Т	М	G	19	38.0	10.16	23200	27.00	610.5
43-006	SILVER CHUB	1		М	Ν	2	4.0	1.07	30	0.03	7.5
43-020	EMERALD SHINER	1		М	N	63	126.0	33.69	120	0.14	0.9
43-032	SPOTFIN SHINER	1		М	Ν	2	4.0	1.07	10	0.01	2.5
43-043	BLUNTNOSE MINNOW	0	Т	С	N	1	2.0	0.53	6	0.01	3.0
43-063	CHANNEL SHINER	1	I	М	Ν	1	2.0	0.53	4	0.00	2.0
47-002	CHANNEL CATFISH			С	F	13	26.0	6.95	19800	23.04	761.5
74-005	Striped X White Bass				Е	1	2.0	0.53	400	0.47	200.0
77-005	SPOTTED BASS	С		С	F	3	6.0	1.60	304	0.35	50.6
77-009	BLUEGILL SUNFISH	1	Р	С	S	1	2.0	0.53	20	0.02	10.0
77-011	LONGEAR SUNFISH	1	М	С	S	2	4.0	1.07	40	0.05	10.0
80-011	LOGPERCH	I	М	S	D	1	2.0	0.53	16	0.02	8.0
85-001	FRESHWATER DRUM		Р	М		21	42.0	11.23	1880	2.19	44.7

No Species: 21 Nat. Species: 20 Hybrids: 1 Total Counted: 187 Total Rel. Wt.: 85920

IBI: 32.0 **Mlwb:** 8.6

A5 - 25 05/21/2023

Site ID: LM16A River: 11-001 Little Miami River RM: 3.70 Date: 09/21/2022

Time Fished: 2166 Distance: 0.500 Drainge (sq mi): 1740.0 Depth: 0

Location: Dst. Duck Creek Lat: 39.11173 Long: -84.40057

Species Code:	Species Name:	Feed Guild	Toler- ance	Breed Guild	IBI Group	No. Fish	Rel. No.	% by No.	Rel. Wt.	% by Wt.	Av. Wt.
10-004	LONGNOSE GAR	Р		М		10	20.0	8.55	17500	10.33	875.0
20-003	GIZZARD SHAD	0		М		14	1 28.0	11.97	3300	1.95	117.8
40-004	SMALLMOUTH BUFFALO	I		М	С	20	40.0	17.09	65900	38.90	1647.5
40-005	QUILLBACK CARPSUCKER	0		М	С	2	2 4.0	1.71	1000	0.59	250.0
40-006	RIVER CARPSUCKER	0		М	С	1:	2 24.0	10.26	20600	12.16	858.3
40-008	SILVER REDHORSE	1	М	S	R		2.0	0.85	1500	0.89	750.0
43-001	COMMON CARP	0	Т	М	G	1	30.0	12.82	25600	15.11	853.3
43-020	EMERALD SHINER	1		М	N	;	5 10.0	4.27	20	0.01	2.0
43-063	CHANNEL SHINER	1	1	М	N	23	3 46.0	19.66	29300	17.30	636.9
47-007	FLATHEAD CATFISH	Р		С	F	;	6.0	2.56	904	0.53	150.6
77-005	SPOTTED BASS	С		С	F	(12.0	5.13	760	0.45	63.3
77-006	LARGEMOUTH BASS	С		С	F		2.0	0.85	800	0.47	400.0
77-011	LONGEAR SUNFISH	1	М	С	S		2.0	0.85	6	0.00	3.0
80-001	SAUGER	Р		S	F		2.0	0.85	400	0.24	200.0
85-001	FRESHWATER DRUM		Р	М		;	6.0	2.56	1800	1.06	300.0

No Species: 15 Nat. Species: 14 Hybrids: 0 Total Counted: 117 Total Rel. Wt.: 169390

IBI: 28.0 **Mlwb:** 9.1

A5 - 26 05/21/2023

Site ID: LM16 River: 11-001 Little Miami River RM: 3.50 Date: 08/04/2022

Time Fished: 2561 Distance: 0.500 Drainge (sq mi): 1750.0 Depth: 0

Location: dst. Beechmont Ave. Lat: 39.10781 Long: -84.40455

Species Code:	Species Name:	Feed Guild	Toler- ance	Breed Guild	IBI Group	No. Fish	Rel. No.	% by No.	Rel. Wt.	% by Wt.	Av. Wt.
10-004	LONGNOSE GAR	Р		М		6	12.0	3.28	10400	9.67	866.6
18-002	MOONEYE	- 1	R	М		6	12.0	3.28	1100	1.02	91.6
20-001	SKIPJACK HERRING	Р		М		5	10.0	2.73	170	0.16	17.0
20-003	GIZZARD SHAD	0		М		20	40.0	10.93	2450	2.28	61.2
40-003	BLACK BUFFALO	1		М	С	2	4.0	1.09	9200	8.56	2300.0
40-004	SMALLMOUTH BUFFALO	1		М	С	2	4.0	1.09	3300	3.07	825.0
40-005	QUILLBACK CARPSUCKER	0		М	С	2	4.0	1.09	3100	2.88	775.0
40-006	RIVER CARPSUCKER	0		М	С	5	10.0	2.73	7200	6.70	720.0
40-010	GOLDEN REDHORSE	1	М	S	R	3	6.0	1.64	3300	3.07	550.0
40-013	RIVER REDHORSE	1	I	S	R	2	4.0	1.09	9500	8.84	2375.0
40-023	SMALLMOUTH REDHORSE	1	М	S	R	23	46.0	12.57	24300	22.60	528.2
43-001	COMMON CARP	0	Т	М	G	1	2.0	0.55	5000	4.65	2500.0
43-020	EMERALD SHINER	1		М	N	72	144.0	39.34	120	0.11	8.0
43-035	MIMIC SHINER	1	I	М	Ν	6	12.0	3.28	20	0.02	1.6
43-043	BLUNTNOSE MINNOW	0	Т	С	N	1	2.0	0.55	4	0.00	2.0
47-002	CHANNEL CATFISH			С	F	3	6.0	1.64	3902	3.63	650.3
74-005	Striped X White Bass				Е	9	18.0	4.92	22490	20.92	1249.4
77-006	LARGEMOUTH BASS	С		С	F	1	2.0	0.55	10	0.01	5.0
80-015	GREENSIDE DARTER	1	М	S	D	1	2.0	0.55	6	0.01	3.0
85-001	FRESHWATER DRUM		Р	М		13	26.0	7.10	1950	1.81	75.0

No Species: 19 Nat. Species: 18 Hybrids: 1 Total Counted: 183 Total Rel. Wt.: 107522

IBI: 40.0 **Mlwb:** 9.1

A5 - 27 05/21/2023

Site ID: LM16 River: 11-001 Little Miami River RM: 3.50 Date: 09/21/2022

Time Fished: 2976 Distance: 0.500 Drainge (sq mi): 1750.0 Depth: 0

Location: dst. Beechmont Ave. Lat: 39.10781 Long: -84.40455

Species											
Code:	Species Name:	Feed Guild	Toler- ance	Breed Guild	IBI Group	No. Fish		% by No.	Rel. Wt.	% by Wt.	Av. Wt.
10-004	LONGNOSE GAR	P	ance	M	Gloup		3 6.0	1.80	3000	2.08	500.0
20-003	GIZZARD SHAD	0		М		20		15.57	3200	2.22	61.5
40-003	BLACK BUFFALO	ı		М	С		2 4.0	1.20	17000	11.78	4250.0
40-004	SMALLMOUTH BUFFALO	1		М	С	1:	2 24.0	7.19	52500	36.37	2187.5
40-005	QUILLBACK CARPSUCKER	0		М	С		1 2.0	0.60	2000	1.39	1000.0
40-006	RIVER CARPSUCKER	0		М	С	2	2 4.0	1.20	2600	1.80	650.0
40-010	GOLDEN REDHORSE	I	M	S	R		1 2.0	0.60	1000	0.69	500.0
40-023	SMALLMOUTH REDHORSE	I	M	S	R	14	4 28.0	8.38	14000	9.70	500.0
43-001	COMMON CARP	0	Т	М	G		1 2.0	0.60	1900	1.32	950.0
43-009	GRAVEL CHUB	1	M	S	N	-	7 14.0	4.19	20	0.01	1.4
43-020	EMERALD SHINER	1		М	N	39	78.0	23.35	130	0.09	1.6
43-063	CHANNEL SHINER	1	1	М	N	1	1 22.0	6.59	40	0.03	1.8
47-002	CHANNEL CATFISH			С	F	1;	3 26.0	7.78	22810	15.80	877.3
47-007	FLATHEAD CATFISH	Р		С	F		1 2.0	0.60	20	0.01	10.0
47-008	STONECAT MADTOM	1	1	С			1 2.0	0.60	20	0.01	10.0
74-005	Striped X White Bass				E	(12.0	3.59	19600	13.58	1633.3
77-005	SPOTTED BASS	С		С	F	(6 12.0	3.59	70	0.05	5.8
77-011	LONGEAR SUNFISH	1	M	С	S	2	2 4.0	1.20	20	0.01	5.0
80-011	LOGPERCH	1	M	S	D	10	20.0	5.99	180	0.12	9.0
80-015	GREENSIDE DARTER	1	M	S	D	2	2 4.0	1.20	10	0.01	2.5
80-016	BANDED DARTER	1	I	S	D	2	2 4.0	1.20	6	0.00	1.5
80-017	VARIEGATE DARTER	1	I	S	D		1 2.0	0.60	10	0.01	5.0
80-022	RAINBOW DARTER	1	M	S	D		1 2.0	0.60	4	0.00	2.0
80-024	FANTAIL DARTER	1		С	D		1 2.0	0.60	4	0.00	2.0
80-026	SAUGER X WALLEYE	Р			E		1 2.0	0.60	3000	2.08	1500.0
85-001	FRESHWATER DRUM		Р	М			1 2.0	0.60	1200	0.83	600.0

No Species: 24 Nat. Species: 23 Hybrids: 2 Total Counted: 167 Total Rel. Wt.: 144344

IBI: 42.0 **Mlwb:** 9.3

A5 - 28 05/21/2023

Site ID: LM17 River: 11-001 Little Miami River RM: 1.60 Date: 08/04/2022

Time Fished: 2410 Distance: 0.500 Drainge (sq mi): 1760.0 Depth: 0

Location: dst. US-52 Lat: 39.08358 Long: -84.42356

Species Code:	Species Name:	Feed Guild	Toler- ance	Breed Guild	IBI Group	No. Fish	Rel. No.	% by No.	Rel. Wt.	% by Wt.	Av. Wt.
10-004	LONGNOSE GAR	Р		М		1	2.0	0.97	900	1.75	450.0
20-001	SKIPJACK HERRING	Р		М		4	8.0	3.88	180	0.35	22.5
20-003	GIZZARD SHAD	0		М		10	20.0	9.71	1400	2.73	70.0
40-003	BLACK BUFFALO	I		М	С	1	2.0	0.97	5400	10.53	2700.0
40-004	SMALLMOUTH BUFFALO	1		М	С	5	10.0	4.85	12400	24.18	1240.0
40-006	RIVER CARPSUCKER	0		М	С	1	2.0	0.97	1500	2.92	750.0
40-010	GOLDEN REDHORSE	I	M	S	R	1	2.0	0.97	900	1.75	450.0
40-023	SMALLMOUTH REDHORSE	1	M	S	R	2	4.0	1.94	2500	4.87	625.0
43-001	COMMON CARP	0	Т	М	G	1	2.0	0.97	4300	8.38	2150.0
43-020	EMERALD SHINER	1		М	N	64	128.0	62.14	160	0.31	1.2
43-032	SPOTFIN SHINER	1		М	N	2	4.0	1.94	8	0.02	2.0
43-047	GRASS CARP			М	E	1	2.0	0.97	17400	33.93	8700.0
43-063	CHANNEL SHINER	I	1	М	N	1	2.0	0.97	4	0.01	2.0
47-002	CHANNEL CATFISH			С	F	2	4.0	1.94	3200	6.24	800.0
74-005	Striped X White Bass				Е	1	2.0	0.97	500	0.97	250.0
77-005	SPOTTED BASS	С		С	F	2	4.0	1.94	210	0.41	52.5
77-006	LARGEMOUTH BASS	С		С	F	2	4.0	1.94	20	0.04	5.0
77-009	BLUEGILL SUNFISH	1	Р	С	S	1	2.0	0.97	4	0.01	2.0
80-001	SAUGER	Р		S	F	1	2.0	0.97	300	0.58	150.0

No Species: 18 Nat. Species: 16 Hybrids: 1 Total Counted: 103 Total Rel. Wt.: 51286

IBI: 36.0 **Mlwb:** 7.8

A5 - 29 05/21/2023

Site ID: LM95 River: 11-002 Clough Creek RM: 3.20 Date: 07/21/2022

Time Fished: 1802 Distance: 0.150 Drainge (sq mi): 1.9 Depth: 0

Location: adj. Clough Plke Lat: 39.09324 Long: -84.36315

Species												
Code:	Species Name:	Feed Guild	Toler-	Breed Guild	IBI	No Fisl		Rel. No.	% by	Rel. Wt.	% by Wt.	Av.
		Gulia	ance	Gulia	Group	1 131	11	INO.	No.	۷۷۱.	VVI.	<u>Wt</u> .
40-016	WHITE SUCKER	0	Т	S	W		2	4.0	0.57	0	0.00	0.0
43-011	WESTERN BLACKNOSE DACE	G	Т	S	Ν	14	18 2	296.0	42.05	0	0.00	0.0
43-013	CREEK CHUB	G	Т	Ν	Ν	10	9 2	218.0	30.97	0	0.00	0.0
43-044	CENTRAL STONEROLLER	Н		Ν	Ν	8	89 1	78.0	25.28	0	0.00	0.0
80-023	ORANGETHROAT DARTER	I		S	D		4	8.0	1.14	0	0.00	0.0

No Species: 5 Nat. Species: 5 Hybrids: 0 Total Counted: 352 Total Rel. Wt.: 0

IBI: 30.0 **Mlwb:** N/A

A5 - 30 05/21/2023

Site ID: LM98 River: 11-002 Clough Creek RM: 0.60 Date: 07/21/2022

Time Fished: 1576 Distance: 0.150 Drainge (sq mi): 7.8 Depth: 0

Location: Beechmont Ave. and Elstun Rd. Lat: 39.10620 Long: -84.39419

Species Code:	Species Name:	Feed Guild	Toler- ance	Breed Guild	IBI Group	No. Fish	Rel. No.	% by No.	Rel. Wt.	% by Wt.	Av. Wt.
40-016	WHITE SUCKER	0	Т	S	W	6	12.0	1.29	0	0.00	0.0
43-011	WESTERN BLACKNOSE DACE	G	Т	S	N	171	342.0	36.70	0	0.00	0.0
43-013	CREEK CHUB	G	Т	Ν	N	21	42.0	4.51	0	0.00	0.0
43-039	SILVERJAW MINNOW	1		М	N	15	30.0	3.22	0	0.00	0.0
43-043	BLUNTNOSE MINNOW	0	Т	С	N	23	46.0	4.94	0	0.00	0.0
43-044	CENTRAL STONEROLLER	Н		Ν	N	181	362.0	38.84	0	0.00	0.0
47-004	YELLOW BULLHEAD	1	Т	С		1	2.0	0.21	0	0.00	0.0
80-022	RAINBOW DARTER	1	M	S	D	19	38.0	4.08	0	0.00	0.0
80-023	ORANGETHROAT DARTER	- 1		S	D	1	2.0	0.21	0	0.00	0.0
80-024	FANTAIL DARTER	I		С	D	28	56.0	6.01	0	0.00	0.0

No Species: 10 Nat. Species: 10 Hybrids: 0 Total Counted: 466 Total Rel. Wt.: 0

IBI: 38.0 **Mlwb:** N/A

A5 - 31 05/21/2023

Site ID: LM71 River: 11-004 Duck Creek RM: 6.10 Date: 07/14/2022

Time Fished: 458 Distance: 0.150 Drainge (sq mi): 2.2 Depth: 0

Location: Norwood/Harris Ave. Lat: 39.16073 Long: -84.43835

Species IBI No. Rel. % by Feed Toler-Breed % by Rel. Av. Code: Species Name: Fish Guild ance Guild Group No. No. Wt. Wt. Wt. **** NO FISH 0 99-999 0.0 0 0.00

No Species: 0 Nat. Species: 1 Hybrids: 0 Total Counted: 0 Total Rel. Wt.: 0

IBI: 12.0 **Mlwb:** N/A

A5 - 32 05/21/2023

Site ID: LM72 River: 11-004 Duck Creek RM: 5.14 Date: 07/13/2022

Time Fished: 795 Distance: 0.150 Drainge (sq mi): 5.0 Depth: 0

Location: Duck Creek Rd. Lat: 39.16525 Long: -84.41881

Species Code:	Charica Nama:	Feed Guild	Toler- ance	Breed Guild	IBI Group	No. Fish	Rel. No.	% by No.	Rel. Wt.	% by Wt.	Av. Wt.
43-011	WESTERN BLACKNOSE DACE	G	Т	S	N	3	6.0	4.17	0	0.00	0.0
43-013	CREEK CHUB	G	Т	Ν	Ν	2	4.0	2.78	0	0.00	0.0
77-008	GREEN SUNFISH	- 1	Т	С	S	67	134.0	93.06	0	0.00	0.0

No Species: 3 Nat. Species: 3 Hybrids: 0 Total Counted: 72 Total Rel. Wt.: 0

IBI: 24.0 **Mlwb:** N/A

A5 - 33 05/21/2023

Site ID: LM73 River: 11-004 Duck Creek RM: 4.58 Date: 07/22/2022

Time Fished: 481 Distance: 0.150 Drainge (sq mi): 5.8 Depth: 0

Location: adj. Steel Place Lat: 39.15963 Long: -84.41639

Species IBI No. Rel. % by Feed Toler-Breed % by Rel. Av. Code: Species Name: Group Fish Wt. Guild ance Guild No. No. Wt. Wt. **GREEN SUNFISH** С S 3 0 77-008 Т 6.0 100.00 0.00 0.0

No Species: 1 Nat. Species: 1 Hybrids: 0 Total Counted: 3 Total Rel. Wt.: 0

IBI: 12.0 **Mlwb:** N/A

A5 - 34 05/21/2023

Site ID: LM74 River: 11-004 Duck Creek RM: 3.90 Date: 07/21/2022

Time Fished: 2320 Distance: 0.150 Drainge (sq mi): 9.5 Depth: 0

Location: dst. East Fork Duck Creek Lat: 39.15838 Long: -84.40724

Species Code:	Species Name:	Feed Guild	Toler- ance	Breed Guild	IBI Group	No. Fish	Rel. No.	% by No.	Rel. Wt.	% by Wt.	Av. Wt.
40-016	WHITE SUCKER	0	Т	S	W	4	8.0	0.79	0	0.00	0.0
43-011	WESTERN BLACKNOSE DACE	G	Т	S	N	56	112.0	11.00	0	0.00	0.0
43-013	CREEK CHUB	G	Т	Ν	N	125	250.0	24.56	0	0.00	0.0
43-039	SILVERJAW MINNOW	- 1		М	N	41	82.0	8.06	0	0.00	0.0
43-043	BLUNTNOSE MINNOW	0	Т	С	N	15	30.0	2.95	0	0.00	0.0
43-044	CENTRAL STONEROLLER	Н		Ν	N	33	66.0	6.48	0	0.00	0.0
77-008	GREEN SUNFISH	1	Т	С	S	232	464.0	45.58	0	0.00	0.0
77-009	BLUEGILL SUNFISH	- 1	Р	С	S	3	6.0	0.59	0	0.00	0.0

No Species: 8 Nat. Species: 8 Hybrids: 0 Total Counted: 509 Total Rel. Wt.: 0

IBI: 28.0 **Mlwb:** N/A

A5 - 35 05/21/2023

Site ID: LM75 River: 11-004 Duck Creek RM: 3.40 Date: 07/13/2022

Time Fished: 417 Distance: 0.150 Drainge (sq mi): 11.5 Depth: 0

Location: ust. Erie Ave. Lat: 39.14867 Long: -84.40693

Species Code:	Species Name:	Feed Guild	Toler- ance	Breed Guild	IBI Group	lo. sh	Rel. No.	% by No.	Rel. Wt.	% by Wt.	Av. Wt.
43-011	WESTERN BLACKNOSE DACE	G	T	S	N	4	8.0	100.00	0	0.00	0.0

No Species: 1 Nat. Species: 1 Hybrids: 0 Total Counted: 4 Total Rel. Wt.: 0

IBI: 12.0 **Mlwb:** N/A

A5 - 36 05/21/2023

Site ID: LM76 River: 11-004 Duck Creek RM: 2.80 Date: 07/13/2022

Time Fished: 1213 Distance: 0.150 Drainge (sq mi): 11.7 Depth: 0

Location: dst. Erie Ave. Lat: 39.14484 Long: -84.40615

Species Code:	Species Name:	Feed Guild	Toler- ance	Breed Guild	IBI Group	No. Fish	Rel. No.	% by No.	Rel. Wt.	% by Wt.	Av. Wt.
40-016	WHITE SUCKER	0	Т	S	W	1	2.0	0.65	0	0.00	0.0
43-011	WESTERN BLACKNOSE DACE	G	Т	S	Ν	16	32.0	10.32	0	0.00	0.0
43-013	CREEK CHUB	G	Т	Ν	Ν	11	22.0	7.10	0	0.00	0.0
43-044	CENTRAL STONEROLLER	Н		Ν	Ν	4	8.0	2.58	0	0.00	0.0
77-008	GREEN SUNFISH	1	Т	С	S	123	246.0	79.35	0	0.00	0.0

No Species: 5 Nat. Species: 5 Hybrids: 0 Total Counted: 155 Total Rel. Wt.: 0

IBI: 24.0 **Mlwb:** N/A

A5 - 37 05/21/2023

Site ID: LM77 River: 11-004 Duck Creek RM: 2.00 Date: 07/22/2022

Time Fished: 1313 Distance: 0.150 Drainge (sq mi): 14.3 Depth: 0

Location: at Wooster Ave. and Power St. Lat: 39.13261 Long: -84.40476

Species Code:	Species Name:	Feed Guild	Toler- ance	Breed Guild	IBI Group	No. Fish	Rel. No.	% by No.	Rel. Wt.	% by Wt.	Av. Wt.
40-016	WHITE SUCKER	0	Т	S	W	1	2.0	0.49	0	0.00	0.0
43-011	WESTERN BLACKNOSE DACE	G	Т	S	Ν	40	80.0	19.70	0	0.00	0.0
43-013	CREEK CHUB	G	Т	Ν	N	31	62.0	15.27	0	0.00	0.0
43-032	SPOTFIN SHINER	I		М	Ν	2	4.0	0.99	0	0.00	0.0
43-034	SAND SHINER	I	M	М	N	3	6.0	1.48	0	0.00	0.0
43-039	SILVERJAW MINNOW	I		М	Ν	5	10.0	2.46	0	0.00	0.0
43-043	BLUNTNOSE MINNOW	0	Т	С	N	23	46.0	11.33	0	0.00	0.0
43-044	CENTRAL STONEROLLER	Н		Ν	N	41	82.0	20.20	0	0.00	0.0
47-004	YELLOW BULLHEAD	I	Т	С		12	24.0	5.91	0	0.00	0.0
77-008	GREEN SUNFISH	I	Т	С	S	20	40.0	9.85	0	0.00	0.0
77-011	LONGEAR SUNFISH	I	M	С	S	20	40.0	9.85	0	0.00	0.0
80-022	RAINBOW DARTER	I	M	S	D	3	6.0	1.48	0	0.00	0.0
80-023	ORANGETHROAT DARTER	I		S	D	1	2.0	0.49	0	0.00	0.0
80-024	FANTAIL DARTER	I		С	D	1	2.0	0.49	0	0.00	0.0

No Species: 14 Nat. Species: 14 Hybrids: 0 Total Counted: 203 Total Rel. Wt.: 0

IBI: 36.0 **Mlwb:** N/A

A5 - 38 05/21/2023

Site ID: LM79 River: 11-004 Duck Creek RM: 0.50 Date: 07/22/2022

Time Fished: 1253 Distance: 0.150 Drainge (sq mi): 14.6 Depth: 0

Location: ust. Wooster Pike Lat: 39.12245 Long: -84.41169

Species Code:	Species Name:	Feed Guild	Toler- ance	Breed Guild	IBI Group	No. Fish	Rel. No.	% by No.	Rel. Wt.	% by Wt.	Av. Wt.
43-032	SPOTFIN SHINER	1		М	N	4	8.0	8.89	0	0.00	0.0
47-004	YELLOW BULLHEAD	1	Т	С		15	30.0	33.33	0	0.00	0.0
77-006	LARGEMOUTH BASS	С		С	F	1	2.0	2.22	0	0.00	0.0
77-008	GREEN SUNFISH	1	Т	С	S	16	32.0	35.56	0	0.00	0.0
77-009	BLUEGILL SUNFISH	1	Р	С	S	4	8.0	8.89	0	0.00	0.0
77-011	LONGEAR SUNFISH	1	M	С	S	5	10.0	11.11	0	0.00	0.0

No Species: 6 Nat. Species: 6 Hybrids: 0 Total Counted: 45 Total Rel. Wt.: 0

IBI: 26.0 **Mlwb:** N/A

A5 - 39 05/21/2023

Site ID: LM50 River: 11-007 Sycamore Creek RM: 1.10 Date: 09/09/2022

Time Fished: 2158 Distance: 0.150 Drainge (sq mi): 12.5 Depth: 0

Location: Loveland Rd. Lat: 39.21719 Long: -84.33174

Species Code:	Species Name:	Feed Guild	Toler- ance	Breed Guild	IBI Group	N Fis	o. sh	Rel. No.	% by No.	Rel. Wt.	% by Wt.	Av. Wt.
40-016	WHITE SUCKER	0	Т	S	W		13	26.0	2.19	0	0.00	0.0
43-011	WESTERN BLACKNOSE DACE	G	Т	S	Ν		42	84.0	7.08	0	0.00	0.0
43-013	CREEK CHUB	G	Т	Ν	Ν	1	07	214.0	18.04	0	0.00	0.0
43-039	SILVERJAW MINNOW	- 1		М	Ν		14	28.0	2.36	0	0.00	0.0
43-043	BLUNTNOSE MINNOW	0	Т	С	Ν	1	98	396.0	33.39	0	0.00	0.0
43-044	CENTRAL STONEROLLER	Н		Ν	Ν	1	94	388.0	32.72	0	0.00	0.0
77-008	GREEN SUNFISH	- 1	Т	С	S		17	34.0	2.87	0	0.00	0.0
77-009	BLUEGILL SUNFISH	- 1	Р	С	S		3	6.0	0.51	0	0.00	0.0
80-024	FANTAIL DARTER	I		С	D		5	10.0	0.84	0	0.00	0.0

No Species: 9 Nat. Species: 9 Hybrids: 0 Total Counted: 593 Total Rel. Wt.: 0

IBI: 24.0 **MIwb:** N/A

A5 - 40 05/21/2023

Site ID: LM51 River: 11-007 Sycamore Creek RM: 0.50 Date: 08/11/2022

Time Fished: 1382 Distance: 0.200 Drainge (sq mi): 22.8 Depth: 0

Location: ust. Sycamore Creek WWTP Lat: 39.22390 Long: -84.32472

Species											
Code:	Species Name:	Feed Guild	Toler- ance	Breed Guild	IBI Group	No. Fish		% by No.	Rel. Wt.	% by Wt.	Av. Wt.
40-008	SILVER REDHORSE	I	М	S	R	,	1 1.5	0.27	2025	18.91	1350.0
40-009	BLACK REDHORSE	1	1	S	R		1 1.5	0.27	225	2.10	150.0
40-015	NORTHERN HOG SUCKER	1	M	S	R	2	2 3.0	0.55	1050	9.80	350.0
40-016	WHITE SUCKER	0	Т	S	W	4	4 6.0	1.10	2850	26.61	475.0
43-020	EMERALD SHINER	1		М	N	220	330.0	60.27	330	3.08	1.0
43-021	SILVER SHINER	1	1	S	N	2	2 3.0	0.55	4	0.04	1.5
43-025	STRIPED SHINER	1		S	N	-	7 10.5	1.92	97	0.91	9.2
43-032	SPOTFIN SHINER	1		М	Ν	;	3 4.5	0.82	7	0.07	1.6
43-034	SAND SHINER	1	M	М	Ν	2	2 3.0	0.55	4	0.04	1.5
43-035	MIMIC SHINER	- 1	1	М	N	1:	3 19.5	3.56	37	0.35	1.9
43-043	BLUNTNOSE MINNOW	0	Т	С	Ν	18	3 27.0	4.93	45	0.42	1.6
43-044	CENTRAL STONEROLLER	Н		Ν	Ν		1 1.5	0.27	3	0.03	2.0
47-004	YELLOW BULLHEAD	1	Т	С			1 1.5	0.27	7	0.07	5.0
77-004	SMALLMOUTH BASS	С	M	С	F	8	3 12.0	2.19	1695	15.83	141.2
77-006	LARGEMOUTH BASS	С		С	F	!	5 7.5	1.37	60	0.56	8.0
77-007	WARMOUTH SUNFISH	С		С	S		1 1.5	0.27	45	0.42	30.0
77-008	GREEN SUNFISH	1	Т	С	S	14	4 21.0	3.84	465	4.34	22.1
77-009	BLUEGILL SUNFISH	1	Р	С	S	15	5 22.5	4.11	390	3.64	17.3
77-011	LONGEAR SUNFISH	1	M	С	S	29	9 43.5	7.95	1110	10.36	25.5
77-012	REDEAR SUNFISH	- 1		С	Е		1 1.5	0.27	187	1.75	125.0
77-015	GREEN SF X BLUEGILL SF						1 1.5	0.27	30	0.28	20.0
80-015	GREENSIDE DARTER	- 1	M	S	D		1 1.5	0.27	1	0.01	1.0
80-016	BANDED DARTER	1	1	S	D		1 1.5	0.27	1	0.01	1.0
80-022	RAINBOW DARTER	1	M	S	D	10	15.0	2.74	30	0.28	2.0
80-024	FANTAIL DARTER	I		С	D		4 6.0	1.10	7	0.07	1.2

No Species: 24 Nat. Species: 23 Hybrids: 1 Total Counted: 365 Total Rel. Wt.: 10710

IBI: 52.0 **Mlwb:** 7.9

A5 - 41 05/21/2023

Site ID: LM51 River: 11-007 Sycamore Creek RM: 0.50 Date: 09/23/2022

Time Fished: 915 Distance: 0.200 Drainge (sq mi): 22.8 Depth: 0

Location: ust. Sycamore Creek WWTP Lat: 39.22390 Long: -84.32472

Species Code:	Species Name:	Feed Guild	Toler- ance	Breed Guild	IBI Group	No. Fish	Rel. No.	% by No.	Rel. Wt.	% by Wt.	Av. Wt.
40-010	GOLDEN REDHORSE	ı	М	S	R	1	1.5	0.95	15	0.22	10.0
40-015	NORTHERN HOG SUCKER	1	M	S	R	2	3.0	1.90	1125	16.35	375.0
40-016	WHITE SUCKER	0	Т	S	W	1	1.5	0.95	1050	15.26	700.0
43-020	EMERALD SHINER	1		М	N	21	31.5	20.00	37	0.54	1.1
43-021	SILVER SHINER	- 1	I	S	N	2	3.0	1.90	6	0.09	2.0
43-034	SAND SHINER	1	M	М	N	2	3.0	1.90	3	0.04	1.0
43-035	MIMIC SHINER	1	I	М	N	2	3.0	1.90	4	0.07	1.5
43-043	BLUNTNOSE MINNOW	0	Т	С	N	6	9.0	5.71	22	0.33	2.5
43-044	CENTRAL STONEROLLER	Н		Ν	N	1	1.5	0.95	4	0.07	3.0
47-002	CHANNEL CATFISH			С	F	1	1.5	0.95	2700	39.23	1800.0
47-004	YELLOW BULLHEAD	1	Т	С		1	1.5	0.95	7	0.11	5.0
54-003	NORTHERN STUDFISH	1		М		1	1.5	0.95	7	0.11	5.0
77-004	SMALLMOUTH BASS	С	M	С	F	11	16.5	10.48	930	13.51	56.3
77-005	SPOTTED BASS	С		С	F	3	4.5	2.86	30	0.44	6.6
77-006	LARGEMOUTH BASS	С		С	F	3	4.5	2.86	45	0.65	10.0
77-008	GREEN SUNFISH	1	Т	С	S	3	4.5	2.86	180	2.62	40.0
77-009	BLUEGILL SUNFISH	1	Р	С	S	7	10.5	6.67	105	1.53	10.0
77-011	LONGEAR SUNFISH	- 1	M	С	S	32	48.0	30.48	555	8.06	11.5
77-012	REDEAR SUNFISH	I		С	E	1	1.5	0.95	45	0.65	30.0
80-016	BANDED DARTER	1	1	S	D	2	3.0	1.90	3	0.04	1.0
80-022	RAINBOW DARTER	I	М	S	D	2	3.0	1.90	6	0.09	2.0

No Species: 21 Nat. Species: 20 Hybrids: 0 Total Counted: 105 Total Rel. Wt.: 6882

IBI: 46.0 **Mlwb:** 7.4

A5 - 42 05/21/2023

Site ID: LM52 River: 11-007 Sycamore Creek RM: 0.10 Date: 08/17/2022

Time Fished: 1785 Distance: 0.200 Drainge (sq mi): 23.3 Depth: 0

Location: dst. Sycamore Creek WWTP Lat: 39.22607 Long: -84.32209

Species Code:	Species Name:	Feed Guild	Toler- ance	Breed Guild	IBI Group	No. Fish	Rel. No.	% by No.	Rel. Wt.	% by Wt.	Av. Wt.
20-003	GIZZARD SHAD	0		М		7	10.5	2.73	825	11.81	78.5
40-005	QUILLBACK CARPSUCKER	0		М	С	1	1.5	0.39	1425	20.40	950.0
40-009	BLACK REDHORSE	I	1	S	R	1	1.5	0.39	750	10.74	500.0
43-015	SUCKERMOUTH MINNOW	1		S	N	1	1.5	0.39	3	0.04	2.0
43-020	EMERALD SHINER	I		М	N	140	210.0	54.69	210	3.01	1.0
43-021	SILVER SHINER	1	I	S	N	1	1.5	0.39	3	0.04	2.0
43-022	ROSYFACE SHINER	1	I	S	N	13	19.5	5.08	12	0.17	0.6
43-032	SPOTFIN SHINER	I		М	N	4	6.0	1.56	15	0.21	2.5
43-034	SAND SHINER	1	M	М	N	5	7.5	1.95	7	0.11	1.0
43-035	MIMIC SHINER	1	1	М	N	9	13.5	3.52	22	0.32	1.6
43-042	FATHEAD MINNOW	0	Т	С	N	1	1.5	0.39	3	0.04	2.0
43-043	BLUNTNOSE MINNOW	0	Т	С	N	2	3.0	0.78	1	0.02	0.5
43-044	CENTRAL STONEROLLER	Н		Ν	N	9	13.5	3.52	37	0.54	2.7
47-007	FLATHEAD CATFISH	Р		С	F	1	1.5	0.39	4	0.06	3.0
77-004	SMALLMOUTH BASS	С	M	С	F	12	18.0	4.69	3045	43.59	169.1
77-006	LARGEMOUTH BASS	С		С	F	1	1.5	0.39	15	0.21	10.0
77-008	GREEN SUNFISH	1	Т	С	S	11	16.5	4.30	315	4.51	19.0
77-009	BLUEGILL SUNFISH	1	Р	С	S	4	6.0	1.56	135	1.93	22.5
77-011	LONGEAR SUNFISH	1	M	С	S	4	6.0	1.56	75	1.07	12.5
80-015	GREENSIDE DARTER	1	M	S	D	7	10.5	2.73	30	0.43	2.8
80-016	BANDED DARTER	I	1	S	D	1	1.5	0.39	3	0.04	2.0
80-022	RAINBOW DARTER	I	М	S	D	20	30.0	7.81	45	0.64	1.5
80-024	FANTAIL DARTER	1		С	D	1	1.5	0.39	3	0.04	2.0

No Species: 23 Nat. Species: 23 Hybrids: 0 Total Counted: 256 Total Rel. Wt.: 6985

IBI: 50.0 **Mlwb:** 7.5

A5 - 43 05/21/2023

Site ID: LM52 River: 11-007 Sycamore Creek RM: 0.10 Date: 09/23/2022

Time Fished: 1447 Distance: 0.200 Drainge (sq mi): 23.3 Depth: 0

Location: dst. Sycamore Creek WWTP Lat: 39.22607 Long: -84.32209

Species		-	Talan	D	IDI	No	D-I	0/ 1	Dal	0/ 1	
Code:	Species Name:	Feed Guild	Toler- ance	Breed Guild	IBI Group	No. Fish	Rel. No.	% by No.	Rel. Wt.	% by Wt.	Av. Wt.
40-005	QUILLBACK CARPSUCKER	0		М	С	1	1.5	0.28	1350	15.25	900.0
40-006	RIVER CARPSUCKER	0		М	С	2	3.0	0.56	2925	33.04	975.0
40-009	BLACK REDHORSE	1	I	S	R	1	1.5	0.28	825	9.32	550.0
43-015	SUCKERMOUTH MINNOW	I		S	N	1	1.5	0.28	4	0.05	3.0
43-020	EMERALD SHINER	1		М	N	136	204.0	38.31	165	1.86	0.8
43-022	ROSYFACE SHINER	1	I	S	N	9	13.5	2.54	7	0.08	0.5
43-032	SPOTFIN SHINER	1		М	N	14	21.0	3.94	22	0.25	1.0
43-034	SAND SHINER	1	М	М	N	18	27.0	5.07	15	0.17	0.5
43-035	MIMIC SHINER	1	I	М	N	20	30.0	5.63	34	0.39	1.1
43-039	SILVERJAW MINNOW	1		М	N	4	6.0	1.13	12	0.14	2.0
43-043	BLUNTNOSE MINNOW	0	Т	С	N	64	96.0	18.03	97	1.10	1.0
43-044	CENTRAL STONEROLLER	Н		Ν	N	2	3.0	0.56	15	0.17	5.0
77-004	SMALLMOUTH BASS	С	М	С	F	14	21.0	3.94	2265	25.58	107.8
77-005	SPOTTED BASS	С		С	F	1	1.5	0.28	375	4.24	250.0
77-006	LARGEMOUTH BASS	С		С	F	1	1.5	0.28	7	0.08	5.0
77-008	GREEN SUNFISH	1	Т	С	S	5	7.5	1.41	142	1.61	19.0
77-009	BLUEGILL SUNFISH	1	Р	С	S	4	6.0	1.13	247	2.80	41.2
77-011	LONGEAR SUNFISH	1	М	С	S	28	42.0	7.89	142	1.61	3.3
77-012	REDEAR SUNFISH	1		С	Е	1	1.5	0.28	45	0.51	30.0
77-015	GREEN SF X BLUEGILL SF					1	1.5	0.28	60	0.68	40.0
80-015	GREENSIDE DARTER	I	M	S	D	12	18.0	3.38	64	0.73	3.5
80-016	BANDED DARTER	I	I	S	D	3	4.5	0.85	7	0.08	1.6
80-022	RAINBOW DARTER	I	М	S	D	13	19.5	3.66	22	0.25	1.1

No Species: 22 Nat. Species: 21 Hybrids: 1 Total Counted: 355 Total Rel. Wt.: 8853

IBI: 44.0 **Mlwb:** 8.1

A5 - 44 05/21/2023

Site ID: LM40 River: 11-009 Polk Run RM: 0.30 Date: 09/09/2022

Time Fished: 1802 Distance: 0.150 Drainge (sq mi): 9.9 Depth: 0

Location: East Kemper Rd. Lat: 39.25100 Long: -84.29890

Species Code:	Species Name:	Feed Guild	Toler- ance	Breed Guild	IBI Group	No. Fish	Rel. No.	% by No.	Rel. Wt.	% by Wt.	Av. Wt.
40-016	WHITE SUCKER	0	Т	S	W	1	2.0	0.34	0	0.00	0.0
43-011	WESTERN BLACKNOSE DACE	G	Т	S	N	1	2.0	0.34	0	0.00	0.0
43-020	EMERALD SHINER	1		М	N	2	4.0	0.68	0	0.00	0.0
43-022	ROSYFACE SHINER	1	I	S	N	11	22.0	3.74	0	0.00	0.0
43-025	STRIPED SHINER	1		S	N	1	2.0	0.34	0	0.00	0.0
43-032	SPOTFIN SHINER	1		М	N	5	10.0	1.70	0	0.00	0.0
43-034	SAND SHINER	1	M	М	N	15	30.0	5.10	0	0.00	0.0
43-035	MIMIC SHINER	1	1	М	N	29	58.0	9.86	0	0.00	0.0
43-039	SILVERJAW MINNOW	1		М	N	1	2.0	0.34	0	0.00	0.0
43-043	BLUNTNOSE MINNOW	0	Т	С	N	29	58.0	9.86	0	0.00	0.0
43-044	CENTRAL STONEROLLER	Н		Ν	N	66	132.0	22.45	0	0.00	0.0
54-003	NORTHERN STUDFISH	1		М		2	4.0	0.68	0	0.00	0.0
77-004	SMALLMOUTH BASS	С	M	С	F	4	8.0	1.36	0	0.00	0.0
77-006	LARGEMOUTH BASS	С		С	F	4	8.0	1.36	0	0.00	0.0
77-008	GREEN SUNFISH	1	Т	С	S	19	38.0	6.46	0	0.00	0.0
77-009	BLUEGILL SUNFISH	1	Р	С	S	42	84.0	14.29	0	0.00	0.0
77-011	LONGEAR SUNFISH	1	M	С	S	12	24.0	4.08	0	0.00	0.0
77-015	GREEN SF X BLUEGILL SF					2	4.0	0.68	0	0.00	0.0
80-015	GREENSIDE DARTER	1	M	S	D	4	8.0	1.36	0	0.00	0.0
80-022	RAINBOW DARTER	I	M	S	D	12	24.0	4.08	0	0.00	0.0
80-024	FANTAIL DARTER	1		С	D	32	64.0	10.88	0	0.00	0.0

No Species: 20 Nat. Species: 20 Hybrids: 1 Total Counted: 294 Total Rel. Wt.: 0

IBI: 52.0 **Mlwb:** N/A

A5 - 45 05/21/2023

Site ID: LM55 River: 11-049 Trib. to Sycamore Creek (RM 1.12) RM: 1.20 Date: 07/22/2022

Time Fished: 1408 Distance: 0.100 Drainge (sq mi): 5.3 Depth: 0

Location: ust. Blome Rd. bridge Lat: 39.21713 Long: -84.34732

Species Code:	Species Name:	Feed Guild	Toler- ance	Breed Guild	IBI Group	No. Fish	Rel. No.	% by No.	Rel. Wt.	% by Wt.	Av. Wt.
43-013	CREEK CHUB	G	Т	Ν	N	103	309.0	47.69	0	0.00	0.0
43-044	CENTRAL STONEROLLER	Н		Ν	N	112	336.0	51.85	0	0.00	0.0
77-008	GREEN SUNFISH	I	Т	С	S	1	3.0	0.46	0	0.00	0.0

No Species: 3 Nat. Species: 3 Hybrids: 0 Total Counted: 216 Total Rel. Wt.: 0

IBI: 26.0 **Mlwb:** N/A

A5 - 46 05/21/2023

Site ID: LM56 River: 11-049 Trib. to Sycamore Creek (RM 1.12) RM: 0.20 Date: 09/09/2022

Time Fished: 2173 Distance: 0.150 Drainge (sq mi): 5.6 Depth: 0

Location: ust. Loveland-Maderia Rd. Lat: 39.21663 Long: -84.33716

Species Code:	Species Name:	Feed Guild	Toler- ance	Breed Guild	IBI Group	No. Fish	Rel. No.	% by No.	Rel. Wt.	% by Wt.	Av. Wt.
40-016	WHITE SUCKER	0	Т	S	W	2	4.0	0.56	0	0.00	0.0
43-011	WESTERN BLACKNOSE DACE	G	Т	S	N	70	140.0	19.61	0	0.00	0.0
43-013	CREEK CHUB	G	Т	Ν	N	119	238.0	33.33	0	0.00	0.0
43-039	SILVERJAW MINNOW	- 1		М	N	2	4.0	0.56	0	0.00	0.0
43-043	BLUNTNOSE MINNOW	0	Т	С	N	48	96.0	13.45	0	0.00	0.0
43-044	CENTRAL STONEROLLER	Н		Ν	N	101	202.0	28.29	0	0.00	0.0
77-008	GREEN SUNFISH	1	Т	С	S	12	24.0	3.36	0	0.00	0.0
80-024	FANTAIL DARTER	- 1		С	D	3	6.0	0.84	0	0.00	0.0

No Species: 8 Nat. Species: 8 Hybrids: 0 Total Counted: 357 Total Rel. Wt.: 0

IBI: 28.0 **Mlwb:** N/A

A5 - 47 05/21/2023

Site ID: LM81 River: 11-051 East Fork Duck Creek RM: 2.30 Date: 07/13/2022

Time Fished: 0 Distance: 0.150 Drainge (sq mi): 0.5 Depth: 0

Location: end of Tamworth Dr. Lat: 39.18297 Long: -84.39883

Species IBI No. Rel. % by Feed Toler-Breed % by Rel. Av. Code: Species Name: Fish Guild ance Guild Group No. No. Wt. Wt. Wt. **** 0 99-997 Dry Site 0.0 0 0.00

No Species: 1 Nat. Species: 1 Hybrids: 0 Total Counted: 0 Total Rel. Wt.: 0

IBI: 12.0 **Mlwb:** N/A

A5 - 48 05/21/2023

Site ID: LM85 River: 11-051 East Fork Duck Creek RM: 2.00 Date: 07/13/2022

Time Fished: 674 Distance: 0.150 Drainge (sq mi): 1.3 Depth: 0

Location: at Stewart Ave. Lat: 39.17956 Long: -84.39516

Species Code:	Species Name:	Feed Guild	Toler- ance	Breed Guild	IBI Group	No. Fish	Rel. No.	% by No.	Rel. Wt.	% by Wt.	Av. Wt.
43-011	WESTERN BLACKNOSE DACE	G	Т	S	N	10	20.0	33.33	0	0.00	0.0
43-013	CREEK CHUB	G	Т	Ν	Ν	17	34.0	56.67	0	0.00	0.0
43-044	CENTRAL STONEROLLER	Н		N	Ν	3	6.0	10.00	0	0.00	0.0

No Species: 3 Nat. Species: 3 Hybrids: 0 Total Counted: 30 Total Rel. Wt.: 0

IBI: 22.0 **Mlwb:** N/A

A5 - 49 05/21/2023

Site ID: LM84 River: 11-051 East Fork Duck Creek RM: 0.50 Date: 07/14/2022

Time Fished: 1361 Distance: 0.150 Drainge (sq mi): 1.9 Depth: 0

Location: behind JP Parkers School Lat: 39.16515 Long: -84.40055

Species Code:	Species Name:	Feed Guild	Toler- ance	Breed Guild	IBI Group	No. Fish	Rel. No.	% by No.	Rel. Wt.	% by Wt.	Av. Wt.
43-011	WESTERN BLACKNOSE DACE	G	Т	S	Ν	205	410.0	62.50	0	0.00	0.0
43-013	CREEK CHUB	G	Т	Ν	Ν	25	50.0	7.62	0	0.00	0.0
43-044	CENTRAL STONEROLLER	Н		Ν	Ν	98	196.0	29.88	0	0.00	0.0

No Species: 3 Nat. Species: 3 Hybrids: 0 Total Counted: 328 Total Rel. Wt.: 0

IBI: 28.0 **Mlwb:** N/A

A5 - 50 05/21/2023

Site ID: LM83 River: 11-075 Trib to Duck Creek @ RM 4.8 RM: 0.80 Date: 07/13/2022

Time Fished: 0 Distance: 0.150 Drainge (sq mi): 1.2 Depth: 0

Location: behind Home Depot Lat: 39.17355 Long: -84.42361

Species IBI No. Rel. % by Feed Toler-Breed % by Rel. Av. Code: Species Name: Fish Guild ance Guild Group No. No. Wt. Wt. Wt. **** 99-997 Dry Site 0 0.0 0 0.00

No Species: 1 Nat. Species: 1 Hybrids: 0 Total Counted: 0 Total Rel. Wt.: 0

IBI: 12.0 **Mlwb:** N/A

A5 - 51 05/21/2023

Site ID: LM80 River: 11-075 Trib to Duck Creek @ RM 4.8 RM: 0.10 Date: 07/13/2022

Time Fished: 448 Distance: 0.150 Drainge (sq mi): 1.4 Depth: 0

Location: Kennedy Ave. Lat: 39.16681 Long: -84.41926

Species IBI No. Rel. % by Feed Toler-Breed % by Rel. Av. Code: Species Name: Fish Guild ance Guild Group No. No. Wt. Wt. Wt. **** NO FISH 0 99-999 0.0 0 0.00

No Species: 0 Nat. Species: 1 Hybrids: 0 Total Counted: 0 Total Rel. Wt.: 0

IBI: 0.0 **Mlwb:** N/A

A5 - 52 05/21/2023

Site ID: LM86 River: 11-076 Little Duck Creek RM: 2.40 Date: 07/14/2022

Time Fished: 791 Distance: 0.150 Drainge (sq mi): 0.2 Depth: 0

Location: adj. Camargo Rd. Lat: 39.16058 Long: -84.38092

Species Code:	Chaoina Nama:	Feed Guild	Toler- ance	Breed Guild	IBI Group	No. Fish	Rel. No.	% by No.	Rel. Wt.	% by Wt.	Av. Wt.
43-011	WESTERN BLACKNOSE DACE	G	Т	S	Ν	282	564.0	56.29	0	0.00	0.0
43-013	CREEK CHUB	G	Т	Ν	Ν	106	212.0	21.16	0	0.00	0.0
43-044	CENTRAL STONEROLLER	Н		N	Ν	113	226.0	22.55	0	0.00	0.0

No Species: 3 Nat. Species: 3 Hybrids: 0 Total Counted: 501 Total Rel. Wt.: 0

IBI: 32.0 **Mlwb:** N/A

A5 - 53 05/21/2023

Site ID: LM87 River: 11-076 Little Duck Creek RM: 1.90 Date: 07/14/2022

Time Fished: 1022 Distance: 0.150 Drainge (sq mi): 0.4 Depth: 0

Location: adj. Plainville Rd. Lat: 39.15863 Long: -84.38086

Species Code:	Species Name:	Feed Guild	Toler- ance	Breed Guild	IBI Group	No. Fish	Rel. No.	% by No.	Rel. Wt.	% by Wt.	Av. Wt.
40-016	WHITE SUCKER	0	Т	S	W	11	22.0	2.95	0	0.00	0.0
43-011	WESTERN BLACKNOSE DACE	G	Т	S	Ν	172	344.0	46.11	0	0.00	0.0
43-013	CREEK CHUB	G	Т	Ν	Ν	147	294.0	39.41	0	0.00	0.0
43-044	CENTRAL STONEROLLER	Н		Ν	Ν	43	86.0	11.53	0	0.00	0.0

No Species: 4 Nat. Species: 4 Hybrids: 0 Total Counted: 373 Total Rel. Wt.: 0

IBI: 32.0 **Mlwb:** N/A

A5 - 54 05/21/2023

Site ID: LM90 River: 11-076 Little Duck Creek RM: 1.00 Date: 07/22/2022

Time Fished: 924 Distance: 0.150 Drainge (sq mi): 0.5 Depth: 0

Location: Settle St. Lat: 39.15694 Long: -84.38426

Species Code:	Species Name:	Feed Guild	Toler- ance	Breed Guild	IBI Group	No. Fish	Rel. No.	% by No.	Rel. Wt.	% by Wt.	Av. Wt.
40-016	WHITE SUCKER	0	Т	S	W	11	22.0	2.08	0	0.00	0.0
43-011	WESTERN BLACKNOSE DACE	E G	Т	S	N	187	374.0	35.35	0	0.00	0.0
43-013	CREEK CHUB	G	Т	N	N	238	476.0	44.99	0	0.00	0.0
43-044	CENTRAL STONEROLLER	Н		N	N	93	186.0	17.58	0	0.00	0.0

No Species: 4 Nat. Species: 4 Hybrids: 0 Total Counted: 529 Total Rel. Wt.: 0

IBI: 32.0 **Mlwb:** N/A

A5 - 55 05/21/2023

Site ID: LM92 River: 11-076 Little Duck Creek RM: 0.49 Date: 07/21/2022

Time Fished: 625 Distance: 0.150 Drainge (sq mi): 1.6 Depth: 0

Location: Wooster and Red Bank Rd. Lat: 39.13566 Long: -84.40127

Species IBI No. Rel. % by Feed Toler-Breed % by Rel. Av. Code: Species Name: Fish Guild ance Guild Group No. No. Wt. Wt. Wt. **** NO FISH 99-999 0 0.0 0 0.00

No Species: 0 Nat. Species: 1 Hybrids: 0 Total Counted: 0 Total Rel. Wt.: 0

IBI: 12.0 **Mlwb:** N/A

A5 - 56 05/21/2023

Site ID: LM82 River: 11-077 Trib to Little Duck Cr. @ RM 4.42 RM: 0.20 Date: 07/13/2022

Time Fished: 660 Distance: 0.150 Drainge (sq mi): 0.5 Depth: 0

Location: at baseball field Lat: 39.18245 Long: -84.36992

Species Code:	Species Name:	Feed Guild	Toler- ance	Breed Guild	IBI Group	No. Fish	Rel. No.	% by No.	Rel. Wt.	% by Wt.	Av. Wt.
43-011	WESTERN BLACKNOSE DACE	G	Т	S	N	139	278.0	73.94	0	0.00	0.0
43-013	CREEK CHUB	G	Т	N	Ν	49	98.0	26.06	0	0.00	0.0

No Species: 2 Nat. Species: 2 Hybrids: 0 Total Counted: 188 Total Rel. Wt.: 0

IBI: 28.0 **Mlwb:** N/A

A5 - 57 05/21/2023

Trib 1.82 to Trib to Sycamore Cr Site ID: LM54 River: 11-086 RM: 2.40 Date: 07/14/2022 RM1.12 Drainge (sq mi): Depth: Time Fished: Distance: 0 0 0.000 1.6 Location: Lat: Long: Glenover Dr. and Raiders Run 39.21561 -84.36545 **Species** % by IBI No. Rel. % by Rel. Av. Feed Toler-Breed Code: Species Name: Guild Fish Wt. Guild ance Group No. No. Wt. ***.** Dry Site 0 **** 99-997 0.0 0 0.00

Total Counted:

Total Rel. Wt.:

0

Hybrids: 0

IBI: 12.0 **Mlwb:** N/A

Nat. Species:

No Species: 1

A5 - 58 05/21/2023

Appendix B

Little Miami River 2022 Macroinvertebrate Assemblage Data B-1: ICI Metrics & Scores B-2: Macroinvertebrate Taxa by Site

Appendix Table B-1. ICI metrics and values in the Little Miami River study area including historical data also sampled in 2022.

		Draina			Number o				Percer				_
Site_ID	River Mile	Area (sq mi	Total i) Taxa	Mayfly Taxa	Caddisfly Taxa	Dipteran Taxa	Mayflies	Caddis- flies	Tany- tarsini	Other Dipt/NI	Tolerant Organisms		ICI or Narrative
Little Miam	i River	(11-001))										
Year	: 2022												
_M01	27.90	1069.0	26(4)	7(4)	6(4)	7(2)	21.6(4)	54.7(6)	5.3(2)	16.8(4)	0.1(6)	33(6)	42
_M02	24.10	1085.0	32(4)	8(6)	9(6)	11(4)	21.3(4)	40.0(6)	15.5(4)	21.7(4)	0.0(6)	30(6)	50
-M03	22.30	1148.0	32(4)	9(6)	6(4)	13(6)	29.6(6)	45.8(6)	8.2(2)	15.6(6)	0.2(6)	28(6)	52
_M05	21.50	1160.0	45(6)	10(6)	7(6)	17(6)	47.1(6)	28.9(4)	3.1(2)	19.9(4)	1.1(6)	27(6)	52
_M07	18.50	1187.0	37(6)	7(4)	9(6)	15(6)	12.0(4)	46.7(6)	10.0(2)	30.7(2)	0.4(6)	30(6)	48
_M08	17.70	1190.0	31(4)	8(6)	9(6)	11(4)	8.1(2)	46.2(6)	25.7(6)	19.6(4)	1.1(6)	25(6)	50
_M09	13.10	1203.0	33(4)	8(6)	9(6)	11(4)	14.8(4)	52.5(6)	16.0(4)	15.2(6)	0.9(6)	27(6)	52
-M11	10.90	1707.0	28(4)	7(4)	5(4)	10(4)	14.2(4)	43.8(6)	10.2(4)	31.4(0)	0.0(6)	26(6)	42
_M12	8.10	1710.0	39(6)	9(6)	11(6)	11(6)	15.3(4)	44.9(6)	23.3(6)	15.4(4)	0.0(6)	24(6)	56
_M13	6.83	1720.0	35(6)	8(6)	9(6)	12(6)	35.9(6)	30.2(4)	10.3(4)	22.6(4)	0.3(6)	29(6)	54
_M15	4.10	1730.0	35(6)	9(6)	9(6)	12(6)	23.7(6)	50.8(6)	14.9(4)	10.3(6)	0.0(6)	24(6)	58
_M16A	3.70	1752.0	44(6)	5(4)	10(6)	18(6)	4.8(2)	7.0(2)	38.5(6)	48.5(0)	2.2(4)	15(4)	40
_M16	3.50	1752.0	31(4)	6(4)	6(4)	10(4)	8.6(2)	29.8(4)	31.3(6)	28.7(2)	1.1(6)	25(6)	42
Clough Cre	eek (11-	-002)											
Year	: 2022												
_M95	3.20	2.1										7	MG
_M98	0.60	7.8										11	G
Duck Cree	k (11-00	04)											
Year	: 2022												
_M71	6.10	2.2										0	VP
_M72	5.14	5.1										3	Р
_M73	4.58	5.8										5	F
_M74	3.90	9.6										6	F
_M75	3.40	7.3										5	F
_M76	2.80	11.8	22(2)	1(0)	3(6)	12(2)	27.6(6)	1.3(4)	5.7(2)	65.3(0)	42.8(0)	7(4)	26
_M77	2.00	14.3	26(4)	2(0)	4(6)	16(4)	22.2(4)	6.6(6)	5.9(2)	65.3(0)	18.7(2)	7(4)	32
_M79	0.50	14.6	21(2)	2(0)	4(6)	12(2)	55.9(6)	11.4(6)	0.3(2)	32.4(4)	4.8(6)	10(4)	38
Sycamore	Creek ((11-007)											
Year	: 2022												
_M50	1.10	14.7	29(4)	5(4)	3(6)	17(4)	21.6(4)	7.6(6)	14.9(4)	55.9(2)	2.3(6)	11(6)	46
_M51	0.50	24.0	32(4)	5(4)	6(6)	14(4)	36.8(6)	25.9(6)	4.3(2)	32.5(4)	0.0(6)	15(6)	48
_M52	0.10	24.0	27(4)	3(2)	6(6)	12(2)	6.1(2)	32.7(6)	11.4(2)	49.4(2)	1.6(6)	13(6)	38
Jnnamed ⁻	Tributar	y to Syc	amore (Cr. at RN	VI 1.12 (11	-049)							

Appendix Table B-1. ICI metrics and values in the Little Miami River study area including historical data also sampled in 2022.

		Drainag			Number o				Percer				_
Site_ID	River Mile	Area (sq mi)	Total Taxa	Mayfly Taxa	Caddisfly Taxa	Dipteran Taxa	Mayflies	Caddis- flies	Tany- tarsini	Other Dipt/NI	Tolerant Organisms		ICI or Narrative
Year	: 2022												
LM55	1.20	5.3										8	G
LM56	0.20	5.6	24(2)	0(0)	3(6)	15(4)	0.0(0)	0.5(4)	53.7(6)	45.3(4)	11.0(4)	10(6)	36
East Fork [Duck Cre	ek (11-	051)										
Year	: 2022												
LM85	2.00	1.3										5	F
LM84	0.50	2.4										5	F
Unnamed 1	Γributary	to Ducl	k Creel	k at RM 4	4.8 (11-07	5)							
Year	: 2022												
LM80	0.10	1.4										2	Р
Little Duck	Creek (11-076)											
Year	: 2022												
LM86	2.40	0.5										7	MG
_M87	1.90	0.5										9	G
.M90	1.00	1.1										8	G
Unnamed 1	Γributary	to Little	Duck	Creek a	t RM 4.42	(11-077)							
Year	: 2022												
LM82	0.20	0.3										4	F
Unnamed 1		(1.82) t	o Tribu	itary to S	Sycamore	Creek (1.1) (11-086)						
	: 2022	4.0										•	
LM54	2.40	1.6										0	
Little Miam		(11-001)											
Year	2020	1085.0	33/4)	7(4)	7(6)	13(6)	21.1(4)	59.9(6)	6.1(2)	12.5(6)	0.0(6)	29(6)	50
		1203.0		7(4)	8(6)	9(4)	19.9(4)	25.7(4)	9.1(2)	44.6(0)	0.0(6)	23(6)	40
600580		1752.0	. ,	9(6)		15(6)	3.0(2)	16.3(2)	60.5(6)	20.1(4)	3.1(2)	20(6)	46
	: 2019	1732.0	41(0)	9(0)	10(0)	13(0)	3.0(2)	10.3(2)	00.5(0)	20.1(4)	3.1(2)	20(0)	40
LM16a		1752.0	45(6)	4(2)	6(4)	23(6)	1.8(2)	2.2(0)	5.6(2)	87.8(0)	62.2(0)	11(4)	26
LM16		1750.0		8(6)	6(4)	4(2)	0.7(2)	78.7(6)	18.7(4)	1.9(6)	0.1(6)	15(4)	44
	: 2017		(.,	5(0)	5(.)	-(-/	··· (=)	(0)		(0)	311(3)	(.,	77
LM01		1069.0	50(6)	12(6)	8(6)	20(6)	33.2(6)	33.9(6)	19.3(4)	12.3(6)	0.8(6)	19(6)	58
LM02		1085.0		11(6)		16(6)	29.0(6)	26.2(4)	28.1(6)	16.5(6)	1.3(4)	23(6)	56
LM03		1148.0	,	ζ-,	ζ-7	• •	ζ-7	` '	ν-,	χ-7	` '	23	E
LM05		1160.0										19	E
												. •	_
LM07	18.50	1187.0	39(6)	7(4)	9(6)	15(6)	18.8(4)	59.1(6)	13.5(4)	7.4(6)	0.0(6)	19(6)	54

Appendix Table B-1. ICI metrics and values in the Little Miami River study area including historical data also sampled in 2022.

		Draina	ge		Number o	f			Percer	nt:			_
Site_ID	River Mile	Area (sq mi	Total) Taxa	Mayfly Taxa	Caddisfly Taxa	Dipteran Taxa	Mayflies	Caddis- flies	Tany- tarsini	Other Dipt/NI	Tolerant Organisms		ICI or Narrative
LM09	13.10	1203.0	31(4)	8(6)	8(6)	9(4)	19.5(4)	55.4(6)	14.1(4)	10.4(6)	0.0(6)	20(6)	52
L M 11	10.90	1707.0	38(6)	10(6)	7(6)	14(6)	21.7(6)	27.9(4)	31.6(6)	17.9(4)	1.1(6)	20(6)	56
LM12	8.10	1710.0										26	E
LM13	6.83	1720.0	40(6)	11(6)	9(6)	12(6)	20.3(4)	52.7(6)	10.4(4)	15.8(4)	0.0(6)	20(6)	54
LM15	4.10	1730.0	36(6)	9(6)	8(6)	12(6)	16.8(4)	42.8(6)	22.1(6)	17.2(4)	0.3(6)	19(6)	56
LM16	3.40	1752.0	50(6)	8(6)	9(6)	24(6)	40.0(6)	6.8(2)	10.0(4)	42.1(0)	11.4(0)	19(6)	42
Duck Cree	k (11-00	04)											
Year	: 2017												
L M 71	6.10	2.2										0	VP
LM72	5.14	5.1										2	P
LM73	4.58	5.8										3	P
LM74	3.90	9.6										4	F
LM75	3.40	7.3										4	F
LM76	2.80	11.8	24(2)	2(0)	4(6)	15(4)	25.1(6)	5.8(6)	12.6(4)	56.5(2)	32.5(0)	3(0)	30
L M77	2.00	14.3	33(4)	3(2)	3(6)	21(6)	39.7(6)	21.8(6)	5.3(2)	33.2(4)	14.2(4)	6(2)	42
LM79	0.50	14.6	27(4)	3(2)	3(6)	17(4)	31.8(6)	4.8(6)	6.4(2)	57.0(2)	26.2(0)	6(2)	34
Sycamore	Creek (11-007)											
Yea	: 2017												
LM50	1.10	14.7	32(4)	3(2)	6(6)	19(4)	4.9(2)	29.3(6)	23.6(6)	41.6(4)	5.4(6)	8(4)	44
LM51	0.50	24.0	36(4)	4(2)	4(6)	18(4)	12.9(2)	18.3(6)	18.5(4)	49.4(2)	0.9(6)	7(2)	38
LM52	0.10	24.0	27(4)	3(2)	5(6)	13(2)	4.4(2)	33.1(6)	5.9(2)	56.6(2)	14.8(4)	12(6)	36
Unnamed ¹	Tributar	y to Syc	amore	Cr. at RN	/ 1.12 (11·	-049)							
Year	: 2017												
LM55	1.20	5.3										8	G
LM56	0.20	5.6	38(6)	4(2)	4(6)	24(6)	35.2(6)	2.2(6)	20.3(6)	41.8(4)	3.3(6)	8(4)	52
East Fork	Duck Cr	eek (11-	-051)										
Year	: 2017												
LM85	2.00	1.3										1	VP
LM84	0.50	2.4										6	F
Unnamed [*]		y to Duc	k Creel	k at RM 4	4.8 (11-07	5)							
	: 2017											_	
LM80	0.10	1.4										1	VP
Little Duck		(11-076)											
	: 2017	۰.										•	_
LM86	2.40	0.5										8	G

Appendix Table B-1. ICI metrics and values in the Little Miami River study area including historical data also sampled in 2022.

			Drainag			Number o				Percei	nt:			_
Site		River Mile	Area (sq mi)		Mayfly Taxa	Caddisfly Taxa	Dipteran Taxa	Mayflies	Caddis- flies	Tany- tarsini	Other Dipt/NI	Tolerant Organisms	Qual. EPT	
LM87		1.90	0.5										8	G
∟M90		1.00	1.1										7	G
Unnam	ed T	ributar	y to Little	Duck	Creek a	t RM 4.42	(11-077)							
,	Year:	2017												
LM82		0.20	0.6										3	Р
Little N	liami	River	(11-001)											
,	Year:	2016												
		14.05	1200.0										22	
,	Year:	2012												
LM01		27.80	1070.0	31(4)	8(6)	6(4)	10(4)	16.6(4)	18.6(4)	27.0(6)	37.5(0)	0.3(6)	19(6)	44
LM02		24.10	1085.0	44(6)	10(6)	8(6)	18(6)	10.0(2)	41.4(6)	14.7(4)	31.4(2)	0.5(6)	12(4)	48
LM03		22.80	1150.0	30(4)	6(4)	7(6)	10(4)	11.5(2)	43.6(6)	30.2(6)	13.7(6)	0.0(6)	17(6)	50
LM04		21.80	1150.0	35(6)	5(2)	5(4)	18(6)	2.6(2)	16.6(4)	14.8(4)	65.8(0)	2.9(2)	8(2)	32
LM05		21.40	1160.0	35(6)	5(2)	7(6)	15(6)	2.8(2)	32.4(4)	27.1(6)	36.9(0)	0.0(6)	14(4)	42
LM06		20.60	1161.0	23(4)	5(2)	6(4)	9(4)	9.1(2)	57.8(6)	21.7(4)	9.4(6)	0.0(6)	12(4)	42
LM07		18.60	1190.0	33(4)	5(2)	8(6)	15(6)	21.6(4)	47.9(6)	11.3(2)	19.1(4)	0.0(6)	15(4)	44
LM08		17.60	1190.0	38(6)	6(4)	7(6)	20(6)	6.0(2)	30.5(4)	21.5(4)	38.6(0)	1.2(6)	13(4)	42
LM09		13.10	1203.0	43(6)	9(6)	10(6)	15(6)	3.9(2)	57.8(6)	13.9(4)	23.4(4)	0.0(6)	15(4)	50
LM10		12.40	1210.0	33(4)	6(4)	8(6)	12(6)	7.8(2)	43.7(6)	14.4(4)	33.6(2)	0.0(6)	14(4)	44
LM11		10.90	1707.0	40(6)	7(4)	8(6)	18(6)	10.2(2)	23.2(4)	35.3(6)	30.9(2)	1.4(4)	18(6)	46
LM12		8.00	1714.0										16	
LM13		7.30	1720.0	33(6)	8(6)	7(6)	11(6)	13.2(4)	56.0(6)	5.6(2)	24.8(2)	0.0(6)	15(4)	48
LM14		5.30	1720.0	33(6)	6(4)	7(6)	13(6)	1.9(2)	16.3(2)	21.8(6)	59.5(0)	1.1(6)	13(4)	42
LM15		4.10	1730.0	44(6)	7(4)	10(6)	19(6)	3.8(2)	13.2(2)	20.8(6)	61.9(0)	0.4(6)	22(6)	44
LM16		3.40	1752.0	42(6)	6(4)	12(6)	14(6)	6.8(2)	16.4(2)	28.5(6)	47.9(0)	1.1(6)	14(4)	42
LM17		1.40	1760.0	22(4)	2(0)	3(2)	8(4)	0.1(2)	0.9(0)	0.0(0)	98.4(0)	0.6(6)	0(0)	18
Clough	Cre	ek (11-	002)											
•		2012	•											
∟M99		4.60	0.9										3	F
LM95		3.20	2.1										3	F
LM96		3.10	5.4										6	G
LM97		1.20	7.5	19(2)	2(0)	5(6)	10(2)	6.5(2)	53.3(6)	7.5(2)	32.3(4)	1.0(6)	7(4)	34
LM98		0.40	8.0										8	G
Duals C	rooلر	(11-00	14)											

Year: 2012

Appendix Table B-1. ICI metrics and values in the Little Miami River study area including historical data also sampled in 2022.

		Drainag			Number o				Percei	nt:			_
Site_IE	River Mile	Area (sq mi)	Total Taxa	Mayfly Taxa	Caddisfly Taxa	Dipteran Taxa	Mayflies	Caddis- flies	Tany- tarsini	Other Dipt/NI	Tolerant Organisms		ICI or Narrative
L M 71	6.00	2.2										0	VP
LM78	5.20	3.5										1	VP
LM72	4.60	5.1										2	Р
LM73	4.40	5.8										2	Р
LM75	3.30	11.4										4	F
LM76	2.90	11.8	14(2)	0(0)	0(0)	10(2)	0.0(0)	0.0(0)	22.4(6)	77.6(0)	4.6(6)	5(2)	F
LM77	1.80	14.3										4	F
LM79	0.90	14.7										0	VP
Sycamore	e Creek (11-007)											
Yea	ar: 2012												
LM47	3.60	3.4										3	F
LM48	2.40	4.8										5	MG
LM49	1.50	6.6	10(0)	2(0)	1(4)	5(0)	3.0(2)	3.0(6)	3.0(2)	90.9(0)	0.0(6)	9(4)	G
LM50	1.10	14.7	16(2)	2(0)	2(4)	8(2)	3.6(2)	5.5(6)	0.0(0)	89.2(0)	0.0(6)	7(2)	MG
LM51	0.30	22.7	14(2)	3(2)	1(2)	7(2)	3.7(2)	0.6(2)	1.3(2)	94.4(0)	5.0(6)	11(4)	G
LM52	0.20	24.0										8	MG
Unnamed	Tributary	y to Syca	more	Cr. at RI	VI 1.12 (11	-049)							
Yea	ar: 2012												
LM55	1.00	5.3										7	G
LM56	0.30	5.6										8	G
LM53	0.10	4.9	19(2)	1(0)	0(0)	15(4)	7.4(2)	0.0(0)	11.6(4)	80.6(0)	2.5(6)	8(4)	G
East Fork	Duck Cre	eek (11-6	051)										
Yea	ar: 2012												
LM85	1.50	1.3										0	VP
LM84	0.60	2.3										1	VP
LM74	0.15	3.4										3	VP
Unnamed	Tributary	to Duck	(Creel	k at RM	4.8 (11-07	5)							
	ar: 2012												
LM80	0.20	1.4										0	VP
	k Creek	(11-076)											
	ar: 2012											_	_
LM86	2.70	0.4										7	G
LM87	2.60	0.5										6	G
LM90	2.30	0.5										5	MG
LM89	1.40	1.1										2	Р

Appendix Table B-1. ICI metrics and values in the Little Miami River study area including historical data also sampled in 2022.

		Drainag			Number o				Percei	nt:			_
Site_ID	River Mile	Area (sq mi)	Total Taxa	Mayfly Taxa	Caddisfly Taxa	Dipteran Taxa	Mayflies	Caddis- flies	Tany- tarsini	Other Dipt/NI	Tolerant Organisms		. ICI or Narrative
Unnamed [*]	Tributar	y to Little	e Duck	Creek a	nt RM 4.42	(11-077)							
Yea	r: 2012												
LM82	0.10	1.4										0	
Little Mian	ni River	(11-001)											
	r: 2007												
LMRB07	29.00		34(4)	10(6)		9(2)	15.0(4)	39.0(6)	29.8(6)	15.8(6)		16(6)	
LM01			40(6)	8(6)	9(6)	15(6)	35.9(6)	47.0(6)	3.5(2)	12.5(6)	0.4(6)	16(4)	54
LM02	24.10	1085.0	27(4)	6(4)	5(4)	9(4)	36.1(6)	56.1(6)	2.7(2)	4.2(6)	0.1(6)	19(6)	48
LM03	22.80		40(6)	8(6)	6(6)	17(4)	28.2(6)	50.9(6)	4.8(2)	13.5(6)	0.3(6)	23(6)	54
LM04	21.70	1150.0	26(4)	0(0)	2(2)	14(6)	0.0(0)	0.5(0)	0.9(2)	98.6(0)	77.3(0)	1(0)	14
LM06	20.60	1161.0	43(6)	9(6)	8(6)	18(6)	21.7(4)	35.9(6)	20.9(4)	17.8(4)	1.4(4)	17(6)	52
LM08	16.90											17	
M05P11	13.07	1203.0	31(4)	7(4)	8(6)	10(4)	32.3(6)	31.4(4)	24.2(6)	12.0(6)	0.3(6)	19(6)	52
LM12	8.14		30(4)	8(6)	7(6)	10(2)	25.6(6)	29.1(6)	25.2(6)	20.0(6)	0.0(6)	12(6)	54
LM16	3.50	1752.0	33(6)	10(6)	6(4)	11(6)	32.1(6)	4.7(0)	3.5(2)	59.6(0)	1.9(4)	24(6)	40
Clough Cr	eek (11-	-002)											
Yea	r: 2007	ŕ											
LM98	0.42											8	
Duck Cree	k (11-00	04)											
Yea	r: 2007												
LM75	3.36											1	
LM79	0.95											3	
Sycamore	Creek (11-007)											
Yea	r: 2007												
LM50	1.10											8	
L M 51	0.50	24.0	29(4)	3(2)	3(6)	15(4)	15.6(4)	5.0(4)	35.6(6)	40.6(4)	1.1(6)	8(4)	44
LM52	0.10	24.0	40(6)	3(2)	3(6)	30(6)	11.4(2)	1.3(2)	14.8(4)	72.3(0)	23.2(0)	5(2)	30
Little Miam	ni River	(11-001)											
Yea	r: 1998	,											
LMRB08	29.20	1064.0	35(6)	8(6)	7(6)	15(6)	14.8(4)	24.5(4)	21.0(4)	38.1(0)	0.7(6)	17(6)	48
LM01	28.00	1069.0	45(6)	8(6)	6(4)	19(6)	4.6(2)	8.1(2)	18.2(4)	68.7(0)	0.4(6)	19(6)	42
LM02	24.20	1085.0	42(6)	10(6)	6(4)	17(6)	12.0(4)	38.1(6)	19.0(4)	29.3(2)	0.6(6)	14(4)	48
M05S39		1148.0		11(6)		23(6)	13.6(4)	19.9(4)	29.7(6)	34.7(2)		11(4)	48
LM04		1150.0	. ,	. ,	• •	. ,	. ,	` '	` ,	. ,	. ,	7	F
LM04		1150.0										2	Р
7	21.00											_	•

Appendix Table B-1. ICI metrics and values in the Little Miami River study area including historical data also sampled in 2022.

		Drainag			Number o				Perce	nt:			_
Site_ID	River Mile	Area (sq mi	Total) Taxa	Mayfly Taxa	Caddisfly Taxa	Dipteran Taxa	Mayflies	Caddis- flies	Tany- tarsini	Other Dipt/NI	Tolerant Organisms		ICI or Narrative
LM06	20.60	1161.0	38(6)	7(4)	7(6)	18(6)	5.0(2)	17.3(4)	59.2(6)	18.5(4)	0.7(6)	15(4)	48
LMRB06	19.10	1186.0										20	E
LMRB06	13.60	1199.0										17	VG
LMRB03	8.80	1713.0										21	Ε
600580	3.40	1752.0	41(6)	8(6)	8(6)	13(6)	4.9(2)	10.7(2)	63.1(6)	20.9(4)	0.7(6)	18(6)	50
Sycamore	Creek ((11-007)											
Year	: 1998												
LM51	0.50	24.0										11	G
L M 51	0.24	24.0										6	F
LM52	0.10	24.0										7	F
Little Miam	i River	(11-001)											
Year	: 1993												
MRB08	29.20	1064.0	40(6)	11(6)	8(6)	10(4)	23.5(4)	7.3(2)	55.4(6)	9.9(6)	0.3(6)	19(6)	52
_M01	28.00	1069.0										18	Ε
_M02	23.90	1145.0	47(6)	13(6)	6(4)	18(6)	46.2(6)	14.1(2)	18.2(4)	20.1(4)	0.0(6)	18(6)	50
_M03	22.20	1148.0	46(6)	8(6)	3(2)	17(6)	13.3(4)	8.3(2)	0.5(2)	74.7(0)	45.7(0)	13(4)	VG
_M05	21.40	1160.0	51(6)	10(6)	8(6)	21(6)	35.2(6)	19.4(4)	28.9(6)	15.8(6)	1.1(6)	14(4)	56
_M06	20.60	1161.0	45(6)	9(6)	7(6)	15(6)	35.0(6)	17.5(4)	37.1(6)	9.4(6)	0.3(6)	19(6)	58
MRB06	18.90	1186.0										15	VG
M05P11	13.10	1203.0	38(6)	10(6)	3(2)	15(6)	24.3(6)	1.6(0)	3.9(2)	68.7(0)	11.2(0)	13(4)	VG
LMRB03	8.80	1713.0	29(4)	7(4)	8(6)	8(4)	26.6(6)	34.7(4)	30.6(6)	7.4(6)	0.5(6)	16(6)	52
600580	3.40	1752.0	48(6)	8(6)	7(6)	16(6)	15.7(4)	7.8(2)	48.2(6)	27.6(2)	4.9(0)	14(4)	42
LM17	1.60	1754.0	21(2)	3(2)	2(2)	10(4)	0.7(2)	3.7(0)	0.0(0)	94.0(0)	11.5(0)	4(0)	F
LMRB01	0.40	1757.0										5	F
Sycamore	Creek ((11-007)											
Year	: 1993												
LM51	0.50	24.0										7	F
LM51	0.24	24.0	38(6)	4(2)	2(4)	24(6)	10.5(2)	4.5(4)	24.0(4)	60.1(2)	17.1(2)	3(0)	32
LM52	0.10	24.0	31(4)	3(2)	1(2)	19(4)	1.0(2)	0.0(2)	11.4(2)	81.4(0)	23.2(0)	7(2)	20
Clough Cr	eek (11-	-002)											
	: 1991												
LM95	3.20	2.1										5	F
Sycamore		11-007)											
	: 1991											_	
LM50	1.20	9.4										8	G

Appendix Table B-1. ICI metrics and values in the Little Miami River study area including historical data also sampled in 2022.

		Draina	ge		Number o	f			Percer	nt:			
Site_ID	River Mile	Area (sq mi	Total) Taxa	Mayfly Taxa	Caddisfly Taxa	Dipteran Taxa	Mayflies	Caddis- flies	Tany- tarsini	Other Dipt/NI	Tolerant Organisms		ICI or Narrative
LM50	1.00	14.7	24(2)	3(2)	1(2)	16(4)	0.5(2)	0.5(2)	18.6(4)	80.4(0)	34.5(0)	7(2)	20
Unnamed ⁻	Tributary	y to Syc	amore	Cr. at RI	VI 1.12 (11	-049)							
Year	: 1991												
LM53	0.10	4.9										0	VP
Little Miam	i River	(11-001))										
Year	: 1983												
LMRB08	29.20	1064.0	30(4)	7(4)	6(4)	10(4)	32.3(6)	15.1(2)	38.7(6)	13.5(6)	0.5(6)	14(4)	46
LM01	28.00	1069.0	36(6)	8(6)	6(4)	16(6)	17.3(4)	27.1(4)	21.8(4)	33.7(2)	0.4(6)	9(2)	44
LM02	23.90	1145.0	38(6)	8(6)	7(6)	15(6)	30.7(6)	21.2(4)	21.7(4)	25.2(4)	0.0(6)	13(4)	52
LM05	20.90	1161.0	26(4)	5(2)	6(4)	12(6)	8.7(2)	28.1(4)	40.1(6)	23.1(4)	0.1(6)	10(2)	40
LM07	18.50	1187.0	30(4)	5(2)	5(4)	12(6)	18.9(4)	61.1(6)	3.1(2)	15.9(6)	0.2(6)	9(2)	42
M05P11	13.10	1203.0	33(4)	7(4)	6(4)	15(6)	34.3(6)	44.9(6)	1.6(2)	19.0(4)	0.3(6)	9(2)	44
LMRB03	8.80	1713.0	25(4)	6(4)	8(6)	7(4)	42.5(6)	32.8(4)	11.5(4)	13.0(6)	0.0(6)	13(4)	48
600580	3.30	1752.0	26(4)	7(4)	1(0)	10(4)	13.0(4)	2.0(0)	0.0(0)	83.6(0)	9.1(0)	12(4)	20
Duck Cree	k (11-00)4)											
Year	: 1983												
LM79	0.90	14.7										2	Р
Sycamore	Creek (11-007)											
Year	: 1983												
LM51	0.60	24.0										4	F
LM52	0.10	24.0										0	Р

Appendix Table B-2. Macroinvertebrate taxa collected in the Little Miami River mainstem in 2020 including tolerance assignment, taxa group, abundance, and number if sites collected.

							Samples
Taxa		Toler-	Taxa	Abund-		Qual	Collect-
Code	Taxa Name	ance	Group	ance	Percent	Sites	ed in
52200	Cheumatopsyche sp	F	С	9608	27.24	13	13
85625	Rheotanytarsus sp	F	Т	6416	18.19	11	13
11130	Baetis intercalaris	F	М	3113	8.82	12	12
52430	Ceratopsyche morosa group	MI	С	2899	8.22	12	13
84450	Polypedilum (Uresipedilum) flavum	F	D	2499	7.08	12	13
01801	Turbellaria	F	N	1126	3.19	12	13
13570	Maccaffertium terminatum	MI	М	1012	2.87	12	13
74100	Simulium sp	F	D	928	2.63	13	13
12200	Isonychia sp	MI	М	795	2.25	12	13
13510	Maccaffertium exiguum	MI	М	641	1.82	10	13
51600	Polycentropus sp	MI	С	550	1.56	2	2
84700	Stenochironomus sp	F	D	542	1.54	1	12
77750	Hayesomyia senata or Thienemannimyia norena	F	D	508	1.44	10	12
16700	Tricorythodes sp	MI	М	461	1.31	13	13
83040	Dicrotendipes neomodestus	F	D	344	0.98	9	9
13561	Maccaffertium pulchellum	MI	М	314	0.89	12	12
84540	Polypedilum (Tripodura) scalaenum group	F	D	313	0.89	9	10
78450	Nilotanypus fimbriatus	F	D	207	0.59	1	12
53800	Hydroptila sp	F	С	202	0.57	13	13
78750	Rheopelopia paramaculipennis	MI	D	188	0.53	3	6
51300	Neureclipsis sp	MI	С	115	0.33	12	13
52510	Hydropsyche aerata	MI	С	112	0.32	1	7
50315	Chimarra obscura	MI	С	105	0.30	12	12
59970	Petrophila sp	MI	0	107	0.30	12	12
82220	Tvetenia discoloripes group	MI	D	106	0.30	3	8
83820	Microtendipes "caelum" (sensu Simpson & Bode, 1980)	MI	D	105	0.30	4	8
03600	Oligochaeta	Т	N	95	0.27	11	12
68901	Macronychus glabratus	F	0	97	0.27	10	12
77500	Conchapelopia sp	F	D	95	0.27	3	9
81240	Nanocladius (N.) distinctus	MT	D	95	0.27	3	7
11119	Plauditus dubius or P. virilis	I	М	88	0.25	5	5
53400	Protoptila sp	I	С	88	0.25	12	13
69400	Stenelmis sp	F	0	88	0.25	13	13
11118	Plauditus dubius	MI	М	73	0.21	7	7
13540	Maccaffertium mediopunctatum	MI	М	71	0.20	11	11
13550	Maccaffertium mexicanum integrum	MI	М	69	0.20	3	6
77120	Ablabesmyia mallochi	F	D	72	0.20	12	12
87540	Hemerodromia sp	F	D	60	0.17	5	10
84520	Polypedilum (Tripodura) halterale group	MT	D	55	0.16	3	4
93900	Elimia sp	MI	N	57	0.16	10	10
77100	Ablabesmyia sp		D	48	0.14	0	1
80410	Cricotopus (C.) sp	F	D	48	0.14	3	4

							Samples
Таха		Toler-	Taxa	Abund-		Qual	Collect-
Code	Taxa Name	ance	Group	ance	Percent	Sites	ed in
85840	Tanytarsus sepp	F	T	48	0.14	5	6
80310	Cardiocladius obscurus	MI	D	44	0.12	8	10
83300	Glyptotendipes (G.) sp	MT	D	41	0.12	1	3
82130	Thienemanniella similis	MI	D	38	0.11	1	2
52560	Hydropsyche orris	MI	С	35	0.10	0	4
52801	Potamyia flava	MI	С	35	0.10	2	6
82100	Thienemanniella sp		D	36	0.10	2	3
11014	Acentrella turbida	I	М	32	0.09	11	11
52570	Hydropsyche simulans	MI	С	31	0.09	3	9
83050	Dicrotendipes lucifer	MT	D	30	0.09	3	4
85821	Tanytarsus glabrescens group sp 7	F	Т	30	0.09	3	6
13400	Stenacron sp	F	М	25	0.07	13	13
52520	Hydropsyche bidens	MI	С	26	0.07	0	4
84960	Pseudochironomus sp	F	D	24	0.07	0	1
03000	Ectoprocta	F		18	0.05	6	11
51206	Cyrnellus fraternus	F	С	16	0.05	2	4
65800	Berosus sp	MT	0	16	0.05	10	10
83000	Dicrotendipes sp	F	D	16	0.05	0	1
96900	Ferrissia sp	F	N	18	0.05	7	7
59100	Ceraclea sp	MI	С	14	0.04	4	6
59140	Ceraclea maculata	MI	С	13	0.04	5	7
77800	Helopelopia sp	F	D	15	0.04	4	4
84300	Phaenopsectra obediens group	F	D	15	0.04	1	2
04660	Helobdella sp	MT	N	9	0.03	2	3
22300	Argia sp	F	0	12	0.03	12	13
48410	Corydalus cornutus	MI	0	10	0.03	9	10
54160	Ochrotrichia sp	MI	С	10	0.03	5	5
84460	Polypedilum (P.) fallax group	F	D	11	0.03	0	2
85615	Rheotanytarsus pellucidus	MI	Т	9	0.03	0	1
03360	Plumatella sp	F	N	6	0.02	4	5
08601	Hydrachnidia	F	N	8	0.02	2	3
13521	Stenonema femoratum	F	М	7	0.02	9	10
68601	Ancyronyx variegata	F	0	6	0.02	11	11
81060	Lopescladius sp	MI	D	6	0.02	0	1
83840	Microtendipes pedellus group	F	D	6	0.02	2	2
85200	Cladotanytarsus sp		Т	8	0.02	2	3
95100	Physella sp	Т	N	8	0.02	6	7
04935	Erpobdella punctata punctata		N	3	0.01	3	4
51050	Cernotina sp		С	3	0.01	2	4
52530	Hydropsyche depravata group		С	5	0.01	0	1
59407	Nectopsyche candida	F MI	С	2	0.01	13	13

							Samples
Таха		Toler-	Таха	Abund-		Qual	Collect-
Code	Taxa Name	ance	Group	ance	Percent	Sites	ed in
68130	Helichus sp	F	0	2	0.01	8	9
84470	Polypedilum (P.) illinoense	Т	D	5	0.01	9	10
85800	Tanytarsus sp	F	Т	3	0.01	4	5
03451	Urnatella gracilis	MI	N	0	0.00	1	1
04510	Hirudinida	MT	N	0	0.00	1	1
04666	Helobdella papillata	MT	N	0	0.00	2	2
04683	Placobdella multilineata	F	N	0	0.00	1	1
04901	Erpobdellidae	MT	N	0	0.00	4	4
05800	Caecidotea sp	Т	N	0	0.00	6	6
05900	Lirceus sp	MT	N	0	0.00	6	6
06201	Hyalella azteca	F	N	0	0.00	7	7
06700	Crangonyx sp	MT	N	0	0.00	7	7
08200	Orconectes sp	F	N	0	0.00	10	10
11015	Acerpenna sp	MI	М	0	0.00	2	2
11120	Baetis flavistriga	F	М	0	0.00	1	1
11620	Paracloeodes minutus	MI	М	0	0.00	9	9
11650	Procloeon sp (w/ hindwing pads)	MI	М	0	0.00	1	1
11651	Procloeon sp (w/o hindwing pads)	MI	М	0	0.00	2	2
11670	Procloeon viridoculare	MI	М	0	0.00	6	6
13000	Leucrocuta sp	MI	М	0	0.00	13	13
13100	Nixe sp	MI	М	0	0.00	9	9
17200	Caenis sp	F	М	0	0.00	8	8
18100	Anthopotamus sp	MI	М	0	0.00	4	4
18600	Ephemera sp	MI	М	0	0.00	10	10
18700	Hexagenia sp	F	М	0	0.00	2	2
21001	Calopterygidae	F	0	0	0.00	1	1
21200	Calopteryx sp	F	0	0	0.00	2	2
21300	Hetaerina sp	F	0	1	0.00	8	8
22001	Coenagrionidae	Т	0	0	0.00	13	13
23905	Boyeria grafiana	MI	0	0	0.00	3	3
23909	Boyeria vinosa	F	0	0	0.00	4	4
24820	Gomphurus externus	MI	0	0	0.00	1	1
24900	Gomphus sp	F	0	1	0.00	9	10
-	Hagenius brevistylus	F	0	0	0.00	5	5
-	Macromia sp	MI	0	0	0.00	10	10
	Neurocordulia sp	F	0	0	0.00	4	4
	Agnetina capitata complex	MI	S	0	0.00	4	4
	Agnetina flavescens	I	S	0	0.00	5	5
	Belostoma sp	Т	0	0	0.00	3	3
	Ranatra sp	F	0	0	0.00	1	1
43570	Neoplea sp	F	0	0	0.00	2	2

							Samples
Taxa		Toler-	Taxa	Abund-		Qual	Collect-
Code	Taxa Name	ance	Group	ance	Percent	Sites	ed in
44501	Corixidae	F	0	0	0.00	1	1
50301	Chimarra aterrima	MI	С	0	0.00	2	2
54100	Neotrichia sp	F	С	0	0.00	4	4
58505	Helicopsyche borealis	MI	С	0	0.00	2	2
59300	Mystacides sp	MI	С	0	0.00	1	1
59415	Nectopsyche exquisita	MI	С	0	0.00	3	3
59570	Oecetis nocturna	F	С	0	0.00	2	2
59580	Oecetis persimilis	MI	С	1	0.00	5	5
59700	Triaenodes sp	MI	С	0	0.00	2	2
59724	Triaenodes injustus	MI	С	0	0.00	3	3
60900	Peltodytes sp	MT	0	0	0.00	4	4
67800	Tropisternus sp	T	0	0	0.00	2	2
67880				0	0.00	1	1
68075	Psephenus herricki	MI	0	0	0.00	11	11
68708	Dubiraphia vittata group	F	0	0	0.00	10	10
71900	Tipula sp	F	D	0	0.00	2	2
72501	Culicidae	MT	D	0	0.00	6	6
77001	Tanypodinae		D	0	0.00	1	1
77130	Ablabesmyia rhamphe group	MT	D	0	0.00	8	8
77470	Coelotanypus sp	T	D	0	0.00	5	5
78100	Labrundinia sp	F	D	0	0.00	6	6
78140	Labrundinia pilosella	F	D	0	0.00	3	3
78350	Meropelopia sp	F	D	0	0.00	1	1
78600	Pentaneura inconspicua	F	D	0	0.00	1	1
78655	Procladius (Holotanypus) sp	MT	D	0	0.00	11	11
80420	Cricotopus (C.) bicinctus	T	D	0	0.00	2	2
80440	Cricotopus (C.) trifascia	F	D	0	0.00	1	1
81650	Parametriocnemus sp	F	D	0	0.00	1	1
82600	Axarus sp	F	D	0	0.00	1	1
82730	Chironomus (C.) decorus group	T	D	0	0.00	4	4
82820	Cryptochironomus sp	F	D	0	0.00	7	7
82822	Cryptochironomus eminentia	F	D	0	0.00	2	2
83051	Dicrotendipes simpsoni	Т	D	0	0.00	1	1
83400	Harnischia sp	F	D	0	0.00	2	2
84020	Parachironomus carinatus	F	D	0	0.00	2	2
84040	Parachironomus frequens	F	D	0	0.00	1	1
84155	Paralauterborniella nigrohalteralis	F	D	0	0.00	4	4
84210	Paratendipes albimanus or P. duplicatus	F	D	0	0.00	2	2
84612	Saetheria tylus	F	D	0	0.00	2	2
84800	Tribelos jucundum	MT	D	0	0.00	1	1
85230	Cladotanytarsus mancus group	F	Т	0	0.00	2	2

							Samples
Таха		Toler-	Taxa	Abund-		Qual	Collect-
Code	Taxa Name	ance	Group	ance	Percent	Sites	ed in
85260	Cladotanytarsus vanderwulpi group		Т	0	0.00	1	1
85264	Cladotanytarsus vanderwulpi group sp 4	MI	Т	0	0.00	1	1
85265	Cladotanytarsus vanderwulpi group sp 5	MI	Т	0	0.00	2	2
85500	Paratanytarsus sp	F	Т	0	0.00	2	2
93200	Hydrobiidae	F	N	0	0.00	3	3
96120	Menetus (Micromenetus) dilatatus	MT	N	0	0.00	1	1
97601	Corbicula fluminea	F	N	1	0.00	8	9
97710	Dreissena polymorpha	F	N	1	0.00	6	6
98001	Pisidiidae		N	1	0.00	1	2
98600	Sphaerium sp	F	N	0	0.00	9	9
99240	Lasmigona complanata	MI	N	0	0.00	1	1
99700	Potamilus alatus	MI	N	0	0.00	1	1

Appendix Table B-3. Macroinvertebrate taxa collected in the Duck Creek subwatershed in 2020 including tolerance assignment, taxa group, abundance, and number if sites collected.

Code	Taxa Name	ance	Group	dance	Percent	Samples	Samples
84470	Polypedilum (P.) illinoense	Т	D	1340	14.01	14	14
03600	Oligochaeta	Т	N	710	7.42	14	14
11130	Baetis intercalaris	F	М	3191	33.36	12	12
84450	Polypedilum (Uresipedilum) flavum	F	D	759	7.94	12	12
74100	Simulium sp	F	D	195	2.04	12	12
01801	Turbellaria	F	N	154	1.61	12	12
11120	Baetis flavistriga	F	М	0	0.00	12	12
52530	Hydropsyche depravata group	F	С	268	2.80	11	11
52200	Cheumatopsyche sp	F	С	237	2.48	11	11
53800	Hydroptila sp	F	С	33	0.35	10	10
77500	Conchapelopia sp	F	D	769	8.04	9	9
80420	Cricotopus (C.) bicinctus	Т	D	156	1.63	8	8
04985	Barbronia weberi	MT	N	3	0.03	8	9
82820	Cryptochironomus sp	F	D	0	0.00	8	8
80510	Cricotopus (Isocladius) sylvestris group	Т	D	46	0.48	7	9
95100	Physella sp	Т	N	1	0.01	7	7
05900	Lirceus sp	MT	N	0	0.00	7	7
69400	Stenelmis sp	F	0	0	0.00	7	7
77120	Ablabesmyia mallochi	F	D	0	0.00	7	7
52430	Ceratopsyche morosa group	MI	С	8	0.08	6	7
71900	Tipula sp	F	D	1	0.01	6	6
80430	Cricotopus (C.) tremulus group	MT	D	0	0.00	6	6
82730	Chironomus (C.) decorus group	Т	D	0	0.00	6	6
84540	Polypedilum (Tripodura) scalaenum group	F	D	687	7.18	5	5
84960	Pseudochironomus sp	F	D	147	1.54	5	6
87540	Hemerodromia sp	F	D	25	0.26	5	6
72700	Anopheles sp	F	D	0	0.00	5	5
84210	Paratendipes albimanus or P. duplicatus	F	D	0	0.00	5	5
83040	Dicrotendipes neomodestus	F	D	102	1.07	4	5
50315	Chimarra obscura	MI	С	20	0.21	4	4
13521	Stenonema femoratum	F	М	5	0.05	4	5
04664	Helobdella stagnalis	Т	N	0	0.00	4	4
21300	Hetaerina sp	F	0	0	0.00	4	4
22001	Coenagrionidae	Т	0	0	0.00	4	4
50301	Chimarra aterrima	MI	С	0	0.00	4	4
80410	Cricotopus (C.) sp	F	D	0	0.00	4	4
82710	Chironomus (C.) sp	MT	D	0	0.00	4	4
77750	Hayesomyia senata or Thienemannimyia norena	F	D	79	0.83	3	4
22300	Argia sp	F	0	1	0.01	3	3
06700	Crangonyx sp	MT	N	0	0.00	3	3
17200	Caenis sp	F	М	0	0.00	3	3
72150	Pericoma sp	MT	D	0	0.00	3	3

Taxa		Toler-	Taxa	Abun-		Qual.	All
Code	Taxa Name	ance	Group	dance	Percent	Samples	Samples
78401	Natarsia species A (sensu Roback, 1978)	Т	D	0	0.00	3	3
78655	Procladius (Holotanypus) sp	MT	D	0	0.00	3	3
84300	Phaenopsectra obediens group	F	D	0	0.00	3	3
85821	Tanytarsus glabrescens group sp 7	F	Т	325	3.40	2	3
85500	Paratanytarsus sp	F	T	7	0.07	2	3
04660	Helobdella sp	MT	N	0	0.00	2	2
04666	Helobdella papillata	MT	N	0	0.00	2	2
04901	Erpobdellidae	MT	N	0	0.00	2	2
21604	Archilestes grandis	T	0	0	0.00	2	2
51250	Holocentropus sp	F	С	0	0.00	2	2
53501	Hydroptilidae	F	С	0	0.00	2	2
67700	Paracymus sp	MT	0	0	0.00	2	2
68075	Psephenus herricki	MI	0	0	0.00	2	2
74650	Atrichopogon sp	F	D	0	0.00	2	2
77800	Helopelopia sp	F	D	0	0.00	2	2
78350	Meropelopia sp	F	D	0	0.00	2	2
78600	Pentaneura inconspicua	F	D	0	0.00	2	2
80411	Cricotopus (Isocladius) sp nr. absurdus	MT	D	0	0.00	2	2
81650	Parametriocnemus sp	F	D	0	0.00	2	2
82200	Tvetenia bavarica group	MI	D	0	0.00	2	2
83840	Microtendipes pedellus group	F	D	0	0.00	2	2
85800	Tanytarsus sp	F	T	62	0.65	1	3
83051	Dicrotendipes simpsoni	Т	D	17	0.18	1	1
85840	Tanytarsus sepp	F	Т	17	0.18	1	2
78450	Nilotanypus fimbriatus	F	D	15	0.16	1	2
04935	Erpobdella punctata punctata	MT	N	11	0.12	1	1
07800	Cambarus sp		N	0	0.00	1	1
11200	Callibaetis sp	MT	М	0	0.00	1	1
21001	Calopterygidae	F	0	0	0.00	1	1
23600	Aeshna sp	MT	0	0	0.00	1	1
27001	Corduliidae		0	0	0.00	1	1
27400	Neurocordulia sp	F	0	0	0.00	1	1
28001	Libellulidae	MT	0	0	0.00	1	1
28705	Pachydiplax longipennis	T	0	0	0.00	1	1
44501	Corixidae	F	0	0	0.00	1	1
45400	Trichocorixa sp	MT	0	0	0.00	1	1
51050	Cernotina sp	MI	С	0	0.00	1	1
60900	Peltodytes sp	MT	0	0	0.00	1	1
63900	Laccophilus sp	T	0	0	0.00	1	1
67800	Tropisternus sp	T	0	0	0.00	1	1
68708	Dubiraphia vittata group	F	0	0	0.00	1	1
70600	Antocha sp	MI	D	0	0.00	1	1

Taxa		Toler-	Таха	Abun-		Qual.	All
Code	Taxa Name	ance	Group	dance	Percent	Samples	Samples
71910	Tipula abdominalis	F	D	0	0.00	1	1
72160	Psychoda sp	T	D	0	0.00	1	1
72501	Culicidae	MT	D	0	0.00	1	1
72900	Culex sp	T	D	0	0.00	1	1
77001	Tanypodinae		D	0	0.00	1	1
78200	Larsia sp	MT	D	0	0.00	1	1
78601	Pentaneura inyoensis	F	D	0	0.00	1	1
78702	Psectrotanypus dyari	VT	D	0	0.00	1	1
80001	Orthocladiinae		D	0	0.00	1	1
80440	Cricotopus (C.) trifascia	F	D	0	0.00	1	1
80474	Cricotopus (C.) or Paratrichocladius sp		D	0	0.00	1	1
80740	Eukiefferiella claripennis group	MT	D	0	0.00	1	1
82100	Thienemanniella sp		D	0	0.00	1	1
82770	Chironomus (C.) riparius group	Т	D	0	0.00	1	1
83003	Dicrotendipes fumidus	F	D	0	0.00	1	1
84230	Paratendipes subaequalis	F	D	0	0.00	1	1
85625	Rheotanytarsus sp	F	T	0	0.00	1	1
86501	Stratiomyidae		D	0	0.00	1	1
89001	Sciomyzidae	MT	D	0	0.00	1	1
89700	Limnophora sp	F	D	0	0.00	1	1
93200	Hydrobiidae	F	N	0	0.00	1	1
95501	Planorbidae	MT	N	0	0.00	1	1
81231	Nanocladius (N.) crassicornus or N. (N.) "rectinervis"	F	D	116	1.21	0	1
81240	Nanocladius (N.) distinctus	MT	D	22	0.23	0	1
84520	Polypedilum (Tripodura) halterale group	MT	D	17	0.18	0	1
01320	Hydra sp	F	N	16	0.17	0	1
04510	Hirudinida	MT	N	1	0.01	0	1
65800	Berosus sp	MT	0	1	0.01	0	1

Appendix Table B-4. Macroinvertebrate taxa collected in the Sycamore Creek, Polk Run, and Clough Creek partial subwatersheds in 2020 including tolerance assignment, taxa group, abundance, and number if sites collected.

Taxa	maurice, and namber if sites conected.	Toler-	Таха	Abun-		Qual	All
Code	Taxa Name	ance	Group	dance	Percent	Samples	
01801		F	N	614	5.03	9	9
	Oligochaeta		N	44	0.36	8	8
	Lirceus sp	MT	N	10	0.08	8	8
	Baetis flavistriga	F	М	78	0.64	8	8
	Baetis intercalaris	F.	M	2158	17.69	8	8
	Chimarra aterrima	MI	С	13	0.11	8	8
	Cheumatopsyche sp	F	С	1010	8.28	8	8
	Hydropsyche depravata group	F F	С	167	1.37	8	8
	Ablabesmyia mallochi	F	D	0	0.00	8	8
	Physella sp	T	N	5	0.04	8	8
	Caenis sp	· F	М	4	0.03	7	7
	Psephenus herricki	MI	0	0	0.00	7	7
	Stenelmis sp	F	0	8	0.07	7	7
	Simulium sp	F F	D	108	0.89	7	7
	Dicrotendipes neomodestus	F .	D	130	1.07	7	7
	Stenonema femoratum	F.	M	84	0.69	6	6
	Coenagrionidae		0	0	0.00	6	6
	Chimarra obscura	MI	С	94	0.77	6	6
	Ceratopsyche morosa group	MI	С	875	7.17	6	6
	Hydroptila sp	F	С	82	0.67	6	6
	Tipula sp	F F	D	2	0.02	6	7
	Conchapelopia sp	F F	D	201	1.65	6	6
	Helopelopia sp	F	D	219	1.80	6	6
	Polypedilum (Uresipedilum) flavum	F	D	2573	21.10	6	6
	Argia sp	F	0	22	0.18	5	6
	Holocentropus sp	F	С	0	0.00	5	5
	Petrophila sp	MI	0	9	0.07	5	5
	Cryptochironomus sp	F	D	0	0.00	5	5
	Paratendipes albimanus or P. duplicatus	F	D	16	0.13	5	5
	Polypedilum (P.) illinoense	Т	D	279	2.29	5	6
	Calopterygidae	F	0	3	0.02	4	4
	Culex sp	Т	D	0	0.00	4	4
	Procladius (Holotanypus) sp	MT	D	0	0.00	4	4
83820	Microtendipes "caelum" (sensu Simpson & E	MI	D	0	0.00	4	4
84300	Phaenopsectra obediens group	F	D	0	0.00	4	4
	Rheotanytarsus sp	F	Т	948	7.77	4	6
85840	Tanytarsus sepp	F	Т	42	0.34	4	4
	Erpobdella punctata punctata	MT	N	0	0.00	3	3
-	Barbronia weberi	MT	N	0	0.00	3	3
06700	Crangonyx sp	MT	N	0	0.00	3	3
	Polypedilum (Tripodura) scalaenum group	F	D	76	0.62	3	5
	Tanytarsus sp	F	Т	48	0.39	3	3

Taxa		Toler-	Таха	Abun-		Qual	All
Code	Taxa Name	ance	Group	dance	Percent	Samples	Samples
85821	Tanytarsus glabrescens group sp 7	F	_ С.ОЦР	1462	11.99	3	5
87540		F	D	26	0.21	3	3
	Hyalella azteca	F .	N	11	0.09	2	2
21200	Calopteryx sp	 F	0	9	0.07	2	2
51300	Neureclipsis sp	MI	С	11	0.09	2	2
54160		MI	C	0	0.00	2	2
	Peltodytes sp	MT	0	0	0.00	2	2
	Ancyronyx variegata	F	0	1	0.01	2	3
	Dubiraphia vittata group	 F	0	0	0.00	2	2
	Limonia sp	<u>'</u> F	D	0	0.00	2	2
72700	Anopheles sp	F	D	0	0.00	2	2
74650		<u>'</u>	D	0	0.00	2	2
	Hayesomyia senata or Thienemannimyia no	<u>г</u> F	D	33	0.00	2	3
	Pentaneura inyoensis	<u>г</u> F	D	0	0.00	2	2
80310	Cardiocladius obscurus	MI	D	0	0.00	2	2
	Cricotopus (C.) sp	F	D D	0	0.00	2	2
		<u>г</u> Т				2	3
80420	, , ,		D	15	0.12		
	Parametriocnemus sp	F T	D	10	0.08	2	3
82730	` ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '		D	0	0.00	2	2
	Microtendipes pedellus group	F	D	0	0.00	2	2
	Stenochironomus sp	F	D -	0	0.00	2	2
	Paratanytarsus sp	F	T	86	0.71	2	2
97601	Corbicula fluminea	F	N	1	0.01	2	2
03000		F		0	0.00	1	1
04666	, ,	MT	N	0	0.00	1	1
	Erpobdellidae	MT	N	0	0.00	1	1
06501	Gammaridae		N	0	0.00	1	1
	Acentrella turbida	ı	М	0	0.00	1	1
	Procloeon viridoculare	MI	М	0	0.00	1	1
	Nixe sp	MI	М	0	0.00	1	1
16700	,	MI	М	0	0.00	1	1
21604	3	Т	0	0	0.00	1	1
23909	,	F	0	0	0.00	1	1
26600	, .	MT	0	0	0.00	1	1
	Macromia sp	MI	0	0	0.00	1	1
27000			0	0	0.00	1	1
	Epitheca (Epicordulia) princeps	MT	0	0	0.00	1	1
	Neurocordulia sp	F	0	0	0.00	1	1
43570		F	0	0	0.00	1	1
51050	Cernotina sp	MI	С	0	0.00	1	1
53201		MI	С	0	0.00	1	1
53501	Hydroptilidae	F	С	0	0.00	1	1

Taxa	uix rubie b-4. continueu.	Toler-	Таха	Abun-		Qual	All
Code	Taxa Name	ance	Group	dance	Percent	Samples	Samples
59300	Mystacides sp	MI	С	0	0.00	1	1
59580	Oecetis persimilis	MI	С	1	0.01	1	1
65800	Berosus sp	MT	0	0	0.00	1	1
68025	Ectopria sp	F	0	0	0.00	1	1
70501	Tipulidae		D	0	0.00	1	1
70600	Antocha sp	MI	D	0	0.00	1	1
72501	Culicidae	MT	D	0	0.00	1	1
77130	Ablabesmyia rhamphe group	MT	D	0	0.00	1	1
78350	Meropelopia sp	F	D	0	0.00	1	1
78650	Procladius sp	MT	D	0	0.00	1	1
78750	Rheopelopia paramaculipennis	MI	D	21	0.17	1	2
79720	Diamesa sp	F	D	0	0.00	1	1
	Pagastia sp	F	D	0	0.00	1	1
80440	, , , ,	F	D	0	0.00	1	1
	Paratrichocladius sp	MI	D	0	0.00	1	1
	Rheocricotopus (Psilocricotopus) robacki	F	D	0	0.00	1	1
82141		F	D	12	0.10	1	2
82710	` ' '	MT	D	0	0.00	1	1
82822		F	D	0	0.00	1	1
	Dicrotendipes fumidus	F	D	42	0.34	1	1
85210	Nilothauma sp	F MI	D T	0	0.00	1	1
85260		IVII	T	0	0.00		1
93200	Cladotanytarsus vanderwulpi group Hydrobiidae	F	N	1	0.00	1	2
96900	Ferrissia sp	F	N	43	0.35	1	3
01900	Nemertea	F	N	16	0.13	0	1
08601		F	N	24	0.20	0	1
12200		MI	M	10	0.08	0	2
13400	Stenacron sp	F	M	134	1.10	0	2
	Maccaffertium sp	MI	М	12	0.10	0	2
	Maccaffertium pulchellum	MI	М	1	0.01	0	1
51206		F	С	8	0.07	0	1
52570	Hydropsyche simulans	MI	С	1	0.01	0	1
71910	Tipula abdominalis	F	D	5	0.04	0	1
74673	Atrichopogon websteri	F	D	2	0.02	0	1
77001	Tanypodinae		D	10	0.08	0	1
78450	Nilotanypus fimbriatus	F	D	42	0.34	0	3
	Corynoneura sp		D	16	0.13	0	2
80370	·	F	D	40	0.33	0	3
80411	Cricotopus (Isocladius) sp nr. absurdus	MT	D	15	0.12	0	1
80430	Cricotopus (C.) tremulus group	MT	D	29	0.24	0	1
82100	·		D	16	0.13	0	2
	Pseudochironomus sp	F	D	85	0.70	0	2
	Rheotanytarsus pellucidus	MI	T	20	0.16	0	1
96120 R - 11	,	MT	N	4	0.03	0	1

Coll. Date:08/12/2022 RM:

27.90

River: Little Miami River

River Code:11-001 Site ID: LM01 Location: dst. SR 23/3 Little Miami State Park Sample: Taxa **CWH CWH** Taxa Code Qt./QI. Taxa Tol. Taxa Code Taxa Taxa Tol. Qt./Ql. 01801 Turbellaria F 213 +F 589 + 52200 Cheumatopsyche sp F 03000 Ectoprocta 1 52430 Ceratopsyche morosa group ΜI 286 + 03360 Plumatella sp F + 52510 Hydropsyche aerata ΜI 18 03600 Oligochaeta Т 52530 Hydropsyche depravata group F 5 04666 Helobdella papillata MT 52570 Hydropsyche simulans ΜI + 04901 Erpobdellidae 53400 Protoptila sp MT F 6 + 05800 Caecidotea sp T 53800 Hydroptila sp MT F 54100 Neotrichia sp 05900 Lirceus sp + + F 06201 Hyalella azteca 54160 Ochrotrichia sp ΜI F 08200 Orconectes sp 58505 Helicopsyche borealis ΜI F 59140 Ceraclea maculata 08601 Hydrachnidia MI 11014 Acentrella turbida ı 59300 Mystacides sp ΜI + 11119 Plauditus dubius or P. virilis 59407 Nectopsyche candida ΜI ı 11130 Baetis intercalaris F 119 + 59580 Oecetis persimilis MI 11651 Procloeon sp (w/o hindwing pads) MI + 59970 Petrophila sp MI 20 +Procloeon viridoculare 60900 Peltodytes sp 11670 ΜI MT 12200 Isonychia sp 20 +ΜI 65800 Berosus sp МΤ 13000 Leucrocuta sp 68075 Psephenus herricki ΜI ΜI + 68130 Helichus sp 13400 Stenacron sp F F 1+ 13510 Maccaffertium exiguum ΜI 61 +68601 Ancyronyx variegata F F Stenonema femoratum 68708 Dubiraphia vittata group 13521 + 17 +Maccaffertium mediopunctatum ΜI 68901 Macronychus glabratus F 5 + 13540 13561 Maccaffertium pulchellum ΜI 9 +69400 Stenelmis sp F 128 +F ΜI 13570 Maccaffertium terminatum 71900 Tipula sp 74100 Simulium sp ΜI 8 + F 16700 Tricorythodes sp F 17200 Caenis sp 77001 Tanypodinae F 18600 Ephemera sp ΜI + 77120 Ablabesmyia mallochi 2 21300 Hetaerina sp 77500 Conchapelopia sp F F + 77750 Hayesomyia senata or 22001 Coenagrionidae Т F 2 + + Thienemannimyia norena 22300 Argia sp F F 77800 Helopelopia sp + ΜI 23905 Boyeria grafiana Х 78450 Nilotanypus fimbriatus F 9 F 23909 Boyeria vinosa F 78600 Pentaneura inconspicua F 24900 Gomphus sp МТ 78655 Procladius (Holotanypus) sp + F 25010 Hagenius brevistylus 80310 Cardiocladius obscurus ΜI 26700 Macromia sp MI 81240 Nanocladius (N.) distinctus MΤ 34700 Agnetina capitata complex ΜI 82220 Tvetenia discoloripes group ΜI 14 Т 42700 Belostoma sp 82730 Chironomus (C.) decorus group т + F 43570 Neoplea sp F 82820 Cryptochironomus sp 48410 Corydalus cornutus MI F 83040 Dicrotendipes neomodestus 50301 Chimarra aterrima ΜI F 83400 Harnischia sp + 50315 Chimarra obscura ΜI 83840 Microtendipes pedellus group F 51050 Cernotina sp MI 84040 Parachironomus frequens F + 51300 Neureclipsis sp ΜI 12 +

Appendix Table B-5. Macroinvertebrate taxa list for the Little Miami River study area including historical data.

River	Code: 11-001 Riv	er: <i>Little</i>	e Miami River			Coll. Date	:08/12/2022 RM:	27.90
Site II	D: LM01 L	_ocation:	: dst. SR 23/3	Little	Miami State Park		Sample:	
Taxa Code	Taxa		CWH Taxa Tol.	Qt./0	Taxa QI. Code	Taxa	CWH Taxa Tol.	Qt./Ql.
84450	Polypedilum (Uresipedilu	m) flavum	F	38 +	-			
84470	Polypedilum (P.) illinoens	se	Т	2 +	-			
84520	Polypedilum (Tripodura) I group	halterale	MT	4	-			
84540	Polypedilum (Tripodura) scalaenum group		F	4	-			
85260	Cladotanytarsus vanderw	vulpi group	1	4	-			
85625	Rheotanytarsus sp		F	89 +	-			
85800	Tanytarsus sp		F	+	-			
87540	Hemerodromia sp		F	+	-			
93900	Elimia sp		MI	+	-			
97601	Corbicula fluminea		F	+	-			
97710	Dreissena polymorpha		F	1 +	-			
98600	Sphaerium sp		F	+	-			
No. C	Quantitative Taxa:	26	Total Taxa;	97				
No. C	Qualitative Taxa:	91	ICI:	42				
Numb	per of Organisms:	1675	Qual EPT:	33				

Coll. Date:08/12/2022 RM:

24.10

River: Little Miami River

River Code:11-001 Location: ust. O'Bannon Creek Site ID: LM02 Sample: Taxa **CWH CWH** Taxa Code Taxa Tol. Qt./QL Taxa Code Taxa Taxa Tol. Qt./Ql. 01801 Turbellaria F 22 +59140 Ceraclea maculata MI + F 03000 Ectoprocta 59407 Nectopsyche candida ΜI 03600 Oligochaeta Т 59415 Nectopsyche exquisita ΜI 05800 Caecidotea sp Т 59570 Oecetis nocturna F 05900 Lirceus sp MT 59580 Oecetis persimilis ΜI 1 + + 06700 Crangonyx sp MT 59700 Triaenodes sp MI F 17 +08200 Orconectes sp 59970 Petrophila sp MI 11014 Acentrella turbida МТ 1 60900 Peltodytes sp + + Plauditus dubius ΜI 7 + 11118 65800 Berosus sp MΤ F 81 + 11130 Baetis intercalaris 68075 Psephenus herricki ΜI МІ 68130 Helichus sp F 11620 Paracloeodes minutus F 11670 Procloeon viridoculare MI 68708 Dubiraphia vittata group F 12200 Isonychia sp ΜI 18 + 68901 Macronychus glabratus 1 + F 13000 Leucrocuta sp MI 69400 Stenelmis sp + 13400 Stenacron sp F 74100 Simulium sp F 3 + Maccaffertium exiguum ΜI 43 77120 Ablabesmyia mallochi F 13510 Т Stenonema femoratum F 77470 Coelotanypus sp + 13540 Maccaffertium mediopunctatum ΜI 2 + 77500 Conchapelopia sp F 4 + 13561 Maccaffertium pulchellum 2 + 77750 Hayesomyia senata or F 4 ΜI Thienemannimyia norena 38 + 13570 Maccaffertium terminatum ΜI F 78100 Labrundinia sp + 78 + 16700 Tricorythodes sp MI F 8 78450 Nilotanypus fimbriatus 17200 Caenis sp F + 78655 Procladius (Holotanypus) sp MΤ 18600 Ephemera sp ΜI 13 78750 Rheopelopia paramaculipennis MI Т 22001 Coenagrionidae 80310 Cardiocladius obscurus 4 MI F 22300 Argia sp 34 Tvetenia discoloripes group ΜI 82220 F 23909 Boyeria vinosa F 82820 Cryptochironomus sp F 24900 Gomphus sp 84450 Polypedilum (Uresipedilum) flavum F 161 +25010 Hagenius brevistylus F 84470 Polypedilum (P.) illinoense Т 26700 Macromia sp ΜI + F 17 84700 Stenochironomus sp Agnetina capitata complex ΜI 85500 Paratanytarsus sp F + 48410 Corydalus cornutus ΜI 85625 Rheotanytarsus sp F 195 +50315 Chimarra obscura ΜI F 85800 Tanytarsus sp 1 ΜI 51050 Cernotina sp F 85821 Tanytarsus glabrescens group sp 7 + 24 +51300 Neureclipsis sp ΜI F 85840 Tanytarsus sepp + F 212 +52200 Cheumatopsyche sp 87540 Hemerodromia sp F 4 52430 Ceratopsyche morosa group 192 +ΜI F 93200 Hydrobiidae + 65 52510 Hydropsyche aerata ΜI 93900 Elimia sp МΙ 1 52570 Hydropsyche simulans ΜI F 96900 Ferrissia sp 53400 Protoptila sp 1 + F 97601 Corbicula fluminea 5 + 53800 Hydroptila sp F 97710 Dreissena polymorpha F + F 54100 Neotrichia sp 98600 Sphaerium sp F 58505 Helicopsyche borealis ΜI 99700 Potamilus alatus ΜI + 59100 Ceraclea sp ΜI 4

Appendix Table B-5. Macroinvertebrate taxa list for the Little Miami River study area including historical data.

River Code:11-001 River: Little Miami River				Coll. Date	:08/12/2022 RM:	24.10			
Site ID: LM0	2	Locatio	n: <i>ust. O'Bannc</i>	n Creek		Sample			
Taxa Code	Taxa		CWH Taxa Tol.	Qt./Ql.	Taxa Code	Таха	CWH Taxa Tol.	Qt./Ql.	
No. Quantita	tive Taxa:	32	Total Taxa;	85	-				
No. Qualitati	ve Taxa:	72	ICI:	50					
Number of O	rganisms:	1262	Qual EPT:	30					

River Code:11-001 River: Little Miami River Coll. Date:08/12/2022 RM: 22.30 Site ID: LM03 Location: ust. Polk Run Sample: Taxa **CWH CWH** Taxa Code Taxa Tol. Qt./QI. Taxa Code Taxa Taxa Tol. Qt./Ql. 01801 Turbellaria F 76 + 59580 Oecetis persimilis ΜI + F 03360 Plumatella sp 59700 Triaenodes sp MI 03600 Oligochaeta Т 59970 Petrophila sp ΜI 9 + 04935 Erpobdella punctata punctata MT 60900 Peltodytes sp МТ + 05900 Lirceus sp MT 67880 + 06201 Hyalella azteca F 68075 Psephenus herricki ΜI F F 08200 Orconectes sp 68130 Helichus sp 11014 Acentrella turbida F 1 68601 Ancyronyx variegata + + Plauditus dubius ΜI 21 +F 11118 68708 Dubiraphia vittata group F 243 + F 11130 Baetis intercalaris 68901 Macronychus glabratus 4 + МІ 69400 Stenelmis sp F 11620 Paracloeodes minutus + + 11650 Procloeon sp (w/ hindwing pads) MI 72501 Culicidae MΤ + F 11670 Procloeon viridoculare ΜI 74100 Simulium sp 35 +32 + F 12200 Isonychia sp MI 77120 Ablabesmyia mallochi 13000 Leucrocuta sp MI + 77130 Ablabesmyia rhamphe group MΤ + 13100 Nixe sp 77500 Conchapelopia sp F ΜI F F 13400 Stenacron sp 77750 Hayesomyia senata or 6 + Thienemannimyia norena 13510 Maccaffertium exiguum 48 + ΜI 78450 Nilotanypus fimbriatus F 11 13540 Maccaffertium mediopunctatum 13 +ΜI 78655 Procladius (Holotanypus) sp МТ + 2 13550 Maccaffertium mexicanum ΜI ΜI 3 + integrum 80310 Cardiocladius obscurus 57 + X F 13561 Maccaffertium pulchellum ΜI 81650 Parametriocnemus sp 43 + 6 13570 Maccaffertium terminatum ΜI 82130 Thienemanniella similis ΜI 16700 Tricorythodes sp 36 + ΜI 17 +MI 82220 Tvetenia discoloripes group 83840 Microtendipes pedellus group F 6 + 18600 Ephemera sp ΜI + Т F 74 + 22001 Coenagrionidae 84450 Polypedilum (Uresipedilum) flavum F 3 Т 22300 Argia sp 84470 Polypedilum (P.) illinoense F F 3 + 24900 Gomphus sp 84540 Polypedilum (Tripodura) scalaenum group 25010 Hagenius brevistylus F 17 84700 Stenochironomus sp F 26700 Macromia sp ΜI 85625 Rheotanytarsus sp F 135 43300 Ranatra sp F 3 85800 Tanytarsus sp F 48410 Corydalus cornutus ΜI + F 87540 Hemerodromia sp + 50315 Chimarra obscura ΜI 93900 Elimia sp МΙ 4 + 24 + ΜI 51300 Neureclipsis sp 96900 Ferrissia sp F + 536 + F 52200 Cheumatopsyche sp F 97601 Corbicula fluminea 180 +52430 Ceratopsyche morosa group ΜI 97710 Dreissena polymorpha F 7 52510 Hydropsyche aerata ΜI 98600 Sphaerium sp F + 52570 Hydropsyche simulans ΜI + 53400 Protoptila sp 15 +No. Quantitative Taxa: Total Taxa; 78 32 F 5 + 53800 Hydroptila sp F No. Qualitative Taxa: 54100 Neotrichia sp + 70 ICI: 52 59100 Ceraclea sp ΜI Number of Organisms: Qual EPT: 1674 28 59407 Nectopsyche candida ΜI

Coll. Date:08/15/2022 RM:

21.50

River: Little Miami River

River Code:11-001

Location: dst. Polk Run Site ID: LM05 Sample: Taxa **CWH CWH** Taxa Code Taxa Tol. Qt./QL Taxa Code Taxa Taxa Tol. Qt./Ql. 01801 Turbellaria F 102 +68075 Psephenus herricki МІ + F 3 03000 Ectoprocta 68130 Helichus sp F 1 + 03360 Plumatella sp F 68601 Ancyronyx variegata F 03600 Oligochaeta Т 68708 Dubiraphia vittata group F 08200 Orconectes sp F 68901 Macronychus glabratus F 20 ++ 11014 Acentrella turbida ı 2 + 69400 Stenelmis sp F 11119 Plauditus dubius or P. virilis 74100 Simulium sp F 129 + 1 11130 Baetis intercalaris F 1168 +F 77120 Ablabesmyia mallochi + Paracloeodes minutus ΜI Ablabesmyia rhamphe group ΜT 11620 77130 30 + F 5 12200 Isonychia sp ΜI 77500 Conchapelopia sp ΜI 77750 Hayesomyia senata or F 20 13000 Leucrocuta sp Thienemannimyia norena F 24 +13400 Stenacron sp F 15 +77800 Helopelopia sp 16 + 13510 Maccaffertium exiguum ΜI F 78140 Labrundinia pilosella + F 5 + Stenonema femoratum 13521 78450 Nilotanypus fimbriatus F 10 + 8 + 13540 Maccaffertium mediopunctatum MI 78750 Rheopelopia paramaculipennis ΜI 15 5 + Maccaffertium pulchellum ΜI 13561 80310 Cardiocladius obscurus MI + 69 + 13570 Maccaffertium terminatum ΜI 81240 Nanocladius (N.) distinctus МТ 10 16700 Tricorythodes sp 28 + ΜI Tvetenia discoloripes group ΜI 15 +82220 17200 Caenis sp F F 82820 Cryptochironomus sp 18100 Anthopotamus sp ΜI + 83040 Dicrotendipes neomodestus F + F 21200 Calopteryx sp 83300 Glyptotendipes (G.) sp ΜT 5 F 21300 Hetaerina sp 1 + F 83400 Harnischia sp + Т 22001 Coenagrionidae 83820 Microtendipes "caelum" (sensu ΜI 5 + F 3 + 22300 Argia sp Simpson & Bode, 1980) F 24900 Gomphus sp + F 84450 Polypedilum (Uresipedilum) flavum 156 +25010 Hagenius brevistylus F 84460 Polypedilum (P.) fallax group F 5 ΜI 26700 Macromia sp + 84470 Polypedilum (P.) illinoense Т + 34715 Agnetina flavescens ı F 5 + 84540 Polypedilum (Tripodura) 48410 Corydalus cornutus 1 + ΜI scalaenum group 50315 Chimarra obscura ΜI 13 +84700 Stenochironomus sp F 34 51206 Cyrnellus fraternus 1 F F 85230 Cladotanytarsus mancus group + ΜI 4 + 51300 Neureclipsis sp 85625 Rheotanytarsus sp F 83 + 52200 Cheumatopsyche sp F 547 + 85821 Tanytarsus glabrescens group sp 7 F 5 + 52430 Ceratopsyche morosa group 255 +ΜI 85840 Tanytarsus sepp F + 53400 Protoptila sp ı F 10 +87540 Hemerodromia sp F 53800 Hydroptila sp 93900 Elimia sp МІ 11 +ΜI 10 + 54160 Ochrotrichia sp 96900 Ferrissia sp F 18 + 1 + 59407 Nectopsyche candida MI 97601 Corbicula fluminea F 59415 Nectopsyche exquisita ΜI + 98001 Pisidiidae 1 F 59570 Oecetis nocturna 99240 Lasmigona complanata МІ + 59580 Oecetis persimilis MI 59970 Petrophila sp 1 + МІ 65800 Berosus sp MT

Appendix Table B-5. Macroinvertebrate taxa list for the Little Miami River study area including historical data.

River Code:11-001 Site ID: LM05		River: Little Miami River				Coll. Date	21.50	
		Location: dst. Polk Run						
Taxa Code	Taxa		CWH Taxa Tol.	Qt./Ql.	Taxa Code	Таха	CWH Taxa Tol.	Qt./Ql.
No. Quantitative Taxa:		45	Total Taxa;	81	-			
No. Qualitative Taxa: 71		ICI:	52					
Number of Organisms: 2875 Qual EPT:		27						

River Code:11-001 River: Little Miami River Coll. Date:08/15/2022 RM: 18.50 Site ID: LM07 Location: Camargo Rd. Sample: Taxa **CWH CWH** Taxa Code Taxa Tol. Qt./QL Taxa Code Taxa Taxa Tol. Qt./Ql. 01801 Turbellaria F 33 + F 18 + 53800 Hydroptila sp F 03000 Ectoprocta 1 + 54160 Ochrotrichia sp ΜI + 03600 Oligochaeta Т 1 + 59100 Ceraclea sp ΜI 1 + 04660 Helobdella sp 59407 Nectopsyche candida MT MI + 04666 Helobdella papillata MT 59580 Oecetis persimilis ΜI + + 04901 Erpobdellidae MT 59724 Triaenodes injustus MI 05900 Lirceus sp MT 59970 Petrophila sp MI F МТ 06201 Hyalella azteca 65800 Berosus sp + + F Т 08200 Orconectes sp 67800 Tropisternus sp 11014 Acentrella turbida ı 68075 Psephenus herricki ΜI МІ 68130 Helichus sp F 11015 Acerpenna sp F 11118 Plauditus dubius MI + 68601 Ancyronyx variegata F 158 +F 11130 Baetis intercalaris 68708 Dubiraphia vittata group 11620 Paracloeodes minutus F 10 + MI 68901 Macronychus glabratus 11670 Procloeon viridoculare MI 69400 Stenelmis sp F + + 130 +12200 Isonychia sp 42 + 74100 Simulium sp F ΜI F 77120 Ablabesmyia mallochi 13000 Leucrocuta sp ΜI 77500 Conchapelopia sp F 8 13100 Nixe sp ΜI + 13400 Stenacron sp F 77750 Hayesomyia senata or F 16 + Thienemannimyia norena 13510 Maccaffertium exiguum ΜI 1 + F 78140 Labrundinia pilosella + F Stenonema femoratum 13521 + 78350 Meropelopia sp X F 1 + Maccaffertium mediopunctatum МІ 13540 F 32 78450 Nilotanypus fimbriatus 5 + 13561 Maccaffertium pulchellum ΜI 80310 Cardiocladius obscurus ΜI + 55 + ΜI 13570 Maccaffertium terminatum 80420 Cricotopus (C.) bicinctus Т МІ 12 +16700 Tricorythodes sp 8 81240 Nanocladius (N.) distinctus MΤ F 17200 Caenis sp F 82820 Cryptochironomus sp ΜI 18600 Ephemera sp + F 24 +83040 Dicrotendipes neomodestus 21001 Calopterygidae F 8 83820 Microtendipes "caelum" (sensu ΜI 21300 Hetaerina sp F + Simpson & Bode, 1980) 22001 Coenagrionidae Т 84155 Paralauterborniella nigrohalteralis F + F 22300 Argia sp 84450 Polypedilum (Uresipedilum) flavum F 331 +X ΜI 23905 Boyeria grafiana 84470 Polypedilum (P.) illinoense T F 24900 Gomphus sp 84520 Polypedilum (Tripodura) halterale МТ 55 F 25010 Hagenius brevistylus + group 34700 Agnetina capitata complex MI + F 16 + 84540 Polypedilum (Tripodura) 2 + 48410 Corydalus cornutus ΜI scalaenum group 10 + 50315 Chimarra obscura ΜI 39 84700 Stenochironomus sp F 10 +51300 Neureclipsis sp MI 85200 Cladotanytarsus sp 8 F 606 +52200 Cheumatopsyche sp 85230 Cladotanytarsus mancus group F + 361 + 52430 Ceratopsyche morosa group ΜI 213 + 85625 Rheotanytarsus sp F 13 52510 Hydropsyche aerata ΜI F 8 85821 Tanytarsus glabrescens group sp 7 52570 Hydropsyche simulans 2 MI F 85840 Tanytarsus sepp + 53400 Protoptila sp 50 + 87540 Hemerodromia sp F 2

Appendix Table B-5. Macroinvertebrate taxa list for the Little Miami River study area including historical data.

River Co	ode: 11-001 F	River: <i>Lit</i>	tle Miami River			Coll. Date:	08/15/2022 RM:	18.50
Site ID: LM07 Loc			cation: Camargo Rd.				:	
Taxa Code	Taxa		CWH Taxa Tol.	Qt./QI.	Taxa Code	Taxa	CWH Taxa Tol.	Qt./QI.
93200 Hyd	drobiidae		F	+				
93900 Elir	mia sp		MI	+				
95100 Physella sp		Т	+					
96900 Fer	rrissia sp		F	+				
97601 Corbicula fluminea		F	1					
97710 Dreissena polymorpha		F	+					
98600 Spl	haerium sp		F	+				
No. Qua	ntitative Taxa:	37	Total Taxa;	90	_			
No. Qualitative Taxa: 78		ICI:	48					
Number of Organisms: 2291		Qual EPT:	30					

River: Little Miami River

Coll. Date:08/15/2022 RM: 17.70

Site ID: LM08

Location: canoe access dst. SR126

Sample:

Site	D: LM08 Locatio	Location: canoe access dst. SR126				Sample:		
Taxa		CWH				CWH		
Code	Taxa	Taxa Tol	. Qt./Ql.	Code	Taxa	Taxa To	I. Qt./Q	
1801	Turbellaria	F	64 +	59407	Nectopsyche candida	MI	+	
3000	Ectoprocta	F	3	59415	Nectopsyche exquisita	MI	+	
4901	Erpobdellidae	МТ	+	59970	Petrophila sp	MI	+	
5800	Caecidotea sp	т	+	65800	Berosus sp	MT	+	
5900	Lirceus sp	МТ	+	68075	Psephenus herricki	MI	+	
6201	Hyalella azteca	F	+	68708	Dubiraphia vittata group	F	+	
6700	Crangonyx sp	МТ	+	68901	Macronychus glabratus	F	5 +	
8200	Orconectes sp	F	+	69400	Stenelmis sp	F	+	
1118	Plauditus dubius	МІ	4 +	74100	Simulium sp	F	1 +	
1120	Baetis flavistriga	F	+	77120	Ablabesmyia mallochi	F	+	
1130	Baetis intercalaris	F	14 +	77130	Ablabesmyia rhamphe group	МТ	+	
1620	Paracloeodes minutus	МІ	+	77470	Coelotanypus sp	Т	+	
2200	Isonychia sp	МІ	54 +	77500	Conchapelopia sp	F	8	
3000	Leucrocuta sp	МІ	+	77750	Hayesomyia senata or	F	8 +	
3400	Stenacron sp	F	+		Thienemannimyia norena			
3510	Maccaffertium exiguum	МІ	28 +	77800	Helopelopia sp	F	+	
3521	Stenonema femoratum	F	+	78450	Nilotanypus fimbriatus	F	4	
3540	Maccaffertium mediopunctatum	МІ	3 +	78655	Procladius (Holotanypus) sp	MT	+	
3561	Maccaffertium pulchellum	MI	5 +	80310	Cardiocladius obscurus	MI	8	
3570	Maccaffertium terminatum	MI	36 +	81240	Nanocladius (N.) distinctus	MT	23	
6700	Tricorythodes sp	MI	19 +	82730	Chironomus (C.) decorus group	Т	+	
8600	Ephemera sp	MI	+	82822	Cryptochironomus eminentia	F	+	
1200	Calopteryx sp	F	+	83000	Dicrotendipes sp	F	16	
1300	Hetaerina sp	F	+	83040		F	31 +	
2001	Coenagrionidae	Т	+		Dicrotendipes lucifer	MT	+	
2300	Argia sp	F	+	84020	Parachironomus carinatus	F	+	
3905	Boyeria grafiana	х мі	+	84155	Paralauterborniella nigrohalteralis	F	+	
3909	Boyeria vinosa	F	+	84450	Polypedilum (Uresipedilum) flavum	F	194 +	
4900	Gomphus sp	F	+	84470	Polypedilum (P.) illinoense	Т	+	
6700	Macromia sp	МІ	+	84520		MT	+	
8410	Corydalus cornutus	МІ	+		group	_	00	
0315	Chimarra obscura	MI	+		Stenochironomus sp	F	39	
1206	Cyrnellus fraternus	F	5 +		Cladotanytarsus sp	_	+	
1300	Neureclipsis sp	МІ	9 +		Rheotanytarsus sp	F	520 +	
1600	Polycentropus sp	МІ	+	85800	•	F	+	
2200	Cheumatopsyche sp	F	589 +	85840		F	+	
2430	Ceratopsyche morosa group	МІ	299 +		Elimia sp	MI T	+	
2510	Hydropsyche aerata	МІ	7			T	+	
2510	Hydropsyche aerata	МІ	+		Dreissena polymorpha	F	+	
2570	Hydropsyche simulans	МІ	6	98600	Sphaerium sp	F	+	
2801	Potamyia flava	МІ	1					
3400	Protoptila sp	1	13 +					
3800	Hydroptila sp	F	4 +					

Appendix Table B-5. Macroinvertebrate taxa list for the Little Miami River study area including historical data.

River Code:11-001 Site ID: LM08		River: Little Miami River Location: canoe access dst. SR126				Coll. Date	17.70	
Taxa Code	Taxa		CWH Taxa Tol.	Qt./Ql.	Taxa Code	Таха	CWH Taxa Tol.	Qt./Ql.
No. Quantitative Taxa:		31	Total Taxa;	81	-			
No. Qualitative Taxa: 71		ICI:	50					
Number of Organisms: 2020 Qual EPT:		25						

River Code:11-001 River: Little Miami River Coll. Date:08/16/2022 RM: 13.10 Site ID: LM09 Location: Wooster Pike- Milford Sample: Taxa **CWH CWH** Taxa Code Taxa Tol. Qt./QL Taxa Code Taxa Taxa Tol. Qt./Ql. 01801 Turbellaria F 61 +59407 Nectopsyche candida МІ + F 03000 Ectoprocta 1 + 59970 Petrophila sp ΜI 35 + 03600 Oligochaeta Т 60900 Peltodytes sp МТ 04510 Hirudinida MT 65800 Berosus sp MT 06201 Hyalella azteca F 68601 Ancyronyx variegata F + + 08200 Orconectes sp F 68708 Dubiraphia vittata group F 68901 Macronychus glabratus F 8 + 11014 Acentrella turbida 1 11118 Plauditus dubius ΜI 40 +F 2 + 69400 Stenelmis sp 11130 Baetis intercalaris F 190 +71900 Tipula sp F ΜT 11670 Procloeon viridoculare ΜI 72501 Culicidae + МІ 18 + F 1 + 12200 Isonychia sp 74100 Simulium sp 77120 Ablabesmyia mallochi F 13000 Leucrocuta sp MI 13100 Nixe sp ΜI 77130 Ablabesmyia rhamphe group MΤ F Т 13400 Stenacron sp 77470 Coelotanypus sp 7 + 13510 Maccaffertium exiguum MI 11 +77500 Conchapelopia sp F 7 + Stenonema femoratum F 77750 Hayesomyia senata or F 13521 Thienemannimyia norena 13540 Maccaffertium mediopunctatum ΜI 18 + 77800 Helopelopia sp F 13550 Maccaffertium mexicanum + ΜI + F 17 integrum 78450 Nilotanypus fimbriatus 79 + 13561 Maccaffertium pulchellum ΜI 78655 Procladius (Holotanypus) sp ΜT ΜI 77 +ΜI 29 +13570 Maccaffertium terminatum 80310 Cardiocladius obscurus ΜI 29 +F 16700 Tricorythodes sp 80410 Cricotopus (C.) sp 29 F 81240 Nanocladius (N.) distinctus 17200 Caenis sp + MΤ ΜI 18100 Anthopotamus sp 82100 Thienemanniella sp 18600 Ephemera sp 82220 Tvetenia discoloripes group ΜI ΜI + + F F 21300 Hetaerina sp 83040 Dicrotendipes neomodestus 29 + Т ΜI 22001 Coenagrionidae 83820 Microtendipes "caelum" (sensu Simpson & Bode, 1980) F 22300 Argia sp F 271 +84450 Polypedilum (Uresipedilum) flavum 26700 Macromia sp ΜI 84700 Stenochironomus sp F 15 34715 Agnetina flavescens I 85200 Cladotanytarsus sp + 44501 Corixidae F 85625 Rheotanytarsus sp F 498 + 48410 Corydalus cornutus ΜI F 85821 Tanytarsus glabrescens group sp 7 + 1 + 50315 Chimarra obscura ΜI 87540 Hemerodromia sp F 8 ΜI 51050 Cernotina sp 93900 Elimia sp ΜI + 2 + 51300 Neureclipsis sp МІ 95100 Physella sp Т 52200 Cheumatopsyche sp F 1080 +96900 Ferrissia sp F 513 +52430 Ceratopsyche morosa group ΜI 97601 Corbicula fluminea F + 1 52510 Hydropsyche aerata MI 98600 Sphaerium sp F ΜI 1 52560 Hydropsyche orris 1 52801 Potamyia flava ΜI 53400 Protoptila sp ı + F 25 + 53800 Hydroptila sp 9 59100 Ceraclea sp ΜI

Appendix Table B-5. Macroinvertebrate taxa list for the Little Miami River study area including historical data.

River Code:	11-001 F	River: <i>Lit</i>	tle Miami River			Coll. Date	:08/16/2022 RM:	13.10	
Site ID: LM	09	Locatio	n: <i>Wooster Pike</i>	e- Milford		Sam			
Taxa Code	Taxa		CWH Taxa Tol.	Qt./QI.	Taxa Code	Таха	CWH Taxa Tol.	Qt./Ql.	
No. Quantit	ative Taxa:	33	Total Taxa;	79	-				
No. Qualitat	tive Taxa:	71	ICI:	52					
Number of (Organisms:	3113	Qual EPT:	27					

Coll. Date:08/16/2022 RM:

10.90

River: Little Miami River

Site ID: LM11 Location: intersection of Mt. Carmel and Round Bottom Rd. Sample: Taxa **CWH** Taxa **CWH** Code Taxa Tol. Qt./QL Taxa Code Taxa Taxa Tol. Qt./Ql. 01801 Turbellaria F 102 +59970 Petrophila sp ΜI + F 03000 Ectoprocta 65800 Berosus sp МТ 03360 Plumatella sp F 68075 Psephenus herricki ΜI 03600 Oligochaeta Т 68130 Helichus sp F 04683 Placobdella multilineata F 68601 Ancyronyx variegata F 3 + + 04935 Erpobdella punctata punctata MT 68708 Dubiraphia vittata group F 68901 Macronychus glabratus F 05800 Caecidotea sp Т 1 + F F 06201 Hyalella azteca 69400 Stenelmis sp + + 72501 Culicidae ΜT 06700 Crangonyx sp MT F F 08200 Orconectes sp 74100 Simulium sp 1 + ı F 11014 Acentrella turbida 77120 Ablabesmyia mallochi 11015 Acerpenna sp MI 77130 Ablabesmyia rhamphe group MΤ + 11118 Plauditus dubius ΜI 77470 Coelotanypus sp Т F 72 + F 15 + 11130 Baetis intercalaris 77750 Hayesomyia senata or Thienemannimyia norena 11651 Procloeon sp (w/o hindwing pads) MI + F 78100 Labrundinia sp 89 + 12200 Isonychia sp MI 78655 Procladius (Holotanypus) sp MT 13000 Leucrocuta sp ΜI 80310 Cardiocladius obscurus ΜI 13100 Nixe sp + ΜI 81240 Nanocladius (N.) distinctus МТ 13400 Stenacron sp F 5 82220 Tvetenia discoloripes group ΜI 14 +13510 Maccaffertium exiguum ΜI Т 82730 Chironomus (C.) decorus group + F Stenonema femoratum 13521 + F 82820 Cryptochironomus sp 3 + Maccaffertium mediopunctatum МІ 13540 F 83040 Dicrotendipes neomodestus 49 + 13561 Maccaffertium pulchellum ΜI 83820 Microtendipes "caelum" (sensu МΙ 62 + ΜI 13570 Maccaffertium terminatum Simpson & Bode, 1980) 16700 Tricorythodes sp ΜI 20 +F 84450 Polypedilum (Uresipedilum) flavum 167 +F 17200 Caenis sp 84470 Polypedilum (P.) illinoense т ΜI 18600 Ephemera sp F 5 84540 Polypedilum (Tripodura) 21300 Hetaerina sp F scalaenum group 22001 Coenagrionidae Т + 20 84700 Stenochironomus sp F 22300 Argia sp F 85625 Rheotanytarsus sp F 218 +24820 Gomphurus externus ΜI 85821 Tanytarsus glabrescens group sp 7 F 5 ΜI 26700 Macromia sp 85840 Tanytarsus sepp F ΜI 4 + 48410 Corydalus cornutus 93200 Hydrobiidae F 50315 Chimarra obscura 3 + ΜI 93900 Elimia sp ΜI 34 +3 + 51300 Neureclipsis sp MI F 97601 Corbicula fluminea + F 893 + 52200 Cheumatopsyche sp 98001 Pisidiidae + 52 + Ceratopsyche morosa group ΜI 1 52510 Hydropsyche aerata MI No. Quantitative Taxa: Total Taxa: 26 53400 Protoptila sp 1 + No. Qualitative Taxa: 72 ICI: 42 F 53800 Hydroptila sp Number of Organisms: 1842 Qual EPT: 26 59140 Ceraclea maculata ΜI + 59407 Nectopsyche candida MI 59724 Triaenodes injustus

River Code:11-001

River	Code: 11-001 River: <i>Litt</i>	le Miami F	River			Coll	. Date:08/1	6/2022 RN	/ 1:	8.1
Site I	D: LM12 Location	า: <i>Newto</i> ผ	ın Rd.					Samp	ole:	
Taxa		CWH			Taxa			CWH		
Code	Taxa	Taxa T	ol.	Qt./QI.	Code	Таха		Taxa To	ol. Q	t./QI.
01801	Turbellaria		F	33	54160	Ochrotrichia sp		MI		+
03000	Ectoprocta		F	2 +	59140	Ceraclea maculata		МІ	2	+
03600	Oligochaeta		Т	1	59407	Nectopsyche candida		МІ		+
04935	Erpobdella punctata punctata	М	Т	+	59970	Petrophila sp		МІ	18	+
05900	Lirceus sp	М	Т	+	65800	Berosus sp		MT	16	+
06700	Crangonyx sp	М	Т	+	68075	Psephenus herricki		МІ		+
08200	Orconectes sp		F	+	68601	Ancyronyx variegata		F		+
11014	Acentrella turbida		I	+	68708	Dubiraphia vittata grou	р	F		+
11118	Plauditus dubius	N	ΛI	1 +	69400	Stenelmis sp		F	1	+
11130	Baetis intercalaris		F 1	27 +	72501	Culicidae		MT		+
11620	Paracloeodes minutus	N	ΛI	+	74100	Simulium sp		F		+
12200	Isonychia sp	N	ΛI	90 +	77500	Conchapelopia sp		F	37	
13000	Leucrocuta sp	N	ΛI	+	78100	Labrundinia sp		F		+
13100	Nixe sp	N	ΛI	+	78450	Nilotanypus fimbriatus		F	28	
13400	Stenacron sp		F	1 +	78655	Procladius (Holotanypu	ıs) sp	MT		+
13510	Maccaffertium exiguum	N	ΛI	6	78750	Rheopelopia paramacu	ılipennis	MI	12	+
13521	Stenonema femoratum		F	+	80310	Cardiocladius obscurus	3	MI		+
13540	Maccaffertium mediopunctatum	N	ΛI	2 +	82100	Thienemanniella sp			12	+
13550	Maccaffertium mexicanum	N	ΛI	+	82220	Tvetenia discoloripes g	roup	MI	12	
	integrum				83050	Dicrotendipes lucifer		MT	24	+
13561	Maccaffertium pulchellum	N		58 +	83300	Glyptotendipes (G.) sp		MT	12	+
13570	Maccaffertium terminatum	N		95 +	83820	Microtendipes "caelum	" (sensu	MI		+
16700	Tricorythodes sp	N	ΛI	43 +		Simpson & Bode, 1980))			
21300	Hetaerina sp		F	+		Polypedilum (Uresiped		F	330	+
22001	Coenagrionidae		Т	+	84540	Polypedilum (Tripodura	1)	F		+
22300	Argia sp		F	1	0.4700	scalaenum group		_	0.4	
24900	Gomphus sp		F	+		Stenochironomus sp		F	24	
26700	Macromia sp	N	ΛI	+	85265	Cladotanytarsus vande sp 5	rwuipi group	MI		+
27400	Neurocordulia sp		F	+	85625	Rheotanytarsus sp		F	783	+
34700	Agnetina capitata complex	N	ΛI	+	85821	Tanytarsus glabrescen	s aroup sp 7	F	12	
42700	Belostoma sp		Т	+	93900		o g. oup op .	MI		+
48410	Corydalus cornutus	N	ΛI	1	95100	Physella sp		т		+
50315	Chimarra obscura	N	ΛI	2 +	97601	Corbicula fluminea		· F		+
51206	Cyrnellus fraternus		F	2		Dreissena polymorpha		F		+
51300	Neureclipsis sp			20 +		Sphaerium sp		F		+
52200	Cheumatopsyche sp					, 		<u> </u>		
52430	Ceratopsyche morosa group			75 +	No. C	Quantitative Taxa:	39	Total Taxa	a: 75	
52520	Hydropsyche bidens		/II	3						
52560	Hydropsyche orris		AI	1		Qualitative Taxa:	60	IC		
52570	Hydropsyche simulans		/II	1	Numl	per of Organisms:	3413	Qual EP1	T: 24	
52801	Potamyia flava	N	AI.	1						
53400	Protoptila sp		I	+						
53800	Hydroptila sp		F	16 +						

Coll. Date:08/17/2022 RM:

6.83

River: Little Miami River

River Code:11-001 Site ID: LM13 Location: RR Trestle-Mariemont Sample: Taxa **CWH CWH** Taxa Code Taxa Tol. Qt./QL Taxa Code Taxa Taxa Tol. Qt./Ql. 01801 Turbellaria F 265 +54160 Ochrotrichia sp ΜI + F 03000 Ectoprocta 1 + 59100 Ceraclea sp ΜI 03451 Urnatella gracilis ΜI 59407 Nectopsyche candida ΜI Т 59724 Triaenodes injustus 03600 Oligochaeta MI 05800 Caecidotea sp Т 59970 Petrophila sp ΜI + 06700 Crangonyx sp MT 65800 Berosus sp МТ F 08200 Orconectes sp 68075 Psephenus herricki MI 11014 Acentrella turbida 68130 Helichus sp F ı + + Plauditus dubius or P. virilis F 11119 ı 68601 Ancyronyx variegata F 343 + F 11130 Baetis intercalaris 68708 Dubiraphia vittata group 11670 Procloeon viridoculare МІ F 11 + 68901 Macronychus glabratus 154 +F 9 + 12200 Isonychia sp MI 69400 Stenelmis sp F 9 + 13000 Leucrocuta sp ΜI 74100 Simulium sp F 13100 Nixe sp MI 77120 Ablabesmyia mallochi + 13400 Stenacron sp F 77750 Hayesomyia senata or F 40 + + Thienemannimyia norena 13510 Maccaffertium exiguum ΜI 111 +F 78100 Labrundinia sp + 4 + 13540 Maccaffertium mediopunctatum ΜI 78450 Nilotanypus fimbriatus F 40 13550 Maccaffertium mexicanum 29 ΜI integrum 78655 Procladius (Holotanypus) sp МТ + 36 + 13561 Maccaffertium pulchellum ΜI 80310 Cardiocladius obscurus ΜI + ΜI 145 +Т 13570 Maccaffertium terminatum 80420 Cricotopus (C.) bicinctus + ΜI 25 +ΜI 6 16700 Tricorythodes sp 81060 Lopescladius sp F 18600 Ephemera sp ΜI + 82820 Cryptochironomus sp + 83050 Dicrotendipes lucifer F МТ 6 18700 Hexagenia sp 21300 Hetaerina sp F 83820 Microtendipes "caelum" (sensu MI 6 + Simpson & Bode, 1980) Т 22001 Coenagrionidae F 84155 Paralauterborniella nigrohalteralis + F 22300 Argia sp F 6 84300 Phaenopsectra obediens group 26700 Macromia sp ΜI F 68 + 84450 Polypedilum (Uresipedilum) flavum 27400 Neurocordulia sp F 6 84460 Polypedilum (P.) fallax group F 34715 Agnetina flavescens ı + 84470 Polypedilum (P.) illinoense Т + 48410 Corydalus cornutus 2 + МІ 84540 Polypedilum (Tripodura) F 62 +50315 Chimarra obscura ΜI 1 + scalaenum group 2 51050 Cernotina sp ΜI 84700 Stenochironomus sp F 11 3 + ΜI 51300 Neureclipsis sp 85625 Rheotanytarsus sp F 244 +550 + 51600 Polycentropus sp МІ F 87540 Hemerodromia sp + 52200 Cheumatopsyche sp F 116 +МІ 8 + 93900 Elimia sp 52430 Ceratopsyche morosa group MI F 96900 Ferrissia sp + 2 52520 Hydropsyche bidens MI 97601 Corbicula fluminea F + ΜI 4 52560 Hydropsyche orris 98600 Sphaerium sp F + 2 + 52570 Hydropsyche simulans ΜI ΜI 52801 Potamyia flava 53400 Protoptila sp ı 53800 Hydroptila sp F 34 +

Appendix Table B-5. Macroinvertebrate taxa list for the Little Miami River study area including historical data.

River Coo	de: 11-001 F	River: <i>Lit</i>	tle Miami River			Coll. Date	08/17/2022 RM:	6.83	
Site ID: L	M13	Locatio	n: RR Trestle-M	// Aariemont			Sample:		
Taxa Code	Taxa		CWH Taxa Tol.	Qt./Ql.	Taxa Code	Taxa	CWH Taxa Tol.	Qt./Ql.	
No. Quar	ntitative Taxa:	35	Total Taxa;	79	-				
No. Qualitative Taxa: 67 ICI:		54							
Number o	of Organisms:	2361	Qual EPT:	29					

River Code:11-001 River: Little Miami River Coll. Date:08/17/2022 RM: 4.10 Site ID: LM15 Location: Ust. Duck Creek Sample: Taxa **CWH CWH** Taxa Code Taxa Tol. Qt./QL Taxa Code Taxa Taxa Tol. Qt./Ql. 01801 Turbellaria F 13 +69400 Stenelmis sp F 3 + F 03360 Plumatella sp 6 74100 Simulium sp F 266 + 03600 Oligochaeta Т 77120 Ablabesmyia mallochi F 05800 Caecidotea sp Т 77130 Ablabesmyia rhamphe group МТ 11014 Acentrella turbida ı 30 +77750 Hayesomyia senata or F 19 +Thienemannimyia norena 11119 Plauditus dubius or P. virilis 88 + 78140 Labrundinia pilosella F + F 405 + 11130 Baetis intercalaris F 16 78450 Nilotanypus fimbriatus 11620 Paracloeodes minutus МΙ + 78655 Procladius (Holotanypus) sp МТ + 152 +12200 Isonychia sp ΜI 78750 Rheopelopia paramaculipennis MI + 13000 Leucrocuta sp ΜI F 80410 Cricotopus (C.) sp 13100 Nixe sp ΜI + 80440 Cricotopus (C.) trifascia F F 13400 Stenacron sp + 32 + 82130 Thienemanniella similis ΜI 290 + 13510 Maccaffertium exiguum ΜI 9 82220 Tvetenia discoloripes group ΜI F 2 13521 Stenonema femoratum F 82820 Cryptochironomus sp 13540 Maccaffertium mediopunctatum MI + F 83040 Dicrotendipes neomodestus 38 13550 Maccaffertium mexicanum ΜI 83820 Microtendipes "caelum" (sensu 9 integrum ΜI Simpson & Bode, 1980) 13570 Maccaffertium terminatum 2 + ΜI 9 + F 84300 Phaenopsectra obediens group 30 + 16700 Tricorythodes sp ΜI 37 + 84450 Polypedilum (Uresipedilum) flavum F 18100 Anthopotamus sp ΜI 84470 Polypedilum (P.) illinoense Т + ΜI 18600 Ephemera sp 84540 Polypedilum (Tripodura) F Т 22001 Coenagrionidae scalaenum group F 22300 Argia sp 84612 Saetheria tylus F + F 24900 Gomphus sp F 9 84700 Stenochironomus sp F 27400 Neurocordulia sp + 84800 Tribelos jucundum ΜT 34715 Agnetina flavescens ı 85264 Cladotanytarsus vanderwulpi group МІ 25 + ΜI 50315 Chimarra obscura sp 4 2 + 51300 Neureclipsis sp MI F 85500 Paratanytarsus sp 52200 Cheumatopsyche sp F 1596 +85615 Rheotanytarsus pellucidus 9 MI 52430 Ceratopsyche morosa group 496 + ΜI F 642 +85625 Rheotanytarsus sp 19 52520 Hydropsyche bidens ΜI 26 + 87540 Hemerodromia sp F 52570 Hydropsyche simulans ΜI 16 95100 Physella sp Т + 5 + 52801 Potamyia flava ΜI 53400 Protoptila sp 1 + Total Taxa: No. Quantitative Taxa: 35 71 F 56 + 53800 Hydroptila sp No. Qualitative Taxa: 58 60 ICI: 59100 Ceraclea sp ΜI Number of Organisms: 4367 Qual EPT: 24 3 59140 Ceraclea maculata ΜI 59407 Nectopsyche candida MI + ΜI 6 + 59970 Petrophila sp 68075 Psephenus herricki ΜI F 68130 Helichus sp F 68601 Ancyronyx variegata 68901 Macronychus glabratus F 1 +

River Code:11-001 River: Little Miami River Coll. Date:08/18/2022 RM: 3.70 Site ID: LM16A Location: Dst. Duck Creek Sample: Taxa **CWH CWH** Taxa Code Taxa Tol. Qt./QI. Taxa Code Taxa Taxa Tol. Qt./Ql. 01801 Turbellaria F 42 + 77100 Ablabesmyia sp 48 F 03000 Ectoprocta 4 77120 Ablabesmyia mallochi F 72 + 03600 Oligochaeta Т 59 + 77130 Ablabesmyia rhamphe group МТ 04660 Helobdella sp 8 77500 Conchapelopia sp F 24 MT 04935 Erpobdella punctata punctata MT 3 77750 Hayesomyia senata or F 144 +Thienemannimyia norena 06700 Crangonyx sp MT 78100 Labrundinia sp F + F 08601 Hydrachnidia + 78450 Nilotanypus fimbriatus F 16 11620 Paracloeodes minutus ΜI + 78655 Procladius (Holotanypus) sp МТ + 6 12200 Isonychia sp ΜI 72 + 78750 Rheopelopia paramaculipennis ΜI 13000 Leucrocuta sp ΜI 80410 Cricotopus (C.) sp F 48 13100 Nixe sp ΜI 82100 Thienemanniella sp 24 F 13400 Stenacron sp F 82822 Cryptochironomus eminentia 4 13510 Maccaffertium exiguum ΜI F 289 +83040 Dicrotendipes neomodestus 13550 Maccaffertium mexicanum MI 83300 Glyptotendipes (G.) sp ΜT 24 integrum 8 + 48 13561 Maccaffertium pulchellum ΜI 83820 Microtendipes "caelum" (sensu ΜI Simpson & Bode, 1980) 13570 Maccaffertium terminatum 68 MI 84155 Paralauterborniella nigrohalteralis F 16700 Tricorythodes sp 60 + ΜI 84210 Paratendipes albimanus or P. F + 17200 Caenis sp F duplicatus 18100 Anthopotamus sp ΜI 84450 Polypedilum (Uresipedilum) flavum F 193 ΜI 18600 Ephemera sp 84470 Polypedilum (P.) illinoense T + F 18700 Hexagenia sp ΜT 84520 Polypedilum (Tripodura) halterale + 22001 Coenagrionidae Т group F 8 + 22300 Argia sp 84540 Polypedilum (Tripodura) F 96 + F 24900 Gomphus sp + scalaenum group 26700 Macromia sp ΜI 84700 Stenochironomus sp F 241 +F 43570 Neoplea sp F 24 84960 Pseudochironomus sp 51206 Cyrnellus fraternus F 8 + 85265 Cladotanytarsus vanderwulpi group МΙ + 2 sp 5 51300 Neureclipsis sp ΜI 1132 F 52200 Cheumatopsyche sp F 146 +85625 Rheotanytarsus sp 17 F 52430 Ceratopsyche morosa group ΜI 85800 Tanytarsus sp + 48 52520 Hydropsyche bidens ΜI 2 85840 Tanytarsus sepp F 3 F 2 87540 Hemerodromia sp 52570 Hydropsyche simulans ΜI 10 95100 Physella sp 8 Т 53400 Protoptila sp ı F 17 +96900 Ferrissia sp 53800 Hydroptila sp F + 8 59140 Ceraclea maculata ΜI 1 + No. Quantitative Taxa: Total Taxa: 59407 Nectopsyche candida ΜI 44 72 68130 Helichus sp F 1 No. Qualitative Taxa: 40 45 ICI: F 1 + 68601 Ancyronyx variegata Number of Organisms: Qual EPT: 3062 15 F 15 68901 Macronychus glabratus F 8 + 69400 Stenelmis sp 72501 Culicidae MT 74100 Simulium sp F

River: Little Miami River River Code:11-001 Coll. Date:08/18/2022 RM: 3.50 Location: dst. Beechmont Ave. Site ID: LM16 Sample: Taxa **CWH CWH** Taxa Code Taxa Tol. Qt./QL Taxa Code Taxa Taxa Tol. Qt./Ql. 01801 Turbellaria F 100 +67800 Tropisternus sp Т + F 03000 Ectoprocta 68075 Psephenus herricki ΜI 03600 Oligochaeta Т 34 +68601 Ancyronyx variegata F 1 + 04660 Helobdella sp 1 + 68901 Macronychus glabratus F 16 +MT 04901 Erpobdellidae MT 69400 Stenelmis sp F 65 ++ 06201 Hyalella azteca F 72501 Culicidae МТ 06700 Crangonyx sp MT 74100 Simulium sp F 353 +F 8 F 08601 Hydrachnidia 77120 Ablabesmyia mallochi + Acentrella turbida 77130 Ablabesmyia rhamphe group ΜT 11014 Т Plauditus dubius or P. virilis ı 77470 Coelotanypus sp 11130 Baetis intercalaris F 193 +F 227 +77750 Hayesomyia senata or Thienemannimyia norena 11620 Paracloeodes minutus MI F 78100 Labrundinia sp 90 + 12200 Isonychia sp ΜI F 16 78450 Nilotanypus fimbriatus 13000 Leucrocuta sp MI ΜT 78655 Procladius (Holotanypus) sp 13100 Nixe sp ΜI + 76 78750 Rheopelopia paramaculipennis ΜI 13400 Stenacron sp F 80410 Cricotopus (C.) sp F + 13510 Maccaffertium exiguum 8 + ΜI 81240 Nanocladius (N.) distinctus МТ 25 +Stenonema femoratum F + 13521 82600 Axarus sp F 13561 Maccaffertium pulchellum 1 + ΜI Т 82730 Chironomus (C.) decorus group 94 + 13570 Maccaffertium terminatum ΜI F 83040 Dicrotendipes neomodestus 73 + 16700 Tricorythodes sp MI 83050 Dicrotendipes lucifer ΜT 17200 Caenis sp F + 83051 Dicrotendipes simpsoni Т Т 22001 Coenagrionidae 84020 Parachironomus carinatus F F 22300 Argia sp 84210 Paratendipes albimanus or P. F + F 23909 Boyeria vinosa duplicatus F 1 24900 Gomphus sp 84450 Polypedilum (Uresipedilum) flavum F 479 + F 27400 Neurocordulia sp + F 126 +84540 Polypedilum (Tripodura) 34715 Agnetina flavescens 1 scalaenum group 42700 Belostoma sp Т + 84612 Saetheria tylus F + Chimarra aterrima ΜI 84700 Stenochironomus sp F 76 50315 Chimarra obscura 50 + ΜI F 1664 +85625 Rheotanytarsus sp 51300 Neureclipsis sp ΜI 87540 Hemerodromia sp F 8 F 1290 +52200 Cheumatopsyche sp 95100 Physella sp Т + 173 +52430 Ceratopsyche morosa group ΜI 96120 Menetus (Micromenetus) dilatatus МТ + 29 52560 Hydropsyche orris МІ F 98600 Sphaerium sp + ΜI 27 52801 Potamyia flava 53400 Protoptila sp No. Quantitative Taxa: Total Taxa; 31 76 F 16 + 53800 Hydroptila sp No. Qualitative Taxa: ICI: 42 68 F 54100 Neotrichia sp + Number of Organisms: 5321 Qual EPT: 59140 Ceraclea maculata ΜI 59407 Nectopsyche candida ΜI 59970 Petrophila sp 1 + MI 65800 Berosus sp MT

Appendix Table B-5. Macroinvertebrate taxa list for the Little Miami River study area including historical data.

River Code:11-002	River	: Clough Creek			Coll. Date	08/09/2020 RM:	0.60
Site ID: LM98	Lo	cation: Beechmont A	Ave. and E	Elstun Rd.		Sample:	
Taxa Code Taxa 11130 Baetis intercalari		CWH Taxa Tol. F	Qt./Ql.	Taxa Code	Таха	CWH Taxa Tol. Qt	i./QI.
No. Quantitative Ta	•	Total Taxa;		-			
No. Qualitative Taxa: Number of Organisms:		ICI: Qual EPT:	G 11				

Appendix Table B-5. Macroinvertebrate taxa list for the Little Miami River study area including historical data.

River Code	e: 11-002 Riv	er: Clough Creek			Coll. Date:	08/09/2022 RM: 3.
Site ID: LN	//95	ocation: adj. Clough	Plke			Sample:
Taxa Code	Taxa	CWH Taxa Tol.	Qt./Ql.	Taxa Code	Taxa	CWH Taxa Tol. Qt./Ql.
01801 Turbe	ellaria	F	+			
03600 Oligo	chaeta	Т	+			
05900 Lirce	us sp	МТ	+			
11120 Baetis	s flavistriga	F	+			
11130 Baetis	s intercalaris	F	+			
21001 Calop	oterygidae	F	+			
50301 Chim	arra aterrima	MI	+			
51250 Holod	centropus sp	F	+			
52200 Cheu	matopsyche sp	F	+			
52430 Cerat	opsyche morosa gr	oup MI	+			
52530 Hydro	opsyche depravata (group F	+			
68075 Psepl	henus herricki	MI	+			
71900 Tipula	a sp	F	+			
74100 Simul	lium sp	F	+			
77120 Ablab	esmyia mallochi	F	+			
77500 Conc	hapelopia sp	F	+			
83840 Micro	tendipes pedellus g	roup F	+			
93200 Hydro	obiidae	F	+			
95100 Physe	ella sp	Т	+			
No. Quant	itative Taxa:	0 Total Taxa;	19	-		
No. Qualit	ative Taxa:	19 ICI:	MG			
Number of	f Organisms:	0 Qual EPT:	7			

	Code: 11-002 River: <i>Clou</i>	ıgh Creek			Coll. Date:08/09/2022 RM:			
	D: LM98 Location	: Beechmont /	Ave. and E	Istun Rd.		Sample:		
Taxa		CWH		Taxa		CWH		
Code	Taxa	Taxa Tol.	Qt./QI.	Code	Taxa	Taxa Tol.	Qt./Ql.	
01801	Turbellaria	F	+					
03600	Oligochaeta	Т	+					
04666	Helobdella papillata	MT	+					
11120	Baetis flavistriga	F	+					
13521	Stenonema femoratum	F	+					
17200	Caenis sp	F	+					
22001	Coenagrionidae	Т	+					
26600	Didymops transversa	MT	+					
27307	Epitheca (Epicordulia) princeps	MT	+					
50301	Chimarra aterrima	MI	+					
50315	Chimarra obscura	MI	+					
51250	Holocentropus sp	F	+					
52200	Cheumatopsyche sp	F	+					
52430	Ceratopsyche morosa group	MI	+					
52530	Hydropsyche depravata group	F	+					
53501	Hydroptilidae	F	+					
59970	Petrophila sp	MI	+					
60900	Peltodytes sp	МТ	+					
68075	Psephenus herricki	MI	+					
68708	Dubiraphia vittata group	F	+					
39400	Stenelmis sp	F	+					
70501	Tipulidae		+					
71300	Limonia sp	F	+					
71900	Tipula sp	F	+					
74100	Simulium sp	F	+					
77120	Ablabesmyia mallochi	F	+					
77800	Helopelopia sp	F	+					
82820	Cryptochironomus sp	F	+					
83820	Microtendipes "caelum" (sensu Simpson & Bode, 1980)	МІ	+					
34300	Phaenopsectra obediens group	F	+					
84450	Polypedilum (Uresipedilum) flavum	F	+					
84470	Polypedilum (P.) illinoense	Т	+					
85260	Cladotanytarsus vanderwulpi group)	+					
35625	Rheotanytarsus sp	F	+					
95100	Physella sp	Т	+					
No. C	Quantitative Taxa: 0	Total Taxa;	35	_				
No. C	Qualitative Taxa: 35	ICI:	G					
	ber of Organisms: 0	Qual EPT:	11					

Appendix Table B-5. Macroinvertebrate taxa list for the Little Miami River study area including historical data.

River	Code: 11-004 River:	Duck Creek			Coll. Date:	06/29/2022 RM:	6.10
Site II	D: LM71 Loca	tion: <i>Norwood/Ha</i>	rris Ave.			Sample:	
Taxa		CWH		Taxa		CWH	
Code	Taxa	Taxa Tol.	Qt./Ql.	Code	Таха	Taxa Tol.	Qt./QI.
04664	Helobdella stagnalis	т	+				
04985	Barbronia weberi	MT	+				
77001	Tanypodinae		+				
78655	Procladius (Holotanypus) sp	MT	+				
80410	Cricotopus (C.) sp	F	+				
80430	Cricotopus (C.) tremulus group	MT	+				
80510	Cricotopus (Isocladius) sylvest group	ris T	+				
82710	Chironomus (C.) sp	MT	+				
82820	Cryptochironomus sp	F	+				
84470	Polypedilum (P.) illinoense	т	+				
84540	Polypedilum (Tripodura) scalaenum group	F	+				
No. Q	uantitative Taxa: 0	Total Taxa;	11	_			
No. Q	ualitative Taxa: 11	ICI:	VP				
Numb	er of Organisms: 0	Qual EPT:	0				

Appendix Table B-5. Macroinvertebrate taxa list for the Little Miami River study area including historical data.

River	Code: 11-004 River: <i>Duc</i>	k Creek			Coll. Date	06/29/2022 RM:	5.14
Site II	D: LM72 Location	: Duck Creek	Rd.			Sample:	
Taxa Code	Таха	CWH Taxa Tol.	Qt./QI.	Taxa Code	Taxa	CWH Taxa Tol.	Qt./Ql.
01801	Turbellaria	F	+				
03600	Oligochaeta	Т	+				
04664	Helobdella stagnalis	т	+				
04985	Barbronia weberi	MT	+				
05900	Lirceus sp	MT	+				
11120	Baetis flavistriga	F	+				
11130	Baetis intercalaris	F	+				
23600	Aeshna sp	MT	+				
53501	Hydroptilidae	F	+				
69400	Stenelmis sp	F	+				
74650	Atrichopogon sp	F	+				
77500	Conchapelopia sp	F	+				
80420	Cricotopus (C.) bicinctus	Т	+				
80430	Cricotopus (C.) tremulus group	MT	+				
80510	Cricotopus (Isocladius) sylvestris group	Т	+				
82710	Chironomus (C.) sp	MT	+				
84450	Polypedilum (Uresipedilum) flavum	F	+				
84470	Polypedilum (P.) illinoense	Т	+				
No. C	Quantitative Taxa: 0	Total Taxa;	18	_			
No. G	Qualitative Taxa: 18	ICI:	Р				

Appendix Table B-5. Macroinvertebrate taxa list for the Little Miami River study area including historical data.

River	Code: 11-004 River:	Duck Creek			Coll. Date	:06/30/2022 RM:	4.58
Site II	D: LM73 Loc	ation: <i>adj. Steel Pl</i>	ace			Sample:	
Taxa		CWH		Taxa		CWH	
Code	Taxa	Taxa Tol.	Qt./QI.	Code	Taxa	Taxa Tol.	Qt./QI.
01801	Turbellaria	F	+				
	Oligochaeta	т	+				
05900	Lirceus sp	MT	+				
11120	Baetis flavistriga	F	+				
11130	Baetis intercalaris	F	+				
45400	Trichocorixa sp	MT	+				
52200	Cheumatopsyche sp	F	+				
52530	Hydropsyche depravata grou	F	+				
53800	Hydroptila sp	F	+				
74100	Simulium sp	F	+				
77500	Conchapelopia sp	F	+				
80420	Cricotopus (C.) bicinctus	т	+				
80430	Cricotopus (C.) tremulus grou	up MT	+				
80440	Cricotopus (C.) trifascia	F	+				
84450	Polypedilum (Uresipedilum) f	lavum F	+				
84470	Polypedilum (P.) illinoense	Т	+				
84960	Pseudochironomus sp	F	+				
No. Q	uantitative Taxa: 0	Total Taxa;	17	_			
No. Q	ualitative Taxa: 17	ICI:	F				
	per of Organisms: 0	Ougl EDT:					

Number of Organisms: 0 Qual EPT: 5

Appendix Table B-5. Macroinvertebrate taxa list for the Little Miami River study area including historical data.

River	Code: 11-004 River: <i>Dud</i>	k Creek			Coll. Date	Date 06/30/2022 RM: 3.90 Sample: CWH Taxa Tol. Qt./Ql.		
Site I	D: LM74 Location	i: dst. East Fo	rk Duck Cr	eek		Sample:		
Taxa		CWH		Taxa		CWH		
Code	Taxa	Taxa Tol.	Qt./QI.	Code	Taxa		Qt./QI.	
01801	Turbellaria	F	+					
03600	Oligochaeta	т	+					
04985	Barbronia weberi	MT	+					
11120	Baetis flavistriga	F	+					
11130	Baetis intercalaris	F	+					
50315	Chimarra obscura	МІ	+					
52200	Cheumatopsyche sp	F	+					
52530	Hydropsyche depravata group	F	+					
53501	Hydroptilidae	F	+					
72700	Anopheles sp	F	+					
74100	Simulium sp	F	+					
77120	Ablabesmyia mallochi	F	+					
77500	Conchapelopia sp	F	+					
80420	Cricotopus (C.) bicinctus	т	+					
80510	Cricotopus (Isocladius) sylvestris group	Т	+					
82710	Chironomus (C.) sp	MT	+					
84450	Polypedilum (Uresipedilum) flavum	n F	+					
84470	Polypedilum (P.) illinoense	т	+					
84960	Pseudochironomus sp	F	+					
85840	Tanytarsus sepp	F	+					
No. C	Quantitative Taxa: 0	Total Taxa;	20	-				
No. G	Qualitative Taxa: 20	ICI:	F					

Appendix Table B-5. Macroinvertebrate taxa list for the Little Miami River study area including historical data.

River Code:11-004 River: Duck Creek Coll. Date:06/30/2022 RM: 3.40 Location: ust. Erie Ave. Site ID: LM75 Sample: Taxa **CWH** Taxa CWH Code Taxa Taxa Tol. Qt./QI. Code Taxa Taxa Tol. Qt./Ql. F 01801 Turbellaria + Т 03600 Oligochaeta 04664 Helobdella stagnalis Т 04985 Barbronia weberi MT 05900 Lirceus sp MT 11120 Baetis flavistriga F 11130 Baetis intercalaris F F 21300 Hetaerina sp 21604 Archilestes grandis Т 22001 Coenagrionidae Т 52200 Cheumatopsyche sp F 52530 Hydropsyche depravata group F F 53800 Hydroptila sp 69400 Stenelmis sp F F 74100 Simulium sp 78401 Natarsia species A (sensu Roback, Т 1978) 80410 Cricotopus (C.) sp F 80411 Cricotopus (Isocladius) sp nr. MT absurdus 80420 Cricotopus (C.) bicinctus Т Т 80510 Cricotopus (Isocladius) sylvestris group 82100 Thienemanniella sp Т 82730 Chironomus (C.) decorus group F 82820 Cryptochironomus sp 84450 Polypedilum (Uresipedilum) flavum F 84470 Polypedilum (P.) illinoense Т No. Quantitative Taxa: Total Taxa; 25 0 No. Qualitative Taxa: F 25 ICI: Number of Organisms: 0 Qual EPT: 5

	Code:11-004 River: Duc				Con	. Date 00	/08/2022		2.8
	D: LM76 Location	: dst. Erie A	lve.				Saı	mple	
Taxa Code	Taxa	CWH Taxa Tol.	Qt./Ql.	Taxa Code	Taxa		CWH Taxa	Tol.	Qt./QI.
01801	Turbellaria	F	3 +						
03600	Oligochaeta	Т	213 +	No. Quant	itative Taxa:	22	Total Ta	аха;	39
04510	Hirudinida	МТ	1	No. Qualit	ative Taxa:	34		ICI:	26
04666	Helobdella papillata	МТ	+		f Organisms:				
04901	Erpobdellidae	МТ	+	Number of	i Organisms.	3585	Qual E	ΡΙ.	7
04985	Barbronia weberi	МТ	2 +						
11130	Baetis intercalaris	F	990 +						
17200	Caenis sp	F	+						
21001	Calopterygidae	F	+						
21300	Hetaerina sp	F	+						
22300	Argia sp	F	1 +						
27001	Corduliidae		+						
28001	Libellulidae	MT	+						
50315	Chimarra obscura	MI	+						
52200	Cheumatopsyche sp	F	26 +						
52430	Ceratopsyche morosa group	МІ	+						
52530	Hydropsyche depravata group	F	6 +						
53800	Hydroptila sp	F	16 +						
71900	Tipula sp	F	+						
72150	Pericoma sp	MT	+						
74100	Simulium sp	F	+						
77120	Ablabesmyia mallochi	F	+						
77500	Conchapelopia sp	F	352 +						
77750	Hayesomyia senata or Thienemannimyia norena	F	29 +						
30410	Cricotopus (C.) sp	F	+						
30411	Cricotopus (Isocladius) sp nr. absurdus	MT	+						
30420	Cricotopus (C.) bicinctus	т	117 +						
30510	Cricotopus (Isocladius) sylvestris group	т	29						
32730	Chironomus (C.) decorus group	т	+						
32820	Cryptochironomus sp	F	+						
33040	Dicrotendipes neomodestus	F	29 +						
34450	Polypedilum (Uresipedilum) flavum	F	117 +						
34470	Polypedilum (P.) illinoense	т	1175 +						
34540	Polypedilum (Tripodura) scalaenum group	F	206 +						
34960	Pseudochironomus sp	F	59 +						
	Tanytarsus sp	F	29						
	Tanytarsus glabrescens group sp 7	7 F	176						
	Hemerodromia sp	F	8						
	Physella sp	т	1 +						

	Code: 11-004 River: <i>Duc</i> D: LM77 Location			Ava and	Dower Ct)8/2022 Sa			2.00
	D. LIMI // Location		oster	Ave. and I						mple	:	
Taxa Code	Taxa	CWH Taxa	Tol.	Qt./QI.	Taxa Code	Та	axa		CWH Taxa	Tol.	Qt./0	QI.
01801	Turbellaria		F	135 +	85821	Tanytarsus glabre	scens g	roup sp 7	ı	=	149 +	
03600	Oligochaeta		т	497 +	85840	Tanytarsus sepp			ı	F	17	
04660	Helobdella sp		мт	+	87540	Hemerodromia sp			ı	F	16 +	
04935	Erpobdella punctata punctata		MT	11 +	95100	Physella sp			-	Г	+	
)4985	Barbronia weberi		МТ	1								
11120	Baetis flavistriga		F	+	No. C	Quantitative Tax	(a: 2	26	Total Ta	аха;	42	
11130	Baetis intercalaris		F	747 +	No. G	Qualitative Taxa	n: 3	31		ICI:	32	
13521	Stenonema femoratum		F	1					Oual E			
17200	Caenis sp		F	+	INUITIE	per of Organism	15. 3	372	Qual E	PI:	7	
21300	Hetaerina sp		F	+								
22001	Coenagrionidae		Т	+								
22300	Argia sp		F	+								
50315	Chimarra obscura		MI	+								
52200	Cheumatopsyche sp		F	113 +								
52430	Ceratopsyche morosa group		MI	1								
52530	Hydropsyche depravata group		F	91 +								
53800	Hydroptila sp		F	17 +								
68708	Dubiraphia vittata group		F	+								
69400	Stenelmis sp		F	+								
71900	Tipula sp		F	+								
74100	Simulium sp		F	+								
77120	Ablabesmyia mallochi		F	+								
77500	Conchapelopia sp		F	298 +								
77750	Hayesomyia senata or Thienemannimyia norena		F	50								
30420	Cricotopus (C.) bicinctus		т	17 +								
30510	Cricotopus (Isocladius) sylvestris group		Т	17								
31231	Nanocladius (N.) crassicornus or N. (N.) "rectinervis"		F	116								
32730	Chironomus (C.) decorus group		Т	+								
	Cryptochironomus sp		F	+								
33040	Dicrotendipes neomodestus		F	66								
33051	Dicrotendipes simpsoni		Т	17 +								
	Paratendipes albimanus or P. duplicatus		F	+								
34450	Polypedilum (Uresipedilum) flavum	1	F	315 +								
	Polypedilum (P.) illinoense		Т	83 +								
	Polypedilum (Tripodura) halterale group		МТ	17								
34540	Polypedilum (Tripodura) scalaenum group		F	481 +								
34960	Pseudochironomus sp		F	66								
	Tanytarsus sp		F	33								

River	Code: 11-004 River: <i>Duc</i>	k Creel	•			Coll.	Date:08/0	18/2022	RM:		0.50
Site I	D: LM79 Location	: ust. V	Voost	er Pike				Sa	mple	:	
Taxa Code	Таха	CWH Taxa	Tol.	Qt./0	Taxa Ql. Code			CWH Taxa	Tol.	Qt./	QI.
1320	Hydra sp		F	16	84450	Polypedilum (Uresipedi	lum) flavum	ı	F	327 +	
	Turbellaria		F	16 +		Polypedilum (P.) illinoe			Г	82 +	
	Oligochaeta		Т	4		Polypedilum (Tripodura			-	+	
	Helobdella papillata		MT	4		scalaenum group	,				
)4901	Erpobdellidae		MT	4	0.4060	Pseudochironomus sp		ı	F	22 +	-
	Barbronia weberi		МТ	4	₊ 85500	Paratanytarsus sp		ı	F	7	
11120	Baetis flavistriga		F	4	₊ 85800	Tanytarsus sp		ı	F	+	•
	Baetis intercalaris		F	1454 +	₊ 85821	Tanytarsus glabrescens	s group sp 7	ı	F	+	•
3521	Stenonema femoratum		F	4 +	_► 87540	Hemerodromia sp		ı	F	1 +	•
	Caenis sp		F	4	95100	Physella sp		-	Γ	+	•
	Hetaerina sp		F	4							
22001	Coenagrionidae		т	4	⊦ No. (Quantitative Taxa:	21	Total Ta	аха;	49	
22300	Argia sp		F	4	+ No. (Qualitative Taxa:	44		ICI:	38	
27400	Neurocordulia sp		F	4	_	ber of Organisms:	2607	Qual E		10	
28705	Pachydiplax longipennis		т	4		bei of Organisms.	2007	Quai L	.г т.	10	
50315	Chimarra obscura		МІ	20 +	+						
51250	Holocentropus sp		F	4	+						
2200	Cheumatopsyche sp		F	98 +	+						
2430	Ceratopsyche morosa group		МІ	7 +	+						
2530	Hydropsyche depravata group		F	171 +	+						
53800	Hydroptila sp		F	4	+						
60900	Peltodytes sp		МТ	4	ŀ						
65800	Berosus sp		МТ	1							
39400	Stenelmis sp		F	4	+						
1900	Tipula sp		F	1 +	ŀ						
4100	Simulium sp		F	195 +	ŀ						
77120	Ablabesmyia mallochi		F	4	ŀ						
7500	Conchapelopia sp		F	119 +	ŀ						
77750	Hayesomyia senata or Thienemannimyia norena		F	4	+						
' 8401	Natarsia species A (sensu Roback, 1978)		Т	4	l						
78450	Nilotanypus fimbriatus		F	15							
78600	Pentaneura inconspicua		F	4	ŀ						
78655	Procladius (Holotanypus) sp		MT	4	+						
30420	Cricotopus (C.) bicinctus		T	22 +	+						
30474	Cricotopus (C.) or Paratrichocladius sp			4	l						
30510	Cricotopus (Isocladius) sylvestris group		Т	+	l						
31240	Nanocladius (N.) distinctus		MT	22							
32730	Chironomus (C.) decorus group		Т	4	+						
32820	Cryptochironomus sp		F	4	+						
33040	Dicrotendipes neomodestus		F	7 +	+						

	Code: 11-007 River: <i>Syd</i>					Coll.	Date:08/0	4/2 <i>0</i> 22 RM:	1.10
Site I	D: LM50 Location	า: <i>Lovel</i> ส	and R	d.				Sample	э:
Taxa Code	Taxa	CWH Taxa	Tol.	Qt./QI.	Taxa Code	Taxa		CWH Taxa Tol	. Qt./Ql.
01801	Turbellaria		F	42 +	82820	Cryptochironomus sp		F	+
3600	Oligochaeta		Т	4 +	83040	Dicrotendipes neomode	estus	F	29 +
)4985	Barbronia weberi		МТ	+	83900	Nilothauma sp		F	+
5900	Lirceus sp		МТ	+	84210	Paratendipes albimanus	s or P.	F	+
11120	Baetis flavistriga		F	67 +		duplicatus			
11130	Baetis intercalaris		F	50 +	84300	Phaenopsectra obedier	ns group	F	+
3400	Stenacron sp		F	132	84450	Polypedilum (Uresipedi	lum) flavum	F	379 +
3500	Maccaffertium sp		MI	1	84470	Polypedilum (P.) illinoer	nse	Т	7 +
3521	Stenonema femoratum		F	+	84540	Polypedilum (Tripodura)	F	7 +
17200	Caenis sp		F	4 +		scalaenum group			
21200	Calopteryx sp		F	+	84960	Pseudochironomus sp		F	22
22001	Coenagrionidae		т	+	85500	Paratanytarsus sp		F	44 +
	Argia sp		F	+	85625	Rheotanytarsus sp		F	15 +
27000	Corduliidae or Libellulidae		-	+	85821	Tanytarsus glabrescens	s group sp 7	F	117 +
	Neoplea sp		F	+	85840	Tanytarsus sepp		F	+
50301	Chimarra aterrima		MI	+	87540	Hemerodromia sp		F	9 +
0301	Chimarra obscura		MI	+	95100	Physella sp		Т	+
51250	Holocentropus sp		 F	+	96120	Menetus (Micromenetus	s) dilatatus	MT	4
52200	Cheumatopsyche sp		F	+	96900	Ferrissia sp		F	1
52430	Ceratopsyche morosa group		MI	15 +					
52530	Hydropsyche depravata group		F	3 +	No. C	Quantitative Taxa:	29	Total Taxa;	58
3800	Hydroptila sp		F	72 +	No. C	Qualitative Taxa:	47	ICI:	46
	Psephenus herricki		MI			per of Organisms:		Qual EPT:	
8075	·		F	+	Nulli	Dei di Organisms.	1178	Qual EP1.	11
59400	•		F	+					
	Limonia sp		-						
	Tipula sp		F	+					
	Anopheles sp		F -	+					
	Ablabesmyia mallochi		F -	+					
77500	Conchapelopia sp		F -	36 +					
7800	Helopelopia sp		F	29 +					
78450	Nilotanypus fimbriatus		F	10					
78601	·		F	+					
	Procladius sp		MT	+					
30370	•		F	8					
30410	Cricotopus (C.) sp		F	+					
30411	Cricotopus (Isocladius) sp nr. absurdus		MT	15					
30420	Cricotopus (C.) bicinctus		Т	15					
30430	Cricotopus (C.) tremulus group		MT	29					
1650	Parametriocnemus sp	Х	F	+					
31825	Rheocricotopus (Psilocricotopus) robacki		F	+					
32141	Thienemanniella xena		F	12					

	_	camore Creek			Coll. Date:08	/04/2022 RM:	0.50
Site I	D: LM51 Location	n: <i>ust. Sycan</i>	nore Creek \	NWTP		Sample) :
Taxa Code	Taxa	CWH Taxa Tol.	Qt./Ql.	Taxa Code	Taxa	CWH Taxa Tol	. Qt./Ql.
01801	Turbellaria	F	155 +	78450	Nilotanypus fimbriatus	F	24
03600	Oligochaeta	Т	+		Procladius (Holotanypus) sp	МТ	+
04935	Erpobdella punctata punctata	МТ	+	78750	Rheopelopia paramaculipennis	МІ	10
05900	Lirceus sp	МТ	9 +	79760	Pagastia sp	F	+
06201	Hyalella azteca	F	+	80310	Cardiocladius obscurus	МІ	+
06700	Crangonyx sp	MT	+	80350	Corynoneura sp		8
11014	Acentrella turbida	1	+	80410	Cricotopus (C.) sp	F	+
11120	Baetis flavistriga	F	6 +	80420	Cricotopus (C.) bicinctus	т	+
11130	Baetis intercalaris	F	1204 +	81650	Parametriocnemus sp	X F	10
11670	Procloeon viridoculare	MI	+	81690	Paratrichocladius sp	MI	+
13400	Stenacron sp	F	2	82100	Thienemanniella sp		8
13521	Stenonema femoratum	F	2 +	82822	Cryptochironomus eminentia	F	+
13561	Maccaffertium pulchellum	MI	1	83040	Dicrotendipes neomodestus	F	10 +
16700	Tricorythodes sp	MI	+	83820	Microtendipes "caelum" (sensu	MI	+
17200	Caenis sp	F	+		Simpson & Bode, 1980)		
21001	Calopterygidae	F	+	84450	Polypedilum (Uresipedilum) flavur	n F	763 +
22001	Coenagrionidae	Т	+	84540		F	+
22300	Argia sp	F	+		scalaenum group		00
23909	Boyeria vinosa	F	+		Rheotanytarsus pellucidus	MI	20
26700	Macromia sp	MI	+	85625	Rheotanytarsus sp	F -	112
50301	Chimarra aterrima	MI	2 +	85800	Tanytarsus sp	F -	10 +
50315	Chimarra obscura	MI	91 +	85821	Tanytarsus glabrescens group sp		+
51250	Holocentropus sp	F	+		Tanytarsus sepp	F	+
51300	Neureclipsis sp	MI	+		Physella sp	T	1 +
52200	Cheumatopsyche sp	F	293 +	97601	Corbicula fluminea	F	1 +
52430	Ceratopsyche morosa group	MI	309 +	No. C	Quantitative Taxa: 32	Total Taya:	CE
52530	Hydropsyche depravata group	F	161 +			Total Taxa;	
53800	Hydroptila sp	F	1 +	No. C	Qualitative Taxa: 53	ICI:	48
59970	Petrophila sp	MI	9 +	Numl	per of Organisms: 3306	Qual EPT:	15
60900	Peltodytes sp	MT	+				
8075	Psephenus herricki	MI	+				
58601	Ancyronyx variegata	F	1				
	Stenelmis sp	F	8 +				
	Tipula sp	F	1				
	Culex sp	Т	+				
	Simulium sp	F	33 +				
74650	Atrichopogon sp	F	+				
77001	Tanypodinae		10				
77120	Ablabesmyia mallochi	F	+				
77500	Conchapelopia sp	F	+				
77750	Hayesomyia senata or	F	+				
77000	Thienemannimyia norena	-	31 +				
1 1 800	Helopelopia sp	F	31 +				

		camore Creek	_		Col	I. Date:08/0				0.10
	D: LM52 Location	n: dst. Sycam	ore Cree	k WWTP			Sample:			
Taxa Code	Taxa	CWH Taxa Tol.	Qt./QI	Taxa . Code	Taxa		CWH Taxa	Tol.	Qt.	/QI.
01801	Turbellaria	F	1 +	80350	Corynoneura sp				8	
03600	Oligochaeta	т	+	80420	Cricotopus (C.) bicinct	us	Т			+
04901	Erpobdellidae	MT	+	81650	Parametriocnemus sp		ΧF			+
04935	Erpobdella punctata punctata	MT	+	82141	Thienemanniella xena		F			+
04985	Barbronia weberi	MT	+	82730	Chironomus (C.) deco	rus group	Т			+
05900	Lirceus sp	MT	1 +	82820	Cryptochironomus sp		F			+
06201	Hyalella azteca	F	11 +	83040	Dicrotendipes neomoc	lestus	F		49	+
11120	Baetis flavistriga	F	+	83820	Microtendipes "caelum	n" (sensu	МІ			+
11130	Baetis intercalaris	F	82 +		Simpson & Bode, 1980	0)				
12200	Isonychia sp	МІ	2	84210	Paratendipes albimani	us or P.	F		16	+
13521	Stenonema femoratum	F	82 +		duplicatus					
17200	Caenis sp	F	+	84450	Polypedilum (Uresiped	dilum) flavum	F	1	035	+
21001	Calopterygidae	F	+		Polypedilum (P.) illinoe		Т		,	+
22001	Coenagrionidae	т	+	84540	Polypedilum (Tripodur	a)	F		16	
22300	Argia sp	F	10		scalaenum group					
27400	Neurocordulia sp	F	+	85625			F		279	
50301	Chimarra aterrima	MI	+	85800			F		16	
50315	Chimarra obscura	MI	+	85821	Tanytarsus glabrescer	ns group sp 7	F		16	+
51206	Cyrnellus fraternus	 F	8		Hemerodromia sp		F			+
51300	Neureclipsis sp	MI	11 +		Physella sp		Т		3	+
52200	Cheumatopsyche sp	 F	507 +		Ferrissia sp		F		41	
52430	Ceratopsyche morosa group	MI	363 +	97601	Corbicula fluminea		F		,	+
52530	Hydropsyche depravata group	F	+							
52570	Hydropsyche simulans	MI	1	No. C	Quantitative Taxa:	27	Total Ta	ха;	62	
	Hydroptila sp	F	+	No. C	Qualitative Taxa:	55	I	CI:	38	
	Ochrotrichia sp	MI	+	Numl	per of Organisms:	2723	Qual El	рΤ٠	13	
	•	MI	1 +		oor or organismon	2720	Quai Li	• • •		
	Oecetis persimilis Petrophila sp									
		MI	+							
65800	Berosus sp	MT	+							
	Psephenus herricki	MI -	+							
		F _	+							
	Stenelmis sp	F	+							
	Tipula sp	F	1+							
72501		MT _	+							
	Culex sp	T -	+							
	Simulium sp	F	64 +							
	Atrichopogon sp	F	+							
	Ablabesmyia mallochi	F	+							
77130	Ablabesmyia rhamphe group	MT	+							
77500	Conchapelopia sp	F	66 +							
77800	Helopelopia sp	F	33 +							
78655	Procladius (Holotanypus) sp	MT	+							
80310	Cardiocladius obscurus	MI	+							

River	Code: 11-009 River: <i>Po</i>	Ik Run			Coll. Dat	e:08/08/20	122 RM:	0.3
Site I	D: LM40 Locatio	n: East Kemp	er Rd.				Sample	e:
Taxa Code	Taxa	CWH Taxa Tol.	Qt./Ql.	Taxa Code	Taxa		WH axa Tol	. Qt./Ql.
01801	Turbellaria	F	+	80440	Cricotopus (C.) trifascia		F	+
	Oligochaeta	т	+		Thienemanniella sp			8
)4935	Erpobdella punctata punctata	МТ	+	82820	Cryptochironomus sp		F	+
05900	Lirceus sp	МТ	+	83040	Dicrotendipes neomodestus		F	+
06700	Crangonyx sp	МТ	+	83820	Microtendipes "caelum" (sen	su	МІ	+
08601	Hydrachnidia	F	24		Simpson & Bode, 1980)			
11120	Baetis flavistriga	F	5 +	84300	Phaenopsectra obediens gro	up	F	+
11130	Baetis intercalaris	F	822 +	84450	Polypedilum (Uresipedilum) f	lavum	F	187 +
12200	Isonychia sp	МІ	8	84470	Polypedilum (P.) illinoense		Т	+
13100	Nixe sp	МІ	+	84540	Polypedilum (Tripodura)		F	11
13500	Maccaffertium sp	МІ	11		scalaenum group			
13521	Stenonema femoratum	F	+	84700	Stenochironomus sp		F	+
17200	Caenis sp	F	+	85625	Rheotanytarsus sp		F	375 +
21001	Calopterygidae	F	3 +	85800	Tanytarsus sp		F	22 +
22001	Coenagrionidae	т	+	85821	Tanytarsus glabrescens grou	ıp sp 7	F	55
22300	Argia sp	F	9 +	95100	Physella sp		Т	1 +
50301	Chimarra aterrima	MI	+	96900	Ferrissia sp		F	1 +
50315	Chimarra obscura	МІ	+					
52200	Cheumatopsyche sp	F	210 +	No. C	Quantitative Taxa: 26	Tot	al Taxa;	57
52430	Ceratopsyche morosa group	МІ	188 +	No. C	Qualitative Taxa: 48		ICI:	50
52530	Hydropsyche depravata group	F	3 +	Numl	per of Organisms: 215	51 Qı	ual EPT:	14
53201	Glossosomatidae	МІ	+					
	Hydroptila sp	F	8 +					
54160	Ochrotrichia sp	МІ	+					
	Mystacides sp	МІ	+					
	Petrophila sp	МІ	+					
	Ectopria sp	F	+					
	Psephenus herricki	МІ	+					
		F	+					
		F	+					
	Stenelmis sp	F	+					
	Antocha sp	МІ	+					
	Tipula sp	F	+					
	Simulium sp	F	11 +					
	Ablabesmyia mallochi	F	+					
	Conchapelopia sp	F	99 +					
	Hayesomyia senata or Thienemannimyia norena	F	33					
77800	Helopelopia sp	F	22 +					
	Nilotanypus fimbriatus	F	8					
	Procladius (Holotanypus) sp	MT	+					
78750	Rheopelopia paramaculipennis	MI	11 +					
	Corynoneura lobata	F	16					

Appendix Table B-5. Macroinvertebrate taxa list for the Little Miami River study area including historical data.

River Code:11-049 River: Unnamed Tributary to Sycamore Cr. at RM 1.12 Coll. Date:06/29/2022 RM: 1.20 Site ID: LM55 Location: ust. Blome Rd. bridge Sample: Taxa **CWH** Taxa CWH Code Taxa Taxa Tol. Qt./QI. Code Taxa Taxa Tol. Qt./Ql. F 01801 Turbellaria + Т 03600 Oligochaeta 05900 Lirceus sp MT 06700 Crangonyx sp MT 11120 Baetis flavistriga F 11130 Baetis intercalaris F 17200 Caenis sp F 50301 Chimarra aterrima МΙ 51050 Cernotina sp ΜI F 52200 Cheumatopsyche sp 52530 Hydropsyche depravata group F F 53800 Hydroptila sp 59970 Petrophila sp ΜI 72900 Culex sp Т 74100 Simulium sp F F 77120 Ablabesmyia mallochi 77500 Conchapelopia sp F 77750 Hayesomyia senata or F Thienemannimyia norena F 78350 Meropelopia sp X F X 79720 Diamesa sp F 83040 Dicrotendipes neomodestus F 84210 Paratendipes albimanus or P. duplicatus 84470 Polypedilum (P.) illinoense Т F 85840 Tanytarsus sepp No. Quantitative Taxa: Total Taxa; 24 0 No. Qualitative Taxa: 24 ICI: G

Qual EPT:

Site I	D: LM56 Location	: ust. Lovela	and-Maderia	Rd.			Sar	nple	
Taxa		CWH		Taxa			CWH		-
Code	Taxa	Taxa Tol.	Qt./QI.	Code	Taxa			Tol.	Qt./QI.
01801	Turbellaria	F	416 +	85840 Tanytarsu	s sepp		F		42 +
	Nemertea	F	16	87540 Hemerodr			F		17 +
	Ectoprocta	F	+	93200 Hydrobiida	•		F		1
03600	Oligochaeta	Т	40 +	95100 Physella s			т		+
04985	Barbronia weberi	МТ	+		•				
	Lirceus sp	МТ	+	No. Quantitati	ve Taxa:	24	Total Ta	ıxa:	45
11120	Baetis flavistriga	F	+	No. Qualitative		36		ICI:	36
	Baetis intercalaris	F	+						
13521		F	+	Number of Or	ganisms:	2839	Qual E	PT:	10
		F	+						
21200	Calopteryx sp	F	9 +						
	Argia sp	F	3 +						
50301	Chimarra aterrima	МІ	11 +						
		МІ	3 +						
	Holocentropus sp	F	+						
52200	Cheumatopsyche sp	F	+						
52530	Hydropsyche depravata group	F	+						
53800	Hydroptila sp	F	1 +						
68075	Psephenus herricki	MI	+						
	Stenelmis sp	 F	+						
	Tipula sp	F	+						
		F	5						
	Simulium sp	F	+						
	Atrichopogon websteri	· F	2						
	Ablabesmyia mallochi	· F							
	Helopelopia sp	· F	104 +						
78601		· F	+						
	Corynoneura lobata	F	16						
32730	Chironomus (C.) decorus group	т	+						
		· F	42 +						
	Dicrotendipes neomodestus	' F	42 +						
	Paratendipes albimanus or P. duplicatus	F	+						
34450	Polypedilum (Uresipedilum) flavum	. F	209 +						
	Polypedilum (P.) illinoense	т.	272						
	Polypedilum (Tripodura) scalaenum group	F	42 +						
34700	Stenochironomus sp	F	+						
		F	63						
		MI	+						
		 F	42 +						
	Rheotanytarsus sp	F	167						
			1274						

Appendix Table B-5. Macroinvertebrate taxa list for the Little Miami River study area including historical data.

River Code:11-051 River: East Fork Duck Creek Coll. Date:07/01/2022 RM: 2.00 Site ID: LM85 Location: at Stewart Ave. Sample: Taxa **CWH** Taxa CWH Code Taxa Taxa Tol. Qt./QI. Code Taxa Taxa Tol. Qt./Ql. F 01801 Turbellaria + Т 03600 Oligochaeta 06700 Crangonyx sp MT 11120 Baetis flavistriga F 11130 Baetis intercalaris F 21604 Archilestes grandis Т 52200 Cheumatopsyche sp F 52530 Hydropsyche depravata group F 53800 Hydroptila sp F MT 72150 Pericoma sp 72160 Psychoda sp Т 72501 Culicidae MT F 72700 Anopheles sp 74100 Simulium sp F 78702 Psectrotanypus dyari VT F 80410 Cricotopus (C.) sp 80430 Cricotopus (C.) tremulus group MT 80510 Cricotopus (Isocladius) sylvestris Т group 81650 Parametriocnemus sp F Χ 82710 Chironomus (C.) sp MT 84450 Polypedilum (Uresipedilum) flavum F 84470 Polypedilum (P.) illinoense Т 85625 Rheotanytarsus sp F 87540 Hemerodromia sp F F 89700 Limnophora sp Т 95100 Physella sp No. Quantitative Taxa: Total Taxa; 26 0 No. Qualitative Taxa: 26 ICI: F

Qual EPT:

Appendix Table B-5. Macroinvertebrate taxa list for the Little Miami River study area including historical data.

River	Code:11-051 River: East	Fork Duck Cr	eek		Coll. Date 07/01/2022 RM: 0.5				
Site I	D: LM84 Location	behind JP Pa	arkers Sch	iool		Sample:			
Taxa		CWH		Taxa		CWH			
Code	Таха	Taxa Tol.	Qt./QI.	Code	Taxa	Taxa Tol.	Qt./QI.		
01801	Turbellaria	F	+						
03600	Oligochaeta	Т	+						
5900	Lirceus sp	мт	+						
06700	Crangonyx sp	МТ	+						
1120	Baetis flavistriga	F	+						
1130	Baetis intercalaris	F	+						
4501	Corixidae	F	+						
52200	Cheumatopsyche sp	F	+						
52530	Hydropsyche depravata group	F	+						
53800	Hydroptila sp	F	+						
71900	Tipula sp	F	+						
72150	Pericoma sp	мт	+						
72700	Anopheles sp	F	+						
4100	Simulium sp	F	+						
4650	Atrichopogon sp	F	+						
77120	Ablabesmyia mallochi	F	+						
77500	Conchapelopia sp	F	+						
77750	Hayesomyia senata or Thienemannimyia norena	F	+						
78655	Procladius (Holotanypus) sp	МТ	+						
30420	Cricotopus (C.) bicinctus	Т	+						
30510	Cricotopus (Isocladius) sylvestris group	т	+						
30740	Eukiefferiella claripennis group	МТ	+						
	Chironomus (C.) decorus group	т	+						
	Cryptochironomus sp	F	+						
	Polypedilum (Uresipedilum) flavum	F	+						
	Polypedilum (P.) illinoense	Т	+						
35500	Paratanytarsus sp	F	+						
	Hemerodromia sp	F	+						
95501	Planorbidae	МТ	+						
No. G	Quantitative Taxa: 0	Total Taxa;	29	-					
	Qualitative Taxa: 29	ICI:	F						
	per of Organisms: 0	Qual EPT:	' 5						

Appendix Table B-5. Macroinvertebrate taxa list for the Little Miami River study area including historical data.

River	Code: 11-075 Rive	r: Unnamed Tributar	y to Duck	Creek at RM 4.8	Coll. Date	06/29/2022 RM:	0.10
Site I	D: LM80 Lo	ocation: <i>Kennedy Av</i>	e.			Sample:	
Taxa Code	Taxa	CWH Taxa Tol.	Qt./Ql.	Taxa Code	Taxa	CWH Taxa Tol.	Qt./QI.
02000	Oliganhanta	т.					
	Oligochaeta Barbronia weberi	T MT	+				
04985	Callibaetis sp		+				
11200	Hydroptila sp	MT F	+				
	Laccophilus sp	Т	+				
63900	Paracymus sp	MT	+				
67700	Tropisternus sp	T					
72700	Anopheles sp	r F	+				
	Culex sp	Т	+				
74100	Simulium sp	r F	+				
77500	Conchapelopia sp	F	+				
80430			+				
82730	Chironomus (C.) decorus		+				
82770	Chironomus (C.) riparius g	, ,	+				
83040	Dicrotendipes neomodestu		+				
83840	Microtendipes pedellus gro		+				
84210	Paratendipes albimanus of duplicatus		+				
84470	Polypedilum (P.) illinoense	т	+				
84960	Pseudochironomus sp	F	+				
86501	Stratiomyidae		+				
	Physella sp	Т	+				
No. C	Quantitative Taxa: 0	Total Taxa;	21	_			
No. G	Qualitative Taxa: 2	1 ICI:	Р				

Appendix Table B-5. Macroinvertebrate taxa list for the Little Miami River study area including historical data.

River Code:11-076 River: Lin	tle Duck Creek			Coll. Date	e.07/01/2022 RM: 2.4 0
Site ID: LM86 Location	n: adj. Camarg	o Rd.			Sample:
Taxa Code Taxa	CWH Taxa Tol.	Qt./QI.	Taxa Code	Taxa	CWH Taxa Tol. Qt./Ql.
01801 Turbellaria	F	+			
03600 Oligochaeta	т	+			
05900 Lirceus sp	MT	+			
11120 Baetis flavistriga	F	+			
11130 Baetis intercalaris	F	+			
13521 Stenonema femoratum	F	+			
22001 Coenagrionidae	т	+			
50301 Chimarra aterrima	MI	+			
52200 Cheumatopsyche sp	F	+			
52430 Ceratopsyche morosa group	MI	+			
53800 Hydroptila sp	F	+			
67700 Paracymus sp	MT	+			
68075 Psephenus herricki	MI	+			
69400 Stenelmis sp	F	+			
74100 Simulium sp	F	+			
77120 Ablabesmyia mallochi	F	+			
77800 Helopelopia sp	F	+			
82820 Cryptochironomus sp	F	+			
83040 Dicrotendipes neomodestus	F	+			
84210 Paratendipes albimanus or P. duplicatus	F	+			
84450 Polypedilum (Uresipedilum) flavu	m F	+			
84470 Polypedilum (P.) illinoense	Т	+			
85500 Paratanytarsus sp	F	+			
87540 Hemerodromia sp	F	+			
No. Quantitative Taxa: 0	Total Taxa;	24	_		
No. Qualitative Taxa: 24	ICI:	MG			
Number of Organisms: 0	Qual EPT:	7			

Appendix Table B-5. Macroinvertebrate taxa list for the Little Miami River study area including historical data.

River Code:11-076 River: Little Duck Creek Coll. Date:07/01/2022 RM: 1.90 Site ID: LM87 Location: adj. Plainville Rd. Sample: Taxa **CWH CWH** Taxa Code Taxa Taxa Tol. Qt./QI. Code Taxa Taxa Tol. Qt./Ql. F 01801 Turbellaria + Т 03600 Oligochaeta 04664 Helobdella stagnalis Т 06700 Crangonyx sp MT 11120 Baetis flavistriga F 11130 Baetis intercalaris F 13521 Stenonema femoratum F 50301 Chimarra aterrima МΙ 51250 Holocentropus sp F F 52200 Cheumatopsyche sp ΜI 52430 Ceratopsyche morosa group F 52530 Hydropsyche depravata group F 53800 Hydroptila sp 69400 Stenelmis sp F МΙ 70600 Antocha sp 72700 Anopheles sp F F 74100 Simulium sp 77800 Helopelopia sp F 78350 Meropelopia sp F Х F 78600 Pentaneura inconspicua F X 81650 Parametriocnemus sp МΙ 82200 Tvetenia bavarica group F 82820 Cryptochironomus sp F 84230 Paratendipes subaequalis F 84300 Phaenopsectra obediens group 84450 Polypedilum (Uresipedilum) flavum F 84470 Polypedilum (P.) illinoense Т 95100 Physella sp Т No. Quantitative Taxa: 0 Total Taxa; 28 No. Qualitative Taxa: G 28 ICI:

Number of Organisms:

0

Qual EPT:

Appendix Table B-5. Macroinvertebrate taxa list for the Little Miami River study area including historical data.

River	Code: 11-076 R	iver: <i>Little</i>	Duck Creek			Coll. Date:	07/01/2022 RM:	1.00
Site I	D: LM90	Location:	Settle St.				Sample:	
Taxa			CWH		Taxa		CWH	
Code	Taxa		Taxa Tol.	Qt./QI.	Code	Taxa	Taxa Tol.	Qt./QI.
01801	Turbellaria		F	+				
	Oligochaeta		Т	+				
	Barbronia weberi		MT	+				
05900	Lirceus sp		MT	+				
07800	Cambarus sp			+				
11120	Baetis flavistriga		F	+				
11130	Baetis intercalaris		F	+				
13521	Stenonema femoratum		F	+				
50301	Chimarra aterrima		MI	+				
51050	Cernotina sp		MI	+				
52200	Cheumatopsyche sp		F	+				
52430	Ceratopsyche morosa g	group	MI	+				
52530	Hydropsyche depravata	a group	F	+				
68075	Psephenus herricki		MI	+				
69400	Stenelmis sp		F	+				
71900	Tipula sp		F	+				
74100	Simulium sp		F	+				
77120	Ablabesmyia mallochi		F	+				
77500	Conchapelopia sp		F	+				
78401	Natarsia species A (ser 1978)	nsu Roback,	Т	+				
78450	Nilotanypus fimbriatus		F	+				
78601	Pentaneura inyoensis		F	+				
83003	Dicrotendipes fumidus		F	+				
83840	Microtendipes pedellus	group	F	+				
84210	Paratendipes albimanus duplicatus	s or P.	F	+				
84300	Phaenopsectra obedier	ns group	F	+				
	Polypedilum (Uresipedi		F	+				
84470	Polypedilum (P.) illinoei	nse	Т	+				
84540	Polypedilum (Tripodura scalaenum group)	F	+				
No. C	Quantitative Taxa:	0	Total Taxa;	29	_			
No. C	Qualitative Taxa:	29	ICI:	G				
Numl	per of Organisms:	0	Qual EPT:	8				

Appendix Table B-5. Macroinvertebrate taxa list for the Little Miami River study area including historical data.

River Code:11-077 River: Unnamed Tributary to Little Duck Creek at RM 4.42 Coll. Date:06/30/2022 RM: 0.20 Site ID: LM82 Location: at baseball field Sample: Taxa **CWH CWH** Taxa Code Taxa Taxa Tol. Qt./QI. Code Taxa Taxa Tol. Qt./Ql. 03600 Oligochaeta Т + 04660 Helobdella sp MT 05900 Lirceus sp MT 11120 Baetis flavistriga F 50301 Chimarra aterrima ΜI 52430 Ceratopsyche morosa group ΜI 52530 Hydropsyche depravata group F 71900 Tipula sp F 71910 Tipula abdominalis F MT 78200 Larsia sp 78350 Meropelopia sp Х F 80001 Orthocladiinae 80430 Cricotopus (C.) tremulus group MT 82200 Tvetenia bavarica group ΜI 84210 Paratendipes albimanus or P. F duplicatus 84300 Phaenopsectra obediens group F 89001 Sciomyzidae MT 93200 Hydrobiidae F 95100 Physella sp Т No. Quantitative Taxa: Total Taxa; 19 0 F No. Qualitative Taxa: 19 ICI: Number of Organisms: Qual EPT:

Appendix Table B-5. Macroinvertebrate taxa list for the Little Miami River study area including historical data.

River	Code: 11-086 River	: Unnamed Tributar	y (1.82) to	Tributary to Sy	camore Coll. Date	:06/29/2022 RM:	2.40
Site I	D: LM54 Loc	cation: <i>Glenover Dr</i>	and Raid	lers Run		Sample:	
Taxa Code	Taxa	CWH Taxa Tol.	Qt./Ql.	Taxa Code	Taxa	CWH Taxa Tol. Q	t./QI.
01801	Turbellaria	F	+				
	Lirceus sp	МТ	+				
	Gammaridae		+				
	Archilestes grandis	Т	+				
22001	Coenagrionidae	Т	+				
22300	Argia sp	F	+				
69400	Stenelmis sp	F	+				
72700	Anopheles sp	F	+				
72900	Culex sp	Т	+				
78655	Procladius (Holotanypus) sp	MT	+				
82710	Chironomus (C.) sp	MT	+				
82820	Cryptochironomus sp	F	+				
83040	Dicrotendipes neomodestus	F	+				
83840	Microtendipes pedellus grou	ıр F	+				
84210	Paratendipes albimanus or duplicatus	P. F	+				
84300	Phaenopsectra obediens gr	oup F	+				
95100	Physella sp	Т	+				
No. C	Quantitative Taxa: 0	Total Taxa;	17	_			
No. G	Qualitative Taxa: 17	ICI:					
Numb	per of Organisms: 0	Qual EPT:	0				

Appendix C

Little Miami River 2022 Habitat Data C-1: QHEI Metrics & Scores C-2: QHEI Field Sheets

Appendix Table C-1. QHEI scores and metric values at 37 sites in the Little Miami River mainstem and tributary subwatersheds

Cit o ID	Collection	Diver Mile	OUE	Substrate	C	Channel	Riparian	Do al Casus	Diffic Cooks	Gradient Value	Gradient
Site ID	Date	River Mile	QHEI	Score	Cover Score	Score	Score	Pool Score	Riffle Score	value	Score
LM01	01 Aug 22	27.90	89.50	18.0	17.0	18.5	6.5	13.0	7.5	6.60	10
LM02	01-Aug-22										10
	01-Aug-22	24.10	91.00	18.0	19.0	18.5	5.5	13.0	8.0	6.51	
LM03	02-Aug-22	22.30	84.50	18.0	17.0	14.5	5.0	12.0	8.0	6.39	10
LM05	02-Aug-22	21.50	89.50	18.0	17.0	18.5	6.0	12.0	8.0	6.43	10
LM07	02-Aug-22	18.50	89.50	18.0	17.0	18.5	6.0	12.0	8.0	6.35	10
LM08	02-Aug-22	17.70	85.50	18.0	16.0	17.5	5.0	11.0	8.0	6.24	10
LM09	03-Aug-22	13.10	87.75	18.0	14.0	19.5	6.3	12.0	8.0	6.19	10
LM11	03-Aug-22	10.90	85.00	18.0	15.0	18.5	4.5	11.0	8.0	6.14	10
LM12	03-Aug-22	8.10	89.25	18.0	17.0	19.0	5.3	13.0	8.0	6.08	10
LM13	03-Aug-22	6.83	87.00	18.0	16.0	18.5	5.5	11.0	8.0	6.07	10
LM15	03-Aug-22	4.10	87.50	18.0	16.0	18.5	5.0	12.0	8.0	6.18	10
LM16A	04-Aug-22	3.70	65.00	14.0	16.0	11.0	7.0	7.0	0.0	6.16	10
LM16	04-Aug-22	3.50	84.00	17.0	15.0	17.0	7.0	10.0	8.0	6.16	10
LM16	21-Sep-23	3.50	88.50	18.0	15.0	18.5	7.0	13.0	8.0	6.16	10
LM17	04-Aug-22	1.60	62.00	14.0	14.0	11.0	6.0	7.0	0.0	6.18	10
					Sycamoi	re Creek					
LM50	09-Sep-22	1.10	70.00	20.0	10.0	15.0	7.0	8.0	6.0	53.80	4
LM51	11-Aug-22	0.50	61.50	14.0	13.0	10.5	4.5	9.0	4.5	38.00	6
LM52	11-Aug-22	0.10	68.00	15.0	13.0	13.0	5.0	11.0	5.0	38.20	6
				Unnamed :	Tributary to Sy	camore Creek	@RM 1.12				
LM55	22-Jul-22	1.20	60.75	23.0	9.0	11.0	5.3	6.0	5.5	65.00	4
LM56	9-Sep-22	0.20	63.00	18.5	9.0	12.0	7.5	6.0	6.0	66.30	4
					Polk	Run					
LM40	09-Sep-22	0.30	63.00	18.0	13.0	11.0	6.0	5.0	6.0	56.10	4
		Boatable Sites		_	Headwater						
	Excel		<u>≥</u> 75 ≥60		ellent ood	<u>≥</u> 70 ≥55					
	Fa		<u>></u> 45		air	<u>></u> 43					
	Po		<u>></u> 30		oor	<u>></u> 30					
	Very	Poor	<30	Very	y Poor	<30					

Appendix Table C-1. continued.

67. 15	Collection	D: 441	01151	Substrate		Channel	Riparian	5 16	D:(() 6	Gradient	Gradient
Site ID	Date	River Mile	QHEI	Score	Cover Score	Score	Score	Pool Score	Riffle Score	Value	Score
	10 1 100	6.10			Duck			1		65.00	_
LM71	13-Jul-22	6.10	26.00	0.5	8.0	6.5	3.0	4.0	0.0	65.30	4
LM72	13-Jul-22	5.14	54.50	18.0	10.0	11.0	4.5	4.0	3.0	48.10	4
LM73	22-Jul-22	4.58	16.00	-1.0	2.0	6.0	3.0	2.0	0.0	43.70	4
LM74	21-Jul-22	3.90	63.00	16.5	14.0	10.5	3.5	10.0	2.5	37.50	6
LM75	13-Jul-22	3.40	15.00	-1.0	2.0	6.0	3.0	1.0	0.0	64.80	4
LM76	13-Jul-22	2.80	66.00	18.0	14.0	11.5	4.5	8.0	4.0	31.40	6
LM77	22-Jul-22	2.00	67.00	18.0	14.0	11.0	5.0	6.0	5.0	29.80	8
LM79	22-Jul-22	0.50	68.75	16.0	15.0	12.5	2.3	10.0	5.0	26.00	8
				Unname	ed Tributary to	Duck Creek @	RM 4.8				
LM80	13-Jul-22	0.10	34.50	6.5	9.0	7.0	4.0	2.0	2.0	114.00	4
				Unnamed	Tributary to L	ittle Duck Cr. (@RM 4.42				
LM82	13-Jul-22	0.20	50.50	16.5	8.0	9.0	5.5	5.0	2.5	87.60	4
					East Fork D	Duck Creek					
LM85	13-Jul-22	2.00	62.50	19.5	15.0	11.0	4.0	7.0	2.0	132.00	4
LM84	14-Jul-22	0.50	65.00	18.5	15.0	10.5	4.0	8.0	5.0	123.00	4
					Little Du	ck Creek					
LM86	14-Jul-22	2.40	56.50	18.0	13.0	10.0	4.0	4.0	3.5	333.00	4
LM87	14-Jul-22	1.90	61.00	19.5	14.0	11.5	4.0	4.0	4.0	384.00	4
LM90	22-Jul-22	1.00	61.00	18.0	13.0	10.5	6.0	5.0	4.5	312.00	4
LM92	21-Jul-22	0.49	66.50	20.0	13.0	14.5	4.0	6.0	5.0	133.00	4
					Clough	Creek					
LM95	21-Jul-22	3.20	59.00	19.5	12.0	10.5	4.0	6.0	3.0	85.40	4
LM98	21-Jul-22	0.60	59.50	18.0	10.0	10.0	5.5	6.0	6.0	66.60	4
		Boatable Sites			Headwater						
	Excel		<u>≥</u> 75		ellent	<u>≥</u> 70					
	God		<u>≥</u> 60		ood	<u>≥</u> 55					
	Fa Po		<u>≥</u> 45 ≥30		air oor	<u>≥</u> 43 ≥30					
	Very		<30		y Poor	<30					

Chesia

QHEI Score:	89.5

THE RESERVE OF THE PERSON NAMED IN COLUMN 2 IS NOT THE PERSON NAME			
Stream & Location:	Little Miani River - dst. SR	23/3 L. Miami State Park A	RM: 27.9 Date: 8/01/ ZOZZ
LMOI			AS - MBI
River Code: 11 - 0	01STORET #:	Lat./Long.: 39 .316671	184.25162 (mid location
BEST TYPES BEST TYPES BEDR /SLABS [10] BOULDER [9] COBBLE [8] GRAVEL [7] SAND [6] BEDROCK [5]	OWLYTwo substrate TYPE BOXES; ate % or note every type present OTHER TYPES OTHER	ORIGIN LIMESTONE [1] TILLS [1] WETLANDS [0] HARDPAN [0] SANDSTONE [0] RIP/RAP [0]	QUALITY HEAVY [-2] SILT MODERATE [-1] Substrate NORMAL [0]
quality: 3-Highest quality in	GETATION [1] / ROOTWADS [1]	nighest quality or in small amounts of h arge boulders in deep or fast water, lar ir, or deep, well-defined, functional poo	Check ONE (Or 2 & average)
SINUOSITY DEVI	CLOGY Check ONE in each category (OELOPMENT CHANNELIZATION (CELLENT [7] NONE [6] RECOVERED [4] RECOVERING [3] RECENT OR NO RECOVERING [4]	ON STABILITY HIGH [3] MODERATE [2] LOW [1]	Channel Maximum 20
A] BANK EROSION A. River right looking downstream BEROSION CHOOSION CHOOSIO		FLOOD PLAIN QUALITY FOREST, SWAMP [3]	R CONSERVATION TILLAGE [1] CONSERVATION TILLAGE [1] CONSERVATION TILLAGE [1] CONSTRUCTION [0] Indicate predominant land use(s) past 100m riparian: Riparian Maximum 10
MAXIMUM DEPTH Check ONE (ONLY!) ☐ 1m [6] ☐ 0.7~1m [4]	☐ POOL WIDTH = RIFFLE WIDTH [1] ☐ ☐ POOL WIDTH < RIFFLE WIDTH [0] ☐	CURRENT VELOCITY Check ALL that apply TORRENTIAL [-1] SLOW [1] VERY FAST [1] INTERSTITIAL FAST [1] INTERMITTEN MODERATE [1] EDDIES [1] Indicate for reach - pools and riffles.	Pool/ Current Maximum
Indicate for function of riffle-obligate spaces RIFFLE DEPTH BEST AREAS > 10cm [2] BEST AREAS 5-10cm [1] BEST AREAS < 5cm [metric=0]	RUN DEPTH RIFFLE / MAXIMUM > 50cm [2] STABLE (e MAXIMUM < 50cm [1] MOD, STA	(Or 2 & average) / RUN SUBSTRATE RIFFLE g., Cobble, Boulder) [2]	NO RIFFLE [metric=0] / RUN EMBEDDEDNESS NONE [2] LOW [1] MODERATE [0] RIFFLE [metric=0]
6] GRADIENT (6, 6 DRAINAGE AREA	ft/ml)		GLIDE: Gradient 10 IFFLE: Maximum 10

coess directions, etc.	F) MEASUREMENTS x width x width x depth max, depth bankfull x depth bankfull max, depth floodprone x² width floodprone x² width the odprone x² width the odprone x² width	
Comment RE: Reach consistency/ Is reach typical of steam?, Recreation/ Observed - Inferred, Other/ Sampling observations, Concerns, Access directions, etc. Dec	WWTP / CSO / NPDES / INDUSTRY HARDENED / URBAN / DIRT&GRIME CONTAMINATED / LANDFILL BMPS-CONSTRUCTION-SEDIMENT LOGGING / IRRIGATION / COOLING BANK / ENSION / SURFACE FALSE BANK / MANURE / LAGOON WASH H ₂ 0 / TILE / H ₂ 0 TABLE ACID / MINE / QUARRY / FLOW NATURAL / WETLAND / STAGNANT PARK / GOLF / LAWN / HOME ATMOSPHERE / DATA PAUCITY	
/ Observed - Inferred, Other/	Circle some & COMMENT	Jones .
- 84,251v2 - 84,251v2 - 84,251687 - 84,25243	DJ MAINTENANCE PUBLIC / PRIVATE / BOTH / NA ACTIVE / HISTORIC / BOTH / NA YOUNG-SUCCESSION-OLD SPRAY / SNAG / REMOVED MODIFIED / DIPPED OUT / NA LEVEED / ONE SIDED RELOCATED / CUTOFFS MOVING-BEDLOAD-STABLE ARMOURED / SLUMPS ISLANDS / SCOURED IMPOUNDED / DESICCATED FLOOD CONTROL / DRAINAGE	
Mid 39, 31462	BIAESTHETICS INUISANGE ALGAE INVASIVE MACROPHYTES EXCESS TURBIDITY IDISCOLORATION FOAM / SCUM OIL SHEEN TRASH / LITTER NUISANCE OBOR SLUGE DEPOSITS CSOSISSOS/OUTFALLS ATOM AREA DEPTH	
STAGE 1st -sample pass-2nd 1st -sample pas	0.5 Kin	Stream Drawing:

Ciesal

		190000111011			
Stream & Location:	4 He Miami Rives.	- Ust. O'Bann	on Creek	RM: 24 1 Da	ate: 8/ 01/2022
LMOZ			Name & Affiliation:		
River Code: - (00 - STORET#:		Long. 39 . 2740°	16 184.25833	Y (Mid) Office verified
estima REST TYPES		YPES AN [4] US [3] LAL [0] Latural substrates; ignor	Check OF ORIGIN CIMESTONE [1] TILLS [1] WETLANDS [0] HARDPAN [0] SANDSTONE [0] RIP/RAP [0]	NE (Or 2 & average) QU	ALITY Y [-2] ERATE [-1] Substrate MAL [0] NSIVE [-2] RATE [-1]
quality: 3-Highest quality in	GETATION [1] 3 ROOT	, but not of highest qui (e.g., very large bould p / fast water, or deep S > 70cm [2] WADS [1]	ality or in small amounts o ers in deep or fast water	of highest large Check ONE	MOUNT E (Or 2 & average) IVE >75% [11] ITE 25-75% [7] 5-<25% [3] ABSENT <5% [1] Cover Maximum 20
SINUOSITY DEVI	XCELLENT [7] NONE [6] OOD [5] RECOVE AIR [3] RECOVE	NELIZATION I RED [4]	STABILITY High [3] MODERATE [2] LOW [1]		Channel 18.5
River right looking downstream REROSION NONE / LITTLE [3] MODERATE [2] HEAVY / SEVERE [1] Comments		FLO I FOREST, 13 I SHRUB OF RESIDENT I FENCED F OPEN PAS	OOD PLAIN QUALIT SWAMP [3] R OLD FIELD [2] IAL, PARK, NEW FIELD [R CONSERVA	FION TILLAGE [1] INDUSTRIAL [0] INSTRUCTION [0] It land use(s) Riparlan Maximum 10
MAXIMUM DEPTH Check ONE (ONLYI) 1m [6] 0.7-<1m [4]	CHANNEL WIDTI CHANNEL WIDTI Check ONE (Or 2 & aver POOL WIDTH > RIFFLE WIL	H CUI age) C DTH [2] C TORREN DTH [1] C VERY FA DTH [0] C FAST [1] C MODERA	RRENT VELOCITY heck ALL that apply TIAL [-1] SLOW [1] ST [1] INTERSITE INTERMITTE STE [1] EDDIES [1] for reach - pools and niffle	AL [-1] ENT [-2]	on Potential Try Contact Vary Contact d comment on back) Pool/ Current Maximum 13
Indicate for functiof riffle-obligate s RIFFLE DEPTH BEST AREAS > 10cm [2] BEST AREAS 5-10cm [1] BEST AREAS < 5cm [metric=0] Comments	RUN DEPTH MAXIMUM > 50cm [2] [2] MAXIMUM < 50cm [1]	Check ONE (<i>Or 2 & av</i> RIFFLE / RUN S STABLE (e.g., Cobb	erage). UBSTRATE RIFFI ile, Boulder) [2] , Large Gravel) [1]	population LE / RUN EMBED NONE [2] LOW [1] MODERATE [1] EXTENSIVE [1]	RIFFIE
6] GRADIENT (6.51 DRAINAGE AREA (1090	MODERATE [6-10]	1		%GLIDE:	Gradient 10

FINEASUREMENTS Roodprone x2 width bankfull max, depth bankfull x depth entrench. ratio x bankfull width Comment RE: Reach consistency/ Is reach typical of steam?, Recreation/ Observed - Inferred, Other/ Sampling observations, Concerns, Access directions, etc. Legacy Tree: max, depth W/D ratio X depth Xwidth LOGGING / IRRIGATION / COOLING FALSE BANK / MANURE / LAGOON NATURAL / WETLAND / STAGNANT HARDENED / URBAN / DIRT&GRIME WWTP / CSO / NPDES / INDUSTRY BMPs-CONSTRUCTION-SEDIMENT ATMOSPHERE / DATA PAUCITY ACID / MINE / QUARRY / FLOW WASH H20 / TILE / H20 TABLE PARK / GOLF / LAWN / HOME BANK / EROSION / SURFACE CONTAMINATED / LANDFILL El ISSUES Deep, Fost Run Circle some & COMMENT FLOOD CONTROL / DRAINAGE PUBLIC / PRIVATE / BOTH / NA ACTIVE / HISTORIC / BOTH / NA MODIFIED / DIPPED OUT / NA MOVING-BEDLOAD-STABLE IMPOUNDED / DESICCATED SPRAY / SNAG / REMOVED YOUNG-SUCCESSION-OLD RELOCATED / CUTOFFS DIMAINTENANCE ARMOURED / SLUMPS LEVEED / ONE SIDED ISLANDS / SCOURED -84.258334 -84, 25413 84.25923 INVASIVE MACROPHYTES CSOs/SSOs/OUTFALLS 39.27545 **EXCESS TURBIDITY** SLUDGE DEPOSITS ☐ NUISANCE ALGAE POOL: | >100ft2 | >3ft AREA DEPTH NUISANCE ODOR DISCOLORATION OIL SHEEN
TRASH / LITTER FOAM / SCUM CJ RECREATION Bea. END Mid E ☐ SECCHI DEPTH☐ O UP NORMAL OW 1st-sample pass- 2nd N > 70 cm/ CTB CLARITY --sample pass--STAGE Stream Drawing. □ 20-<40 cm 4) SAMPLED REACH HIGH | 40-70 cm Check ALL that apply < 20 cm DRY CHOSED N > 85%- OPEN CANOPY 30%~<55% DISTANCE 55%~<85% 10%-<30% 0.12 Km 0.15 Km METHOD MADE OTHER D 0.5 Km OTHER 0.2 Km meters

Stream & Location	7: Little Miani River.	- ust. Polk Run	RM: 27	3 Date: 8/02/ 702
LM03		Scorers Full Name & A	Affiliation:	
	001 STORET #:	Lat./Long. 3	9.25309 184.2	81876 Office verified location
1] SUBSTRATE Cheesti BEST TYPES BEST TYPES BLDR /SLABS [16] BOULDER [9] COBBLE [8] GRAVEL [7] BEDROCK [5] NUMBER OF BEST Comments 2] INSTREAM COV quality; 3-Highest quality	POOL RIFFLE OTHER TYPE BOOK POOL RIFFLE OTHE	POOL RIFFLE N [4] N [Check ONE (Or 2 & av. RIGIN STONE [1] [1] SILT ANDS [0] PAN [0] STONE [0] AP [0] STURINE [0] III E [-1] FINES [-2] more common of marginal amounts of highest or fast water, large of, functional pools. BACKWATERS [1] MACROPHYTES [1]	oron location
2 ROOTMATS [1] Comments			, , , , , , , , , , , , , , , , , , ,	Cover Maximum 20
SINUOSITY DE HIGH [4] D MODERATE [3] D LOW [2]	GOOD [5] NONE [6] FAIR [3] RECOVER	NELIZATION STA ☑ HIG RED [4] ☑ MOI	DERATE [2]	Channel Maximum 20
4] BANK EROSION River right looking downstr R EROSION NONE / LITTLE [3] MODERATE [2] HEAVY / SEVERE		FLOOD PLA FOREST, SWAMP [3] SHRUB OR OLD FIEL RESIDENTIAL, PARK.	IN QUALITY CON D [2] NEW FIELD [1] Indicate pre	SERVATION TILLAGE [1] AN OR INDUSTRIAL [0] NG / CONSTRUCTION [0]
5] POOL / GLIDE AI MAXIMUM DEPTH Check ONE (ONLY!) Check ONE (ONLY!) Do.7-<1m [4] 0.4-<0.7m [2] 0.2-<0.4m [1] <0.2m [0] Comments		CURRENT V age) Check ALL th TH [2] TORRENTIAL [-1] Z TH [1] VERY FAST [1] C	at apply SLOW [1] INTERSTITIAL [-1] INTERMITTENT [-2]	ecreation Potential Primary Contact Secondary Contact rice one and comment on back Pool/ Current Maximum 12
Indicate for function of riffle-obligate RIFFLE DEPTH BEST AREAS > 10cm BEST AREAS 5-10cm BEST AREAS < 5cm [metric= Comments	RUN DEPTH [2]	must be large enough to heck ONE (Or 2 & average). RIFFLE / RUN SUBSTRA STABLE (e.g., Cobble, Boulde MOD. STABLE (e.g., Large Gra UNSTABLE (e.g., Fine Gravel, S	TE RIFFLE / RUN E () [2] NONE (vel) [1] LOW Sand) [0] MODE	MBEDDEDNESS [2]
6] GRADIENT (6.3 DRAINAGE ARE		1	%GLIDE:	Gradient 10

		F) MEASUREMENTS X width X depth max. depth bankfull width bankfull X depth WID ratio bankfull max. depth floodprone x² width entrench. ratio Legacy Tree:	on start
Comment RE: Reach consistency/ Is reach typical of steam?, Recreation/ Observed - Interred, <i>Uther</i> / Sampling observations, Consoning, Comment RE: Reach consistency/ Is reach typical of steam?, Recreation/ Observed - Interred, <i>Uther</i> / Sampling observations, Consoning, Conso		WWTP / CSO / NPDES / INDUSTRY HARDENED / URBAN / DIRT&GRIME CONTAMINATED / LANDFILL BMPS-CONSTRUCTION-SEDIMENT LOGGING / IRRIGATION / COOLING BANK / EROSION / SURFACE FALSE BANK / MANURE / LAGOON WASH H20 / TILE / H20 TABLE ACID / MINE / QUARRY / FLOW NATURAL / WETLAND / STAGNANT PARK / GOLF / LAWN / HOME ATMOSPHERE / DATA PAUCITY	My bones por
/ Observed - Interred, <i>Uthelf</i>		Circle some & COMMENT	Mary Milling
S4, 27763	4.28	DJ MAINTENANCE PUBLIC / PRIVATE / BOTH / NA ACTIVE / HISTORIC / BOTH / NA YOUNG-SUCCESSION-OLD SPRAY / SNAG / REMOVED MODIFIED / DIPPED OUT / NA LEVEED / DIPPED OUT / NA LEVEED / DIPPED OUTOFFS MOVING-BEDLOAD-STABLE ARMOURED / SLUMPS ISLANDS / SCOURED IMPOUNDED / DESICCATED FLOOD CONTROL / DRAINAGE	
Somment RE: Reach consistency is Bea, 39.25373 - 2	Fird 39.25107, -8	BJAESTHETICS NUISANGE ALGAE INVASIVE MACROPHYTES EXCESS TURBIDITY DISCOLORATION FOAM / SCUM TRASH / LITTER NUISANGE ODOR SLUDGE DEPOSITS CSOS/SSOS/OUTFALLS POOL: > 10012 > 3ft	Ree Pool
A) SAMPLED REACH Check ALL that apply STAGE	1st - sample pass- 2nd - Life	OTHER CLARITY CLARITY CLARITY CLARITY C.15 Km 1stsemple pass 2nd NUI C.15 Km C.20 cm C.12 Km C.20 cm C.12 Km C.20 cm C.20	Stream Drawing:

Che I A

Stream & Location: Dof Polk Run Little Miani River RM: 21.5 Date: 8/02/202
LMOS Scorers Full Name & Affiliation: MAS -> MBI
River Code: -00 - STORET#: Lat./Long.: 39 . 244521 184 . 29 6381 mid Office verified location
1 JUBS / RA/E Check CIVE / Iwo substrate / YPE BOXES;
BEST TYPES OTHER TYPES ORIGIN
POOL RIFFLE POOL RIFFLE GOALITY
COURT SUIT DINOVERALE II SUUSI
GRAVEL [7] WETLANDS [0] ONORMAL [0] OFREE [1]
SAND [6] X
□ □ BEDROCK [5] (Score natural substrates: ignore □ RIP/RAP [0]
NUMBER OF BEST TYPES: 4 or more [2] sludge from point-sources) LACUSTURINE [0] SO NORMAL (M)
Comments Liver Liv
COAL FINES [-2]
2] INSTREAM COVER Indicate presence 0 to 3: 0-Absent; 1-Very small amounts or if more common of marginal
DUBILIV. Z-MODERATE amounts, but not of bighest quality or in small amounts of bighest.
quality, 3-1 lightest quality in moderate or greater amounts (e.g., very large boulders in deep or fast water, large Check ONE (Or 2 & average)
OVERHANGING VEGETATION [1] POOLS > 70cm [2] OXBOWS, BACKWATERS [1] MODERATE 25-75% [7] AQUATIC MACROPHYTES [1] SPARSE 5-<25% [3]
3 SHALLOWS (IN SLOW WATER) [1] 3 BOULDERS [1] 2 LOGS OR WOODY DEPOIS [4] INTERIOR OF THE STATE O
Z_ROOTMATS [1]
Comments Cover Maximum 11
20
3] CHANNEL MORPHOLOGY Check ONE in each category (Or 2 & average)
SINUOSITY DEVELOPMENT CHANNELIZATION STABILITY
☐ HIGH [4] ☐ EXCELLENT [7] ☐ NONE [6] ☐ HIGH [3]
MODERATE [3] GOOD [5] RECOVERED [4] MODERATE [2]
LOW [2] FAIR [3] RECOVERING [3] LOW [1]
□ NONE [1] □ RECENT OR NO RECOVERY [1] Channel
Comments Maximum 19,5
. 20
4] BANK EROSION AND RIPARIAN ZONE Check ONE in each category for EACH BANK (Or 2 per bank & average)
River right looking downstream RIPARIAN WIDTH FLOOD PLAIN QUALITY
EROSION
MODERATE 191 URBAN OR INDUSTRIAL 101
D RESIDENTIAL, PARK, NEW FIELD [1] D MINING / CONSTRUCTION [0]
Indicate predominant land use(s)
Comments
Maximum II C
5] POOL / GLIDE AND RIFFLE / RUN QUALITY
MAXIMUM DEPTH CHANNEL WIDTH CURRENT VELOCITY Recreation Potential
Check ONE (ONI (On Check ONE (
[2] 1m [6] POOL WIDTH > RIFFLE WIDTH [2] TOPPENTIAL LAI PASI OW 44
□ 0.7-<1m [4]
0.4-<0.7m [2] POOL WIDTH < RIFFLE WIDTH [0] FAST [1] INTERMITED [2]
□ 0.2-<0.4m [1]
LI < 0.2m [0] Indicate for reach - pools and riffles.
Comments
Indicate for functional riffles; Best areas must be large enough to support a population
of riffle-obligate species: Check ONE (Or 2 & average).
RIFFLE DEPTH RUN DEPTH RIFFLE / RUN SUBSTRATE RIFFLE / RUN EMBEDDEDNESS
BEST AREAS > 10cm [2] MAXIMUM > 50cm [2] STABLE (e.g., Cobbie, Boulder) [2]
☐ BEST AREAS 5-10cm [1] ☐ MAXIMUM < 50cm [1] ☐ MOD. STABLE (e.g., Large Gravel) [1] ☐ LOW [1]
☐ BEST AREAS < 5cm ☐ UNSTABLE (e.g., Fine Gravel, Sand) [0] ☐ MODERATE [0] RIFIE
Commonts DEXTENSIVE (-1) RUM 8
Maximum
6] GRADIENT (6,43 ft/mt) VERY LOW LOW [24]
6] GRADIENT (6,43 ft/ml) VERY LOW LOW [2-4]

Comment RE: Reach consistency/ Is reach typical of steam?, Recreation/ Observed - Inferred, Other/ Sampling observations, Concerns, Access directions, etc.

Beg 39,24662, -84.29536

AJ SAMPLED REACH

Check ALL that apply

Chesia

Stream & Location: All Lite Miani River - Camargo Rd. RM: 18.5 Date: Q102/2022
LMO:7 Scorers Full Name & Affiliation: MAS - MBI
River Code: 1 - 10 - STORET #: Lat./Long.: 39 216841 184 314889 Office verified location
1] SUBSTRATE Check ONLYTwo substrate TYPE BOXES; estimate % or note every type present Check ONE (Or 2 & average)
BEST TYPES POOL RIFFLE OTHER TYPES POOL RIFFLE ORIGIN BLDR /SLABS [10]
2] //STREAM COVER Indicate presence 0 to 3: 0-Absent; 1-Very small amounts or if more common of marginal quality; 2-Moderate amounts, but not of highest quality or in small amounts of highest quality; 3-Highest quality in moderate or greater amounts (e.g., very large boulders in deep or fast water, large diameter log that is stable, well developed rootwad in deep / fast water, or deep, well-defined, functional pools. O UNDERCUT BANKS [1] 3 POOLS > 70cm [2] COXBOWS, BACKWATERS [1] MODERATE 25-75% [7] AQUATIC MACROPHYTES [1] SPARSE 5-<25% [3] SHALLOWS (IN SLOW WATER) [1] 3 BOULDERS [1] 2 LOGS OR WOODY DEBRIS [1] NEARLY ABSENT <5% [1] COVERNMENTS
3] CHANNEL MORPHOLOGY Check ONE in each category (Or 2 & average) SINUOSITY DEVELOPMENT CHANNELIZATION STABILITY HIGH [4] EXCELLENT [7] NONE [6] HIGH [3] MODERATE [3] GOOD [5] RECOVERED [4] NONE [1] LOW [2] FAIR [3] RECOVERING [3] LOW [1] NONE [1] POOR [1] RECENT OR NO RECOVERY [1] Channel Maximum 20
A] BANK EROSION AND RIPARIAN ZONE Check ONE in each category for EACH BANK (Or 2 per bank & average) River right looking downstream RIPARIAN WIDTH FLOOD PLAIN QUALITY FLOOD PLAIN QUALITY FLOOD PLAIN QUALITY RIPARIAN WIDTH FLOOD PLAIN QUALITY RIPARIAN OR INDUSTRIAL [0] URBAN OR INDUSTRIAL [0] URBAN OR INDUSTRIAL [0] RIPARIAN (Or 2 per bank & average) RIPARIAN WIDTH RIPARIAN WIDT
MAXIMUM DEPTH Check ONE (ONLYI) Check ONE (Or 2 & average) Dot width = Riffle width [1] Comments CURRENT VELOCITY Check All that apply Check All that appl
Indicate for functional riffles; Best areas must be large enough to support a population of riffle-obligate species: Check ONE (Or 2 & average). Check ONE (Or 2 & average). RIFFLE DEPTH RUN DEPTH RIFFLE / RUN SUBSTRATE RIFFLE / RUN EMBEDDEDNESS BEST AREAS > 10cm [2]
BEST AREAS 5-10cm [1] MAXIMUM < 50cm [1] MOD. STABLE (e.g., Large Gravel) [1] LOW [1] LOW [1] MODERATE [0] RIFICE [1] MAXIMUM STABLE (e.g., Fine Gravel, Sand) [0] EXTENSIVE [-1] Maximum 8
6] GRADIENT (6.35 ft/mi) VERY LOW - LOW [2-4] %POOL:

F) MEASUREMENTS glart bankfull max, depth Roadprone x2 width bankfull x depth K bankfull width entrench. ratio Comment RE: Reach consistency/ Is reach typical of steam?, Recreation/ Observed - Inferred, Other/ Sampling observations, Concerns, Access directions, etc. Tegacy Tree: max, depth W/D ratio Xdepth X width LOGGING / IRRIGATION / COOLING FALSE BANK / MANURE / LAGOON NATURAL / WETLAND / STAGNANT WWTP / CSO / NPDES / INDUSTRY HARDENED / URBAN / DIRT&GRIME BMPs-CONSTRUCTION-SEDIMENT ACID / MINE / QUARRY / FLOW ATMOSPHERE / DATA PAUCITY WASH H20 / TILE / H20 TABLE PARK / GOLF / LAWN / HOME BANK / EROSION / SURFACE CONTAMINATED / LANDFILL El ISSUES Girde some & COMMENT FLOOD CONTROL / DRAINAGE PUBLIC / PRIVATE / BOTH / NA ACTIVE / HISTORIC / BOTH / NA MODIFIED / DIPPED OUT / NA MOVING-BEDLOAD-STABLE IMPOUNDED / DESICCATED SPRAY / SNAG / REMOVED YOUNG-SUCCESSION-OLD RELOCATED / CUTOFFS DIMAINTENANCE ARMOURED / SLUMPS LEVEED / ONE SIDED ISLANDS / SCOURED -84,314889 -84,31583 84.31430 INVASIVE MACROPHYTES 116841 CSOS/SSOS/OUTFALLS 39.21917 2145 EXCESS TURBIDITY SLUDGE DEPOSITS ☐ NUISANCE ALGAE AREA DEPTH INUISANCE ODOR DISCOMORATION Pool TRASH / LITTER FOAM / SCUM OIL SHEEN Beg くご CJ RECREATION EBO ☐ SECCHI DEPTH ZNORMAL! Z> 70 cm/ CTB -sample pass-CLARITY STAGE 20-<40 cm Stream Drawing AJ SAMPLED REACH 40-70 cm Check ALL that apply MOT -_<20 cm ORY HIGH an L CHOSED -410%- CLOSED Z > 85%- OPEN CANOPY DISTANCE 25%-<85% 10%-<30% 30%~<55% 0.15 Km 0.12 Km METHOD 0.5 Km OTHER L. LINE 0.2 Km OTHER meters BOAT WADE OTHER

ZODDD

Chesa

OHEI Score:	5.8
-------------	-----

Charm a Lacation I III III III
Stream & Location: Little Mian. River - cance access dst. SR126 RM: 17.7 Date: 8/02/2022
Scorers Full Name & Affiliation: MAS-MBI
River Code: 11 - 001 - STORET#: Lat./Long.:39 .209211 184.302324 Office verified location
1] SUBSTRATE Check ONLY Two substrate TYPE BOXES; estimate % or note every type present Check ONE (Or 2 & average)
BEST TYPES POOL RIFFLE OTHER TYPES POOL RIFFLE ORIGIN QUALITY
□□ BLDR /SLABS [10]
BOULDER [9]
GRAVEL [7] C Y D ISILT [2] C DHARDPAN [0] TEPEE [1]
SAND [6] ARTIFICIAL [0] SANDSTONE [0] DE CENTENSIVE [-2]
SAND [6] SAND [6] SANDSTONE [0] MEXTENSIVE [-2] Meximum Advantage from point-sources SANDER OF BEST TYPES: 4 or more [2] sludge from point-sources LACUSTURINE [0] SANDSTONE [0] NORMAL [0] SANDSTONE [1] Meximum 20 SANDSTONE [1]
Comments 3 or less [0] SHALE [-1] NONE [1]
COAL FINES [-2]
2] //VSTREAM COVER Indicate presence 0 to 3: 0-Absent; 1-Very small amounts or if more common of marginal
Quality 2-Moderate amounts, but not of highest quality or in small amounts of highest
quality; 3-Highest quality in moderate or greater amounts (e.g., very large boulders in deep or fast water, large diameter log that is stable, well developed rootwad in deep / fast water, or deep, well-defined, functional pools.
UNDERCUT BANKS [1] POOLS > 70cm [2] OXBOWS, BACKWATERS [1] MODERATE 25-75% [7]
OVERHANGING VEGETATION [1] SPARSE 5-<25% [3]
SHALLOWS (IN SLOW WATER) [1] 3 BOULDERS [1] / LOGS OR WOODY DEBRIS [1] NEARLY ABSENT <5% [1]
Comments Cover Maximum No
3] CHANNEL MORPHOLOGY Check ONE in each category (Or 2 & average)
SINUOSITY DEVELOPMENT CHANNELIZATION STABILITY
☐ HIGH [4] ☐ EXCELLENT [7] ☐ NONE [6] ☐ HIGH [3] ☐ MODERATE [3] ☐ GOOD [5] ☐ RECOVERED [4] ☐ MODERATE [2]
LOW [2] FAIR [3] RECOVERING [3] LOW [1]
□ NONE [1] □ POOR [1] □ RECENT OR NO RECOVERY [1] Channel
Comments Maximum 17.5
4] BANK EROSION AND RIPARIAN ZONE Check ONE in each category for EACH BANK (Or 2 per bank & average)
River right looking downstream RIPARIAN WIDTH FLOOD PLAIN QUALITY
EROSION GONSERVATION TILLAGE (4)
□ NONE / LITTLE [3] □ ☑ MODERATE 10-50m [3] □ □ SHRUB OR OLD FIELD [2] □ □ URBAN OR INDUSTRIAL [0]
HEAVY / SEVERE [1] NARROW 5-10m [2] RESIDENTIAL, PARK, NEW FIELD [1] MINING / CONSTRUCTION [0]
NONE [6] Indicate predominant land use(s)
Comments Past of the Past of t
5] POOL / GLIDE AND RIFFLE / RUN QUALITY MAXIMUM DEPTH CHANNEL WIDTH CURRENT VELOCITY Recreation Potential
Cheek ONE (ONIV)
Ø > im [6] □ POOL WIDTH > RIFFLE WIDTH [2] □ TORRENTIAL [-1] Ø SLOW [1]
Corrie one and comment on back
0.4-<0.7m [2] POOL WIDTH < RIFFLE WIDTH [0] PAST [1] INTERMITTENT [-2] (circle one and comment on back)
□ 0.4<0.7m [2] □ 0.2<0.4m [1] □ 0.2<0.4m [1] □ < 0.2m [0] POOL WIDTH < RIFFLE WIDTH [0] □ FAST [1] □ INTERMITTENT [-2] □ INTERMITTENT [-2] □ INDICATE [1] □ INTERMITTENT [-2] □ INDICATE [1] □ INDICATE [1] □ INTERMITTENT [-2]
O.4~0.7m [2] O.2~0.4m [1] O.2~0.4m [1] O.2~0.4m [1] O.2~0.2m [0] Comments POOL WIDTH < RIFFLE WIDTH [0] FAST [1] INTERMITTENT [-2] MODERATE [1] Pool Current Maximum
0.4-<0.7m [2]
0.4~0.7m [2]
0.4~0.7m [2]
O.4-<0.7m [2]
O.4-<0.7m [2]
0.4-<0.7m [2]
O.2-<0.4m [1]
0.4-<0.7m [2]

Ess directions, etc. F) MEASUREMENTS X depth max. depth bankfull X depth bankfull X depth bankfull x depth confront x depth floodprone x² width entrench. ratio Legacy Tree:	
Comment RE: Reach consistency/ is reach typical of steam?, Recreation/ Observed - Inferred, Other/ Sampling observations, Concerns, Access directions, etc. Comment RE: Reach consistency/ is reach typical of steam?, Recreation/ Observed - Inferred, Other/ Sampling observations, Concerns, Access directions, etc. Comment RE: Reach consistency/ is reach typical of steam?, Recreation/ Observed - Inferred, Other/ Sampling observations, Concerns, Access directions, etc. Comment RE: Reach consistency/ is reach typical of steam?, Recreation/ Observed - Inferred, Other/ Sampling observations, Concerns, Access directions, etc. Concerns,	
/ Observed - Inferred, Other/	
PUBLIC / PRIVATE/VA/VCE PUBLIC / PRIVATE / BOTH / NA ACTIVE / HISTORIC / BOTH / NA YOUNG-SUCCESSION-OLD SPRAY / SNAG / REMOVED MODIFIED / DIPPED OUT / NA LEVEED / ONE SIDED RELOCATED / CUTOFFS MOVING-BEDLOAD-STABLE ARMOUNED / SLUMPS ISLANDS / SCOURED IMPOUNDED / DESICCATED FLOOD CONTROL / DRAINAGE	
BIAESTHETICS NUISANGE ALGAE INVASIVE MACROPHYTES EXCESS TURBIDITY INVASIVE MACROPHYTES EXCESS TURBIDITY INVASIVE OF INVISANCE OF INVISANCE OF INVISANCE OF INTAGENERAL OF INVISANCE O	
	Stream Drawing:

	und Google	Socialient	Tota Grieci			-
Stream & Location:	Little Miani River .	- Wooster Pike	- Milfocol	RM: 13	Date: 8	03/2022
LM09		Scorers Full Na	ame & Affiliation			
River Code: - [OOL - STORET#:		ong. 39 - 1689			Office verified location
estima REST TYPES	k ONL YTwo substrate TYPE BOXES ate % or note every type present POOL RIFFLE HARDPAN DETRITUS MUCK 2 ARTIFICIAL (Score nature) TYPES: 4 or more 2 sludge for some substrate 3 sludge for some substrate 4 sludge for some substrate 5 sludge for some	POOL RIFFLE A	Check ORIGIN LIMESTONE [1] TILLS [1] WETLANDS [0] HARDPAN [0] SANDSTONE [0] RIP/RAP [0] LACUSTURINE [0] SHALE [-1] COAL FINES [-2]	SILT DEDNESS	rage) QUALITY HEAVY [-2] MODERATE [-1] FREE [-1] EXTENSIVE [-1] MODERATE [-1] NORMAL [0]	2) (18
quality: 3-Highest quality i	GETATION [1] O ROOTWAL	t not of highest quali ., very large boulder ast water, or deep, v 70cm [2]O DS [1]A	ty or in small amounts s in deep or fast wate	s of highest er, large Che al pools. ERS [1] M TES [1] S	AMOUNT ck ONE (Or 2 & KTENSIVE >75° ODERATE 25-7 PARSE 5-<25% EARLY ABSENT Co Maxin	average) % [11] 5% [7] [3] I <5% [1]
SINUOSITY DEV HIGH [4] E MODERATE [3] G LOW [2] G	HOLOGY Check ONE in each cate /ELOPMENT CHANNEL EXCELLENT [7] NONE [6] BOOD [5] RECOVERED FAIR [3] RECOVERIN POOR [1] RECENT OR	LIZATION D [4]	STABILITY THIGH [3] MODERATE [2] LOW [1]	1	<i>Cha</i> Maxir	
River right looking downstres EROSION NONE / LITTLE [3] MODERATE [2] HEAVY / SEVERE [1] Comments		FLOC FOREST, SU SHRUB OR RESIDENTIA	OD PLAIN QUAL VAMP [3] OLD FIELD [2] NL, PARK, NEW FIELI	ITY CON CON	SERVATION TIL AN OR INDUST NG / CONSTRUCT dominant land us iparian. Rina	RIAL [0] CTION [0]
5] POOL / GLIDE AN. MAXIMUM DEPTH Check ONE (ONLY!) > 1m [6] 0.7<1m [4] 0.4<0.7m [2] 0.2<0.4m [1] < 0.2m [0] Comments	CHANNEL WIDTH CHECK ONE (Or 2 & average) POOL WIDTH > RIFFLE WIDTH POOL WIDTH > RIFFLE WIDTH POOL WIDTH < RIFFLE WIDTH) Ch [2] ☐ TORRENT [1] ☐ VERY FAS [0] Ø FAST [1] Ø MODERAT	RENT VELOCITY Beck ALL that apply AL [-1] SLOW [1] T [1] INTERST INTERMIT E [1] Z EDDIES [For reach - pools and reach		_	ontact ontact ton back)
Indicate for funct of riffle-obligate s RIFFLE DEPTH BEST AREAS > 10cm [2] BEST AREAS 5-10cm [1] BEST AREAS < 5cm [metric=0] Comments	RUN DEPTH RI MAXIMUM > 50cm [2] ST MAXIMUM < 50cm [1] MC	ck ONE (Or 2 & ave IFFLE / RUN SL ABLE (e.g., Cobbl	rage) IBSTRATE RIF e, Boulder) [2] Large Gravel) [1]	FLE / RUN EI NONE LOW I	□NO RIFFL MBEDDEDN [2] 1]	iffle / g
6] GRADIENT (6.19 DRAINAGE AREA	MODERATE [6-10]		%POOL:) %GLIDE:()%RIFFLE:(Grad Maxin	# 1 1 1 N # 1

FI MEASUREMENTS floodprone x2 width bankfull max. depth x bankfull width bankfull X depth entrench. ratio Comment RE: Reach consistency/ Is reach typical of steam?, Recreation/ Observed - Inferred, Other/ Sampling observations, Concerns, Access directions, etc. Legacy Tree: max, depth W/D ratio X depth Bridge X WIGHT HARDENED / URBAN / DIRT&GRIME BMPs-CONSTRUCTION-SEDIMENT LOGGING / IRRIGATION / COOLING FALSE BANK / MANURE / LAGOON NATURAL / WETLAND / STAGNANT WWTP / CSO / NPDES / INDUSTRY ACID / MINE / QUARRY / FLOW ATMOSPHERE / DATA PAUCITY BANK / EROSION / SURFACE WASH H20 / TILE / H20 TABLE PARK / GOLF / LAWN / HOME CONTAMINATED / LANDFILL EJISSI/E Laurch concrete Circle some & COMMENT FLOOD CONTROL / DRAINAGE PUBLIC / PRIVATE / BOTH / NA ACTIVE / HISTORIC / BOTH / NA MODIFIED / DIPPED OUT / NA MOVING-BEDLOAD-STABLE IMPOUNDED / DESICCATED YOUNG-SUCCESSION-OLD SPRAY / SNAG / REMOVED RELOCATED / CUTOFFS DIMAINTENANCE ARMOURED / SLUMPS LEVEED / ONE SIDED ISLANDS / SCOURED Back -84.296643 Wafer -84.29798 29510 700 Graves 168967 ☐ NUISANCE ALGAE☐ INVASIVE MACROPHYTES Grave. CSOs/SSOs/OUTFALLS 39.17078 39,16710 BIAESTHETICS EXCESS TURBIDITY
DISCOLORATION
FOAM / SCUM Lilloc SLUDGE DEPOSITS POOL: 0>100ft2 0>3ft AREA DEPTH INUISANCE ODOR TRASH / LITTER Bar 39 OIC SHEEN CJ RECREATION Find Mid CONORMAL DLOW CE ☐ SECCHI DEPTH☐ A> 70 cm/ CTB -sample pass-CLARITY STAGE □ 20-<40 cm Stream Drawing A) SAMPLED REACH 140-70 cm Check ALL that apply □ < 20 cm HIGH <10%- CLOSED □ > 85%- OPEN CANOPY 10%~<30% DISTANCE 25%-<85% 30%~55% 0.5 Km 0.2 Km 0.15 Km 0.12 Km 0.12 Km 0.15 Km N. BOAT

WADE

I. LINE

OTHER METHOD meters

Chesa

QHEI Score:	85.0
-------------	------

Stream & Location: Little Miami River - Mt. Carmel + Round Bottom Rd. RM: 10.9 Date: 8/03/2022
LMII Scorers Full Name & Affiliation: MAS-MBI
River Code: - 00 - STORET#: Lat./Long.: 39.149303 184.315429 MID Office verified location
1] SUBSTRATE Check ONLYTwo substrate TYPE BOXES; estimate % or note every type present Check ONE (Or 2 & average)
BEST TYPES POOL RIFFLE OTHER TYPES POOL RIFFLE ORIGIN OUALITY LIMESTONE [1] DETRITUS [3] X LIMESTONE [4] DETRITUS [4] Substrate Substrate Substrate Substrate Substrates ignore RIP/RAP [0] DETRITUS [4] SUBSTRATE [4] SUBSTRATE SUBSTRA
NUMBER OF BEST TYPES: 24 or more [2] sludge from point-sources) LACUSTURINE [0] Waximum 20 Comments Control Coal Fines [-2] Coal Fines [-2]
2] //STREAM COVER Indicate presence 0 to 3: 0-Absent; 1-Very small amounts or if more common of marginal quality; 2-Moderate amounts, but not of highest quality or in small amounts of highest quality; 3-Highest quality in moderate or greater amounts (e.g., very large boulders in deep or fast water, large diameter log that is stable, well developed rootwad in deep / fast water, or deep, well-defined, functional pools. O UNDERCUT BANKS [1]
3] CHANNEL MORPHOLOGY Check ONE in each category (Or 2 & average) SINUOSITY DEVELOPMENT CHANNELIZATION STABILITY HIGH [4] EXCELLENT [7] NONE [6] HIGH [3] MODERATE [3] GOOD [5] RECOVERED [4] MODERATE [2] LOW [2] FAIR [3] RECOVERING [3] LOW [1] NONE [1] POOR [1] RECENT OR NO RECOVERY [1] Comments Channel Maximum Maximum 20
4] BANK EROSION AND RIPARIAN ZONE Check ONE in each category for EACH BANK (Or 2 per bank & average) River right looking downstream RIPARIAN WIDTH EROSION Wide > 50m [4] Forest, SWAMP [3] Conservation Tillage [1] NONE / LITTLE [3] MODERATE 10-50m [3] SHRUB OR OLD FIELD [2] URBAN OR INDUSTRIAL [0] MODERATE [2] NARROW 5-10m [2] RESIDENTIAL, PARK, NEW FIELD [1] MINING / CONSTRUCTION [0] HEAVY / SEVERE [1] Very NARROW < 5m [1] FENCED PASTURE [1] Indicate predominant land use(s) past 100m riparian. Riparian Maximum Comments
MAXIMUM DEPTH Check ONE (ONLYI) Check ONE (ONLYI) Check ONE (Or 2 & average) Check ONE (Or 2 & average) Check ONE (Or 2 & average) Check ALL that apply Chec
Indicate for functional riffles; Best areas must be large enough to support a population of riffle-obligate species: Check ONE (Or 2 & average). RIFFLE DEPTH RUN DEPTH RIFFLE / RUN SUBSTRATE RIFFLE / RUN EMBEDDEDNESS BEST AREAS > 10cm [2] BEST AREAS > 10cm [1] BEST AREAS 5-10cm [1] MAXIMUM > 50cm [1] MOD. STABLE (e.g., Cobble, Boulder) [2] WAXIMUM > 50cm [1] MODERATE [0] Comments RIFFLE / RUN EMBEDDEDNESS AND [2] NONE [2] NONE [2] NONE [2] NONE [2] NONE [2] NONE [2] LOW [1] RIFFLE / RUN EMBEDDEDNESS AND [2] RIFFLE / RUN EMBEDDEDNESS RIFFLE / RUN EMBEDDEDNESS AND [2] RIFFLE / RUN EMBEDDEDNESS RIFFLE / RUN E
6] GRADIENT (G.14 ft/mi) UVERY LOW [2-4] %POOL: %GLIDE: Gradient Note and Control of the contro

ess directions, etc.			F) MEASUREMENTS X width X depth max. depth Y bankfull X depth bankfull X depth bankfull X depth MID ratio bankfull max. depth floodprone x² width entrench. ratio Legacy Tree:		
Comment RE: Reach consistency/ Is reach typical of steam?, Recreation/ Observed - Inferred, Other/ Sampling observations, Concerns, Access directions, etc. Sea 39,14994 - 64.31258			WWTP / CSO / NPDES / INDUSTRY HARDENED / URBAN / DIRT&GRIME CONTAMINATED / LANDFILL BMPS-CONSTRUCTION-SEDIMENT LOGGING / IRRIGATION / COOLING BANK / EROSION / SURFACE FALSE BANK / MANURE / LAGOON WASH H ₂ 0 / TILE / H ₂ 0 TABLE ACID / MINE / QUARRY / FLOW NATURAL / WETLAND / STAGNANT PARK / GOLF / LAWN / HOME ATMOSPHERE / DATA PAUCITY		Pr Zy c
/ Observed - Inferred, Other/			Circle some & COMMENT		
Is reach typical of steam?, Recreation 54, 31258	-84.315429	84.31778	DJ MAINTENANCE PUBLIC / PRIVATE / BOTH / NA ACTIVE / HISTORIC / BOTH / NA YOUNG-SUCCESSION-OLD SPRAY / SNAG / REMOVED MODIFIED / DIPPED OUT / NA LEVEED / ONE SIDED RELOCATED / CUTOFFS MOVING-BEDLOAD-STABLE ARMOURED / SLUMPS ISLANDS / SCOURED IMPOUNDED / DESICCATED FLOOD CONTROL / DRAINAGE		
Sea 39, 14994 -	39.14 9303	end 39.14821,-	BJAESTHETICS INUISANCE ALGAE INVASIVE MACROPHYTES EXCESS TURBIDITY INTO INTO INTO INTO INTO INTO INTO INTO		
AJ SAMPLED REACH Check All that apply	METHOD STAGE	O WADE CHIĞH CO	CLARITY CLAR	Stream Drawing:	× End e

411 Gravel Bar canoe Gravel Bar × End

Chesa

OHEI Score:	89.25

		110 000 7 100	3001110111	Tiola Office			
Stream & Location	: Little Mian	i River New-	town Rd		RM:	8 Date	2.8/03/50
LM1.2		50	corers Full I	lame & Affiliation	on: MAS		
River Code. -	001	STORET#:		Long. 39 .13	7303 184	353777	Office verifie
BEST TYPES BLDR /SLABS [10] BOULDER [9] COBBLE [8] GRAVEL [7] SAND [6] BEDROCK [5] NUMBER OF BEST Comments 2] INSTREAM COV quality; 3-Highest quality diameter log that is stable	TYPES: 24 or note every pool of the present quality; 2-Moderate or green, well developed	ery type present OTHER TYPES HARDPAN [4] DETRITUS [3] MUCK [2] SILT [2] ARTIFICIAL [0] (Score natural s r more [2] sludge from r less [0] nnce 0 to 3: 0-Absent; lerate amounts, but no leater amounts (e.g., v rootwad in deep / fast	POOL RIFFLE Substrates; ignored point-sources 1-Very small among of highest quality large boulded water, or deep,	Che ORIGIN LIMESTONE [TILLS [1] WETLANDS [0] SANDSTONE RIP/RAP [0] LACUSTURINI SHALE [-1] COAL FINES [Illy or in small amounts in deep or fast well-defined, function	SILT SILT O	average) QUAL HEAVY [MODERA NORMAL FREE [1] EXTENS MODERA NORMAL	LITY ATE [-1] Substitution L[0] 8 ATE [-1] Maxim 20 UNT or 2 & average)
UNDERCUT BANK COVERHANGING V SHALLOWS (IN S ROOTMATS [1] Comments	KS [1] /EGETATION [1]	POOLS > 700	cm [2][[1]]	DXBOWS, BACKW AQUATIC MACROP OGS OR WOODY	ATERS [1] PHYTES [1]	MODERATE SPARSE 5- NEARLY AB	25-75% [7]
☐ HIGH [4] ☐ MODERATE [3] ☐ ☐ LOW [2] ☐	PHOLOGY Chec VELOPMENT EXCELLENT [7] GOOD [5] FAIR [3] POOR [1]	CHANNELIZ CHANNELIZ NONE [6] RECOVERED [4] RECOVERING [6] RECENT OR NO	ATION 1] 3]	STABILITY HIGH [3] MODERATE LOW [1]	[2]	J	Channel Maximum 20
Comments	RIPAR	SIAN WIDTH	FLO R FOREST, S SHRUB OF RESIDENT FENCED P	OD PLAIN QUA WAMP [3] OLD FIELD [2] AL, PARK, NEW FIE		CONSERVATION IRBAN OR IND MINING / CONS predominant land Om riparian.	TRUCTION [0]
5] POOL / GLIDE AIM MAXIMUM DEPTH Check ONE (ONLYI) > 1m [6] 0.7~1m [4] 0.4~0.7m [2] 0.2~0.4m [1] < 0.2m [0] Comments	CHAN Check ON POOL WIDTH	IVW OUALITY INEL WIDTH E (Or 2 & average) I>RIFFLE WIDTH [2] I = RIFFLE WIDTH [1] I < RIFFLE WIDTH [0]	CI TORRENT VERY FA:	RENT VELOCI neck ALL that apply IAL [4] SLOW ST [1] INTERS INTERI TE [1] EDDIES for reach - pools and	(1) STITIAL [-1] MITTENT [-2]	Recreation Primary Secondary (circle one and cor	Contact V Contact Imment on back Pool/ Current Maximum
Indicate for function of riffle-obligate RIFFLE DEPTH BEST AREAS > 10cm [7] BEST AREAS < 5cm [metric=0]	SPECIES: RUN D MAXIMUM MAXIMUM	Check © EPTH RIFF > 50cm [2] ☐ STAB < 50cm [1] ☐ MOD.	DNE (Or 2 & ave LE / RUN S LE (e.g., Cobb STABLE (e.g.,	rage). JBSTRATE R e. Boulder) [2]	IFFLE / RUN	NO R I EMBEDDE DNE [2] DW [1] DDERATE [0] TENSIVE [-1]	RIFFLE [metric= DNESS RIFFLE [metric= RUM]
ORAINAGE AREA	MOI	Y LOW - LOW [2-4] DERATE [6-10] 1 - VERY HIGH [10-6	i I	%POOL:	%GLIDE	\rightarrow	Gradient 10

	F) MEASUREMENTS X width X depth mex. depth X bankfull width bankfull X depth WID ratio bankfull max. depth floodprone x² width entrench. ratio Legacy Tree:	
Comment RE: Keach consistency is read in specific Seq. 231.27 - 84.35127 Mid - 39.13876 - 84.35629	E//SSUES WWTP / CSO / NPDES / INDUSTRY HARDENED / URBAN / DIRT&GRIME CONTAMINATED / LANDFILL BMPs-CONSTRUCTION-SEDIMENT LOGGING / IRRIGATION / COOLING BANK / EROSION / SURFACE FALSE BANK / MANURE / LAGOON WASH H ₂ 0 / TILE / H ₂ 0 TABLE ACID / MINE / QUARRY / FLOW NATURAL / WETLAND / STAGNANT PARK / GOLF / LAWN / HOME ATMOSPHERE / DATA PAUCITY	Newtown RJ
	Circle some & COMMENT Y	Igland
-84.35629 -84.35629	D) MAINTENANCE PUBLIC / PRIVATE / BOTH / NA ACTIVE / HISTORIC / BOTH / NA YOUNG-SUCCESSION-OLD SPRAY / SNAG / REMOVED MODIFIED / DIPPED OUT / NA LEVEED / ONE SIDED RELOCATED / CUTOFFS MOVING-BEDLOAD-STABLE ARMOURED / SLUMPS ISLANDS / SCOURED IMPOUNDED / DESICCATED	Carlo Carlo Con Con Con Con Con Con Con Con Con Co
Deg - 39.131577 - Mid - 39.13876	ARITY BJAESTHETICS ARITY BJAESTHETICS INUISANCE ALGAE INVASIVE MACROPHYTES INVASIVE MACROPHYTES INVASIVE MACROPHYTES INVASIVE MACROPHYTES INVASIVE MACROPHYTES INVISANCE ALGAE INVISANCE OBOR INVISANCE OBO	Cept Limestone Boulders
A) SAMPLED REACH Check ALL that apply METHOD STAGE D BOAT 1st-sample pass-2nd D WADE D HIGH D L. LINE D PRORMAU	PY CL/A	IN \

CHESA

Stream & Location.	Little Miami Rives	R.R. Trest le	e-Mariemont	RM: 6.83	Date: 8/03/2022
LM13		Scorers Fu	II Name & Affiliation		-21992
River Code: 11-	DOL - STORET	#:	at./Long. 39 - 1401		76 Mid. Office verified
BEST TYPES	A A HAR A B DETI PRITUS [3] A SECOND REPORT FOR THE POOL RIF	FLE ORIGIN	ONE (Or 2 & average Hill Hill SILT M Hill Hill	e) QUALITY EAVY [-2] ODERATE [-1] Substrate ORMAL [0]	
quality: 3-Highest quality	in moderate or greater amou e, well developed rootwad in KS [1] <u>\$2</u> PO /EGETATION [1] 2 RO	unts, but not of highest ints (e.g., very large bo deep / fast water, or de	quality or in small amount pulders in deep or fast wate eep, well-defined, function OXBOWS, BACKWAT AQUATIC MACROPH	s of highest er, large Check (al pools. EXTE ERS [1] MOD YTES [1] SPAR	AMOUNT ONE (Or 2 & average) NSIVE >75% [11] ERATE 25-75% [7] SE 5-<25% [3] RLY ABSENT <5% [1] Cover Maximum 20
SINUOSITY DE HIGH [4]	EXCELLENT [7] NONE GOOD [5] RECO FAIR [3] RECO	ANNELIZATION	STABILITY HIGH [3] MODERATE [2] LOW [1]		Channel (8.5)
4] BANK EROSION. River right looking downstre EROSION NONE / LITTLE [3] MODERATE [2] HEAVY / SEVERE [OTH R PORES m [3] D SHRUE 2] Z Z RESIDI 5m [1] D FENCE	ategory for EACH BANK (ILOOD PLAIN QUAL ST, SWAMP [3] B OR OLD FIELD [2] ENTIAL, PARK, NEW FIEL D PASTURE [1] PASTURE, ROWCROP [0]	ITY CONSER URBAN D [1] MINING	EVATION TILLAGE [1] OR INDUSTRIAL [0] CONSTRUCTION [0] inant land use(s)
5] POOL / GLIDE AM MAXIMUM DEPTH Check ONE (ONLYI) > 1m [6] 0.7-<1m [4] 0.4-<0.7m [2] 0.2-<0.4m [1] < 0.2m [0] Comments	AD RIFFLE / RUN OUA CHANNEL WI Check ONE (Or 2 & a POOL WIDTH > RIFFLE POOL WIDTH < RIFFLE	DTH average) [WIDTH [2]	CURRENT VELOCIT Check ALL that apply RENTIAL [-1] SLOW [1] FAST [1] INTERST [1] INTERMI ERATE [1] EDDIES cate for reach - pools and	Prij. Sect. (ctricte on	eation Potential Imary Contact Ondary Contact The and comment on back Pool/ Current Maximum
Indicate for function of riffle-obligate RIFFLE DEPTH BEST AREAS > 10cm [7] BEST AREAS < 5cm [metric=1] Comments	RUN DEPTH 2] MAXIMUM > 50cm [2 1] MAXIMUM < 50cm [1	Check ONE (Or 2 of RIFFLE / RUI RIFFLE / RUI STABLE (e.g., C	& average). N SUBSTRATE RIF	t a population FLE / RUN EMB NONE [2] LOW [1] MODERA EXTENSIV	TE [0] Riffle
6] GRADIENT (6.0) DRAINAGE AREA (172		3-10]	%POOL:) %GLIDE:)%RIFFLE:	Gradient 10

ess directions, etc.	F) MEASUREMENTS x width x depth max. depth y bankfull x depth bankfull x depth WID ratio bankfull max. depth floedprone x² width entrench. ratio Legacy Tree:
of steam?, <i>Recreation/</i> Observed - Inferred, <i>Other/</i> Sampling observations, Concerns, Access directions, etc.	WWTP / CSO / NPDES / INDUSTRY HARDENED / URBAN / DIRT&GRIME CONTAMINATED / LANDFILL BMPS-CONSTRUCTION-SEDIMENT LOGGING / IRRIGATION / COOLING BANK / EROSION / SURFACE FALSE BANK / MANURE / LAGOON WASH H ₂ 0 / TILE / H ₂ 0 TABLE ACID / MINE / QUARRY / FLOW NATURAL / WETLAND / STAGNANT PARK / GOLF / LAWN / HOME ATMOSPHERE / DATA PAUCITY
/ Observed - Inferred, Other/	Circle some & COMMENT
Reach consistency/ Is reach typical of steam?, Recreation 39, 141 6, -84, 36496 39, 140 25, -84, 37040	DJ MAINTENANCE PUBLIC / PRIVATE / BOTH / NA ACTIVE / HISTORIC / BOTH / NA YOUNG-SUCCESSION-OLD SPRAY / SNG / REMOVED MODIFIED / DIPPED OUT / NA LEVEED / ONE SIDED RELOCATED / CUTOFFS MOVING-BEDLOAD-STABLE ARMOURED / SLUMPS ISLANDS / SCOURED IMPOUNDED / DESICCATED FLOOD CONTROL / DRAINAGE
Comment RE: Reach consistency/Is reach typical of s Beg 39, 14166, -84, 36496 Mid 39, 14025, -84, 37040	ARITY ARITY BIAESTHETICS ARITY BINUSANCE ALGAE m Com Com Com Com Com Com Com Com Com
	DISTANCE LLOW

Stream & Location: Little Migni River Ust Duck Greek RM:	4 Date: 8 03 20 ZZ
LMIS Scorers Full Name & Affiliation: MAS	
River Code: = 00 = STORET #: Lat./Long.:39 . 117828 /8	
1] SUBSTRATE Check ONL / Two substrate TYPE BOXES; estimate % or note every type present BEST TYPES POOL RIFFLE OTHER TYPES BLDR / SLABS [10]	QUALITY QUALITY HEAVY [-2] MODERATE [-1] Substrate NORMAL [0] FREE [1]
2] INSTREAM COVER Indicate presence 0 to 3: 0-Absent; 1-Very small amounts or if more common of ma quality; 2-Moderate amounts, but not of highest quality or in small amounts of higher quality; 3-Highest quality in moderate or greater amounts (e.g., very large boulders in deep or fast water, large diameter log that is stable, well developed rootwad in deep / fast water, or deep, well-defined, functional pools. © UNDERCUT BANKS [1]	Check ONE (Or 2 & average) EXTENSIVE >75% [11] MODERATE 25-75% [7] SPARSE 5-<25% [3]
3] CHANNEL MORPHOLOGY Check ONE in each category (Or 2 & average) SINUOSITY DEVELOPMENT CHANNELIZATION STABILITY HIGH [4]	Channel Maximum 20
□ □ NONE / LITTLE [3] □ □ MODERATE 10-50m [3] □ □ SHRUB OR OLD FIELD [2] □ □ MODERATE [2] □ □ NARROW 5-10m [2] □ □ RESIDENTIAL, PARK, NEW FIELD [1] □ □ HEAVY / SEVERE [1] □ □ VERY NARROW < 5m [1] □ □ FENCED PASTURE [1] Indi	R CONSERVATION TILLAGE [1] URBAN OR INDUSTRIAL [0] MINING I CONSTRUCTION [0] icate predominant land use(s) it 100m riparian. Riparian Maximum 10
MAXIMUM DEPTH CHANNEL WIDTH Check ONE (ONLY!) Check ONE (Or 2 & average) Check ONE (Or 2 & average) Check ALL that apply Check ALL that apply Check ALL that apply Check ALL that apply TORRENTIAL [-1] ZSLOW [1] DOJ-<1m [4] POOL WIDTH = RIFFLE WIDTH [1] ZVERY FAST [1] INTERSTITIAL [-1] DOJ-<-0.4m [1] OJ-<-0.4m [1] OJ-<-0.2m [0] ALCONDERS Comments	Pool/ Current Maximum
BEST AREAS > 10cm [2] MAXIMUM > 50cm [2] DISTABLE (e.g., Cobbie, Boulder) [2] MAXIMUM < 50cm [1] MOD. STABLE (e.g., Large Gravel) [1]	NO RIFFLE [metric=0] RUN EMBEDDEDNESS NONE [2] LOW [1] MODERATE [0] RUN EXTENSIVE [-1] Maximum 8
6] GRADIENT (6.18 ft/ml) VERY LOW - LOW [2-4]	

Bear 39 1973 -84 3994		FJ MEASUREMENTS R width R depth max. depth R bankfull width bankfull R depth WID ratio bankfull max. depth floodprone x² width entrench. ratio Legacy Tree:
Signature Sig		WWYTP / CSO / NPDES / INDUSTRY HARDENED / URBAN / DIRT&GRIME CONTAMINATED / LANDFILL BMPS-CONSTRUCTION-SEDIMENT LOGGING / IRRIGATION / COOLING BANK / EROSION / SURFACE FALSE BANK / MANURE / LAGOON WASH H ₂ 0 / TILE / H ₂ 0 TABLE ACID / MINE / QUARRY / FLOW NATURAL / WETLAND / STAGNANT PARK / GOLF / LAWN / HOME ATMOSPHERE / DATA PAUCITY
Cool	,	Cirde some & COMMENT
ALC CTB COAM COL SHE COAM -84,3994¢	DJ MAINITENANCE PUBLIC / PRIVATE / BOTH / NA ACTIVE / HISTORIC / BOTH / NA YOUNG-SUCCESSION-OLD SPRAY / SNAG / REMOVED MODIFIED / DIPPED OUT / NA LEVEED / ONE SIDED RELOCATED / CUTOFFS MOVING-BEDLOAD-STABLE ARMOURED / SLUMPS ISLANDS / SCOURED IMPOUNDED / DESICCATED	
ARITY NW CO CM CO CM CM NM CM	1 1 1	BIAESTHETICS INUISANCE ALGAE INVASIVE MACROPHYTES EXCESS TURBIDITY IDISCOLORATION INOSCLORATION INOISANCE ODOR INUISANCE ODOR ISLUBGE DEPOSITS CSOS/SSOS/OUTFALLS ATTON AREA DEPTH POOL: □>100ft2 □>3ft
Check All that ag Check All that ag ST STAND OTHER 0.2 Km 0.2 Km 0.15 K	Check ALL that apply HOD STAGE AT 1st-semple pass-2nd - ADE CHIGH C LINE CHOP C - LINE CHORMALC - HER	CL C

Stream Drawing:

Chiefa

Stream & Location: 1 1 e Minni Rives Dot Duck Creek RM: 3.7 Date: 81041 20
CMILEA Scorers Full Name & Affiliation: MAS - MBI
River Code: 1 - 001 - STORET #: Lat./Long.: 39 . 11735 184 . 400579 Office verifie
1] SUBSTRATE Check ONLYTwo substrate TYPE BOXES; estimate % or note every type present Check ONE (Or 2 & average)
REST TYPES OTHER TYPES OFFICIAL COLORS
FOOL RIFFLE FOOL RIFFLE
CONTROL OF THE PROPERTY OF THE
COBBLE [8] MODERATE [4] Substitution Substitu
GRAVEL [7] × GRAVEL [7] X GHARDPAN [0] GREE [1]
SAND [6] ARTIFICIAL [0] SANDSTONE [0] ODE DEXTENSIVE [-2]
□ □ BEDROCK [5] (Score natural substrates; ignore □ RIP/RAP [0] Maxin
NUMBER OF BEST TYPES: 24 of more [2] studge from point-sources) Licacos idente [0] 30 NORMAL [0] 20
COAL FINES [-2]
2] ///STREAM COVER Indicate presence 0 to 3: 0-Absent; 1-Very small amounts or if more common of marginal
quality; 2-Moderate amounts, but not of highest quality or in small amounts of highest quality; 3-Highest quality in moderate or greater amounts (e.g., very large boulders in deep or fast water, large Check ONE (Or 2 & average)
diameter log that is stable, well developed rootwad in deep / fast water, or deep, well-defined, functional pools.
UNDERCUT BANKS [1] POOLS > 70cm [2] OXBOWS, BACKWATERS [1] MODERATE 25-75% [7]
OVERHANGING VEGETATION [1] 2 ROOTWADS [1] O AQUATIC MACROPHYTES [1] SPARSE 5~25% [3]
/ SHALLOWS (IN SLOW WATER) [1] / BOULDERS [1] 3 LOGS OR WOODY DEBRIS [1] NEARLY ABSENT <5% [1]
2 ROOTMATS [1]
Maximum
21 CHANNEL MORRIUGI OCIVChada ONE in cook cotacon (Oco 6
3] CHANNEL MORPHOLOGY Check ONE in each category (Or 2 & average) SINUOSITY DEVELOPMENT CHANNELIZATION STABILITY
☐ HIGH [4] ☐ EXCELLENT [7] ☐ NONE [6] ☐ HIGH [3] ☐ MODERATE [3] ☐ GOOD [5] ☐ RECOVERED [4] ☐ MODERATE [2]
☐ MODERATE [3] ☐ GOOD [5] ☐ RECOVERED [4] ☐ MODERATE [2] ☐ LOW [2] ☐ FAIR [3] ☐ RECOVERING [3] ☐ LOW [1]
□ NONE [1] □ POOR [1] □ RECENT OR NO RECOVERY [1] Channel
Comments
20
4] BANK EROSION AND RIPARIAN ZONE Check ONE in each category for EACH BANK (Or 2 per bank & average) River right looking downstream RIPARIAN WIDTH RIPARIAN WIDTH RIPARIAN WIDTH
4] BANK EROSION AND RIPARIAN ZONE Check ONE in each category for EACH BANK (Or 2 per bank & average) River right looking downstream RIPARIAN WIDTH REPOSION WIDE > 50m (4) REPOSION RIPARIAN WIDTH
4] BANK EROSION AND RIPARIAN ZONE Check ONE in each category for EACH BANK (Or 2 per bank & average) River right looking downstream RIPARIAN WIDTH REROSION WIDE > 50m [4] RIPARIAN WIDTH REROSION RIPARIAN WIDTH REPORT, SWAMP [3] RIPARIAN WIDTH REPORT, SWAMP [3] RIPARIAN CONSERVATION TILLAGE [1] RIPARIAN OR INDUSTRIAL INC.
4] BANK EROSION AND RIPARIAN ZONE Check ONE in each category for EACH BANK (Or 2 per bank & average) River right looking downstream RIPARIAN WIDTH REROSION WIDE > 50m [4] SHOULD FILED [3] WIDE > 50m [4] SHRUB OR OLD FIELD [2] WIDE > 50m [4] SHRUB OR OLD FIELD [2] WIDE > 50m [4] SHRUB OR OLD FIELD [2] WIDE > 50m [4] SHRUB OR OLD FIELD [2] WIDE > 50m [4] SHRUB OR OLD FIELD [2] WIDE > 50m [4] SHRUB OR OLD FIELD [2] WINING / CONSTRUCTION [6]
4] BANK EROSION AND RIPARIAN ZONE Check ONE in each category for EACH BANK (Or 2 per bank & average) River right looking downstream RIPARIAN WIDTH FLOOD PLAIN QUALITY FLOOD PLAIN QUALITY ROSION SHOULD STOREST, SWAMP [3] SHRUB OR OLD FIELD [2] SHRUB OR OLD FIELD [2] SHRUB OR OLD FIELD [1]
4] BANK EROSION AND RIPARIAN ZONE Check ONE in each category for EACH BANK (Or 2 per bank & average) River right looking downstream RIPARIAN WIDTH EROSION WIDE > 50m [4] SHRUB OR OLD FIELD [2] WODERATE [2] MODERATE [2] NARROW 5-10m [2] RIPARIAN WIDTH FLOOD PLAIN QUALITY ROWSENATION TILLAGE [1] SHRUB OR OLD FIELD [2] RESIDENTIAL, PARK, NEW FIELD [1] MINING / CONSTRUCTION [0] FENCED PASTURE [1] Indicate predominant land use(s) past 100m riparian. Riparian
4] BANK EROSION AND RIPARIAN ZONE Check ONE in each category for EACH BANK (Or 2 per bank & average) River right looking downstream RIPARIAN WIDTH FLOOD PLAIN QUALITY FLOOD PLAIN QUALITY ROSION SHOULD STOREST, SWAMP [3] SHRUB OR OLD FIELD [2] SHRUB OR OLD FIELD [2] SHRUB OR OLD FIELD [1]
4] BANK EROSION AND RIPARIAN ZONE Check ONE in each category for EACH BANK (Or 2 per bank & average) River right looking downstream RIPARIAN WIDTH EROSION WIDE > 50m [4] WIDE > 50m [4] SHRUB OR OLD FIELD [2] WIDE > 50m [3] RIPARIAN WIDTH FLOOD PLAIN QUALITY RIPARIAN WIDTH RIPARIAN WID
4] BANK EROSION AND RIPARIAN ZONE Check ONE in each category for EACH BANK (Or 2 per bank & average) River right looking downstream RIPARIAN WIDTH REROSION WIDE > 50m [4]
4] BANK EROSION AND RIPARIAN ZONE Check ONE in each category for EACH BANK (Or 2 per bank & average) River right looking downstream RIPARIAN WIDTH REROSION WIDE > 50m [4]
4] BANK EROSION AND RIPARIAN ZONE Check ONE in each category for EACH BANK (Or 2 per bank & average) River right looking downstream RIPARIAN WIDTH REROSION REPORTS TO SERVE SAMMP [3] RECONSERVATION TILLAGE [1] REPORTS TO SERVATION TILLAGE
4] BANK EROSION AND RIPARIAN ZONE Check ONE in each category for EACH BANK (Or 2 per bank & average) River right looking downstream RIPARIAN WIDTH REROSION WIDE > 50m [4] WIDE > 50m [4] WIDE > 50m [4] RIPARIAN WIDTH REROSION WIDE > 50m [4] RIPARIAN WIDTH REROSION WIDE > 50m [4] RIPARIAN WIDTH REROSION RIPARIAN WIDTH
4] BANK EROSION AND RIPARIAN ZONE Check ONE in each category for EACH BANK (Or 2 per bank & average) River right looking downstream EROSION RIPARIAN WIDTH EROSION MODERATE 10-50m [4] MODERATE [3] MODERATE [10-50m [3] MODERATE [1] CONSERVATION TILLAGE [1
4] BANK EROSION AND RIPARIAN ZOWE Check ONE in each category for EACH BANK (Or 2 per bank & average) River right looking downstream RIPARIAN WIDTH FLOOD PLAIN QUALITY FLOOD PLAIN QUALITY FLOOD PLAIN QUALITY REPOSION PROBLET 10-50m [3] PROBLET 10-50m [3] RIPARIAN WIDTH FLOOD PLAIN QUALITY FLOOD PLAIN QUALITY RESIDENTIAL, PARK, NEW FIELD [1] RESIDENTIAL [1] RESIDENTIAL [1] RECREATION TILLAGE [1] RECONSERVATION TILLAGE [1] RESIDENTIAL [1] RECONSERVATION TILLAGE [1] RESIDENTIAL [1] RESIDEN
4] BANK EROSION AND RIPARIAN ZONE Check ONE in each category for EACH BANK (Or 2 per bank & average) River right looking downstream RIPARIAN WIDTH FLOOD PLAIN QUALITY FLOOD PLAIN QUALITY FOREST, SWAMP [3] MODERATE [1] MODERATE [2] MODERATE 10-50m [3] RESIDENTIAL, PARK, NEW FIELD [1] MINING / CONSTRUCTION [0] REPRINDENTIAL PARK, NEW FIELD [1] MINING / CONSTRUCTION [0] MINING / CO
4] BANK EROSION AND RIPARIAN ZONE Check ONE in each category for EACH BANK (Or 2 per bank & average) River right looking downstream Riparier Shrub Procest, Secundary Contact Secondary
4] BANK EROSION AND RIPARIAN ZONE Check ONE in each category for EACH BANK (Or 2 per bank & average) River right looking downstream RIPARIAN WIDTH EROSION WIDE > 50m [4] MODERATE [3] MODERATE [1] NARROW 5-10m [2] PENCED PASTURE [1] WERY NARROW < 5m [1] PENCED PASTURE [1] NONE [0] WIDE > 50m [4] PEROSION MODERATE [2] NARROW 5-10m [2] PENCED PASTURE [1] NONE [0] Comments RIPARIAN WIDTH CONSERVATION TILLAGE [1] MINING / CONSTRUCTION [0] Indicate predominant land use(s) past 100m riparian. Riparian Maximum Maximum To COMMENTS Recreation Potential Primary Contact Secondary Contact Secondary Contact Secondary Contact Current Maximum Primary Contact Secondary Contact Secondary Contact Secondary Contact Secondary Contact Secondary Contact Indicate for reach - pools and riffles. Recreation Potential Primary Contact Secondary Contact Secondary Contact Secondary Contact Indicate for reach - pools and riffles.
A] BANK EROSION AND RIPARIAN ZONE Check ONE in each category for EACH BANK (Or 2 per bank & average) River right looking downstream RIPARIAN WIDTH REOSION RIPARIAN WIDTH CHANNEL WIDTH CHANNEL WIDTH RIPARIAN RI
BANK EROSION AND RIPARIAN ZONE Check ONE in each category for EACH BANK (Or 2 per bank & average)
BANK EROSION AND RIPARIAN ZONE Check ONE in each category for EACH BANK (Or 2 per bank & average)
BANK EROSION AND RIPARIAN ZONE Check ONE in each category for EACH BANK (Or 2 per bank & average)
BANK EROSION AND RIPARIAN ZONE Check ONE in each category for EACH BANK (Or 2 per bank & average)
BANK EROSION AND RIPARIAN ZONE Check ONE in each category for EACH BANK (Or 2 per bank & average)
BANK EROSION AND RIPARIAN ZONE Check ONE in each category for EACH BANK (Or 2 per bank & average)
BANK EROSION AND RIPARIAN ZONE Check ONE in each category for EACH BANK (Or 2 per bank & average)

F) MEASUREMENTS bankfull max. depth floodprone x2 width bankfull x depti entrench. ratio Comment RE: Reach consistency/ Is reach typical of steam?, Recreation/ Observed - Inferred, Other/ Sampling observations, Concerns, Access directions, etc. X bankfull wid Tegacy Tree: max, depth W/D ratio X depth X width Duck Corrle HARDENED / URBAN / DIRT&GRIME LOGGING / IRRIGATION / COOLING FALSE BANK / MANURE / LAGOON NATURAL / WETLAND / STAGNANT BMPs-CONSTRUCTION-SEDIMENT WWTP / CSO / NPDES / INDUSTRY ATMOSPHERE / DATA PAUCITY ACID / MINE / QUARRY / FLOW WASH H20 / TILE / H20 TABLE PARK / GOLF / LAWN / HOME BANK / EROSION / SURFACE CONTAMINATED / LANDFILL Circle some & COMMENT FLOOD CONTROL / DRAINAGE Grave PUBLIC / PRIVATE / BOTH / NA ACTIVE / HISTORIC / BOTH / NA MODIFIED / DIPPED OUT / NA MOVING-BEDLOAD-STABLE IMPOUNDED / DESICCATED YOUNG-SUCCESSION-OLD SPRAY / SNAG / REMOVED RELOCATED / CUTOFFS DIMAINTENANCE ARMOURED / SLUMPS Bes ISLANDS / SCOURED LEVEED / ONE SIDED -84.400579 -84.40003 -84.40109 INVASIVE MAGROPHYTES 39.111735 CSOS/SSOS/OUTFALLS 39.10930 39.11351 EXCESS TURBIDITY SLUDGE DEPOSITS ☐ NUISANCE ALGAE POOL: ->100ft2 ->3ft AREA DEPTH NUISANCE ODOR DISCOLORATION TRASH / LITTER FOAM / SCUM OIL SHEEN END Z CJ RECREATION E ☐ SECCHI DEPTH☐ DLOW DRY 1st -sample pass- 2nd □> 70 cm/ CTB -sample pass-CLARITY STAGE Stream Drawing. 20-<40 cm AJ SAMPLED REACH □ 40-70 cm Check ALL that apply < 20 cm TOE | 5 <10%-CLOSED □ > 85%- OPEN CANOPY 55%-<85% 10%-<30% DISTANCE 30%~25% 0.5 Km 0.2 Km 0.15 Km 0.12 Km WADE IL. LINE 10.15 Km METHOD meters . D BOAT

Brechnian

Crest A

Stream & Location: Little Miami River Det Beechmint Ave RM: 3.5 Date: 81041 2082
LMI6 Scorers Full Name & Affiliation: MAS - MBI
River Code: 11 - 001 - STORET #: Lat./Long.: 39 . 107813 184 . 404555 MID location
1] SUBSTRATE Check ONLY Two substrate TYPE BOXES; estimate % or note every type present BEST TYPES POOL RIFFLE OTHER TYPES POOL RIFFLE OHARDPAN [4] Climestone [1] Climest
COBBLE [8] GRAVEL [7] SAND [6] GRAVEL [7] SAND [7] SAND [8] SAND [8] SAND [9]
Comments
2] //STREAM COVER Indicate presence 0 to 3: 0-Absent; 1-Very small amounts or if more common of marginal quality; 2-Moderate amounts, but not of highest quality or in small amounts of highest quality; 3-Highest quality in moderate or greater amounts (e.g., very large boulders in deep or fast water, large diameter log that is stable, well developed rootwad in deep / fast water, or deep, well-defined, functional pools. O UNDERCUT BANKS [1],
3] CHANNEL MORPHOLOGY Check ONE in each category (Or 2 & average) SINUOSITY DEVELOPMENT CHANNELIZATION STABILITY HIGH [4] EXCELLENT [7] NONE [6] HIGH [3] MODERATE [3] GOOD [5] RECOVERED [4] MODERATE [2] LOW [2] FAIR [3] RECOVERING [3] LOW [1] NONE [1] POOR [1] RECENT OR NO RECOVERY [1] Comments
4] BANK EROSION AND RIPARIAN ZONE Check ONE in each category for EACH BANK (Or 2 per bank & average) River right looking downstream RIPARIAN WIDTH EROSION WIDE > 50m [4] NONE / LITTLE [3] MODERATE 10-50m [3] RIPARIAN WIDTH FLOOD PLAIN QUALITY ROSION AND RIPARIAN ZONE Check ONE in each category for EACH BANK (Or 2 per bank & average) RIPARIAN WIDTH FLOOD PLAIN QUALITY ROSION AND RIPARIAN ZONE Check ONE in each category for EACH BANK (Or 2 per bank & average) RIPARIAN WIDTH FLOOD PLAIN QUALITY ROSION AND RIPARIAN ZONE Check ONE in each category for EACH BANK (Or 2 per bank & average) RIPARIAN WIDTH FLOOD PLAIN QUALITY ROSION AND RIPARIAN ZONE Check ONE in each category for EACH BANK (Or 2 per bank & average) RIPARIAN WIDTH FLOOD PLAIN QUALITY ROSION AND RIPARIAN ZONE Check ONE in each category for EACH BANK (Or 2 per bank & average) RIPARIAN WIDTH FLOOD PLAIN QUALITY ROSION AND RIPARIAN ZONE Check ONE in each category for EACH BANK (Or 2 per bank & average) RIPARIAN WIDTH FLOOD PLAIN QUALITY ROSION AND RIPARIAN ZONE Check ONE in each category for EACH BANK (Or 2 per bank & average) RIPARIAN WIDTH FLOOD PLAIN QUALITY ROSION AND RIPARIAN ZONE Check ONE in each category for EACH BANK (Or 2 per bank & average) RIPARIAN WIDTH FLOOD PLAIN QUALITY ROSION AND RIPARIAN ZONE Check ONE in each category for EACH BANK (Or 2 per bank & average) RIPARIAN WIDTH FLOOD PLAIN QUALITY ROSION AND RIPARIAN ZONE Check ONE in each category for EACH BANK (Or 2 per bank & average) RIPARIAN WIDTH FLOOD PLAIN QUALITY ROSION AND RIPARIAN ZONE Check ONE in each category for EACH BANK (Or 2 per bank & average) RIPARIAN WIDTH FLOOD PLAIN QUALITY ROSION AND RIPARIAN CHECK ONE CHEC
MAXIMUM DEPTH Check ONE (ONLY!) Check ONE (ONLY!) Check ONE (Or 2 & average) Check ALL that apply Check ALL tha
Indicate for functional riffles; Best areas must be large enough to support a population of riffle-obligate species: Check ONE (Or 2 & average). NO RIFFLE [metric=0]
RIFFLE DEPTH RUN DEPTH RIFFLE / RUN SUBSTRATE RIFFLE / RUN EMBEDDEDNESS
BEST AREAS > 10 cm [2]
61 GRADIENT LIA NO AND THEEDY LOW LOW IS AN
DRAINAGE AREA MODERATE [6-10] WPOOL: WGLIDE: Gradient 10

F) MEASUREMENTS floodprone x2 width bankfull max, depth bankfull x depth X bankfull width entrench. ratio Comment RE: Reach consistency/ Is reach typical of steam?, Recreation/ Observed - Inferred, Other/ Sampling observations, Concerns, Access directions, etc. Legacy Tree: max, depth W/D ratio * width X depth Berchmon + otter dans LOGGING / IRRIGATION / COOLING FALSE BANK / MANURE / LAGOON NATURAL / WETLAND / STAGNANT HARDENED / URBAN / DIRT&GRIME BMPs.CONSTRUCTION-SEDIMENT WWTP / CSO / NPDES / INDUSTRY ATMOSPHERE / DATA PAUCITY ACID / MINE / QUARRY / FLOW BANK / EROSION / SURFACE WASH H20 / TILE / H20 TABLE PARK / GOLF / LAWN / HOME CONTAMINATED / LANDFILL El ISSUES Trib 4+40 アダス 5 Grave Circle some & COMMENT 40 676 300 マイン にょくり 7 FLOOD CONTROL / DRAINAGE 9000 PUBLIC / PRIVATE / BOTH / NA ACTIVE / HISTORIC / BOTH / NA = 39. (6/23 MODIFIED / DIPPED OUT / NA MOVING-BEDLOAD-STABLE IMPOUNDED / DESICCATED YOUNG-SUCCESSION-OLD X olo my SPRAY / SNAG / REMOVED RELOCATED / CUTOFFS DIMAINTENANCE ARMOURED / SLUMPS ISLANDS / SCOURED LEVEED / ONE SIDED CON 0164 9 39.107813,-84.404555 -84,40202 ☐ NUISANGE ALGAE ☐ INVASIVE MACROPHYTES CSOS/SSOS/OUTFALLS BIAESTHETICS EXCESS TURBIDITY SLUDGE DEPOSITS POOL: ->100#2 ->3# P. FF le AREA DEPTH 10878 NUISANCE ODOR DISCOLORATION TRASH / LITTER FOAM SCUM DIOIL SHEEN removed 39 Z Deep CJ RECREATION E E ☐ SECCHI DEPTH☐ 1st -sample pass- 2nd -> 70 cm/ CTB -sample pass-CLARITY STAGE Stream Drawing. 20-<40 cm AJ SAMPLED REACH Z-40-70 cm HOH Check ALL that apply <-20 cm 5 Sesed E C <10%- CLOSED Z > 85%- OPEN CANOPY 10%-<30% 25%-<85% DISTANCE 30%~55% 0.5 Km 0.2 Km 0.15 Km 0.12 Km 0.15 Km 0.12 Km METHOD WADE IL. LINE meters D BOAT

OHEI Score:	84.0

und God Abscosment Field Cheet
Stream & Location: Little Miami Rises Dat Beechmin + Ave RM: 3.5 Date: 81 0 41 2082
Scorers Full Name & Affiliation: MAS-MBI
River Code: 11 - 001 - STORET#: Lat./Long.: 39.107813 184.404555 Office verified location
SUBSTRATE Check ONLYTwo substrate TYPE BOXES; estimate % or note every type present BEST TYPES POOL RIFFLE OTHER TYPES POOL RIFFLE ORIGIN QUALITY
2] INSTREAM COVER Indicate presence 0 to 3: 0-Absent; 1-Very small amounts or if more common of marginal quality; 2-Moderate amounts, but not of highest quality or in small amounts of highest quality; 3-Highest quality in moderate or greater amounts (e.g., very large boulders in deep or fast water, large diameter log that is stable, well developed rootwad in deep / fast water, or deep, well-defined, functional pools. O UNDERCUT BANKS [1]
3] CHANNEL MORPHOLOGY Check ONE in each category (Or 2 & average) SINUOSITY DEVELOPMENT CHANNELIZATION STABILITY HIGH [4]
4] BANK EROSION AND RIPARIAN ZONE Check ONE in each category for EACH BANK (Or 2 per bank & average) River right looking downstream RIPARIAN WIDTH FLOOD PLAIN QUALITY RIPARIAN WIDTH RIPARIAN
MAXIMUM DEPTH Check ONE (ONLY!) Check ONE (Or 2 & average) Documents CHANNEL WIDTH Check ONE (Or 2 & average) Check ONE (Or 2 & average) Check ALL that apply Check ALL that app
Indicate for functional riffles; Best areas must be large enough to support a population of riffle-obligate species: Check ONE (Or 2 & average). RIFFLE DEPTH RUN DEPTH RIFFLE / RUN SUBSTRATE RIFFLE / RUN EMBEDDEDNESS BEST AREAS > 10cm [2] BEST AREAS > 10cm [1] MAXIMUM > 50cm [1] MOD. STABLE (e.g., Cobble, Boulder) [2] MAXIMUM < 50cm [1] MOD. STABLE (e.g., Large Gravel) [1] MODERATE [0] RIFFLE / RUN EMBEDDEDNESS INDICATE: [1] MAXIMUM < 50cm [1] RIFFLE / RUN EMBEDDEDNESS INDICATE: [1] INDICATE: [1] RIFFLE / RUN EMBEDDEDNESS INDICATE: [1] RIFFLE / RUN
6] GRADIENT (6.16 ft/ml) VERY LOW - LOW [2-4] *

F) MEASUREMENTS Roodprone x2 width bankfull max. depth bankfull x depth x bankfull width entrench. ratio Comment RE: Reach consistency/ Is reach typical of steam?, Recreation/ Observed - Inferred, Other/ Sampling observations, Concerns, Access directions, etc. Legacy Tree. max, depth W/D ratio X width x depth Beechmon t offer dam HARDENED / URBAN / DIRT&GRIME LOGGING / IRRIGATION / COOLING FALSE BANK / MANURE / LAGOON BMPs.CONSTRUCTION-SEDIMENT NATURAL / WETLAND / STAGNANT WWTP / CSO / NPDES / INDUSTRY ATMOSPHERE / DATA PAUCITY ACID / MINE / QUARRY / FLOW BANK / EROSION / SURFACE WASH H20 / TILE / H20 TABLE PARK / GOLF / LAWN / HOME CONTAMINATED / LANDFILL Trib 9+40 CA CA 25% Circle some & COMMENT Grave 184.40 676 300 プレーハこうし FLOOD CONTROL / DRAINAGE PUBLIC / PRIVATE / BOTH / NA ACTIVE / HISTORIC / BOTH / NA 200 39.1063 MODIFIED / DIPPED OUT / NA MOVING-BEDLOAD-STABLE YOUNG-SUCCESSION-OLD SPRAY / SNAG / REMOVED IMPOUNDED / DESICCATED X alamon RELOCATED / CUTOFFS DI MAINTENANCE **ARMOURED / SLUMPS** LEVEED / ONE SIDED ISLANDS / SCOURED -84.40202 end-39.107813,-84.404555 ☐ INVASIVE MAGROPHYTES
☐ EXCESS TURBIDITY ☐ SLUDGE DEPOSITS
☐ CSOS/SSOS/OUTFALLS BIAESTHETICS SLUDGE DEPOSITS CJ RECREATION AREA DEFINE POOL: D>100ft2 >3ft ☐ NUISANCE ALGAE 39.10878 P. TT le DISCOLORATION FOAM / SCUM ☐ INUISANCE ODOR TRASH / LITTER OIL SHEEN removed Mid Deep < 20 cm 틍 ☐ SECCHI DEPTH☐ HIGH
UP
ZINORMAU
LOW 1st-semple pass-2nd □> 70 cm/ CTB CLARITY STAGE Stream Drawing. 20-<40 cm AJ SAMPLED REACH Z 40-70 cm Check ALL that apply Sessa 2 □ <10%- CLOSED ■ > 85% OPEN CANOPY DISTANCE 30%~25% 4 Eng 25%-<85% 10%-<30% 0.12 Km METHOD WADE IL LINE 0.15 Km OTHER 0.5 Km 0.2 Km D BOAT

O TO JA

Stream & Location:	Lette	Miani River	Dist	US-52	2	RM:	1 6 Dai	e: 8/04/7	== 70?7
LM17			Scorer.	s Full Nam	e & Affiliation	MAS-			
River Code: - C	001	_STORET#.			ng 39 083		423565	Office veri	ffled
REST TYPES	k <i>ONLY</i> Two ate % or not POOL RIFF	e every type prese	nt.	L RIFFLE	Check ORIGIN	ONE (Or 2 &		LITY	
BLDR /SLABS [10] BOULDER [9] GRAVEL [7] SAND [6] BEDROCK [5] NUMBER OF BEST T	X X X X X	HARDE	AN [4] TUS [3] [2] CIAL [0] Inatural substra	tes; ignore	LIMESTONE [1] TILLS [1] WETLANDS [0] HARDPAN [0] SANDSTONE [0] RIP/RAP [0] LACUSTURINE [SHALE [-1] COAL FINES [-2]	OJ E	HEAVY	[-2] RATE [-1] Sulfat [0] 1] SIVE [-2] RATE [-1] Max	ximum 20
quality; 3-Highest quality is diameter log that is stable. / UNDERCUT BANKS OVERHANGING VE SHALLOWS (IN SLEED OF TRANS) ROOTMATS [1]	quality; 2 n moderate , well develo S [1] GETATION	Moderate amounts or greater amounts ped rootwad in dec 2 POOL [1] 2 ROOT	s, but not of his s (e.g., very lar	ghest quality of ge boulders in or deep, well	or in small amount	is of highest er, large al pools. [ERS [1] [YTES [1] [Check ONE EXTENSIV MODERAT SPARSE 5	E 25-75% [7]	
☐ HIGH [4] ☐ E ☐ MODERATE [3] ☐ G ☐ LOW [2] ☐ F.	HOLOGY (FLOPME) XCELLENT BOOD [5] AIR [3] BOOR [1]	NT CHAN [7] NONE [6] RECOVI	NELIZATIO 5] ERED [4]	DN [STABILITY HIGH [3] MODERATE [2] LOW [1]	1		Channel Maximum 20	
4] BANK EROSION A River right looking downstrea EROSION NONE / LITTLE [3] MODERATE [2] HEAVY / SEVERE [1] Comments	RII	PARIAN WIDT DE > 50m [4] DERATE 10-50m RROW 5-10m [2] RY NARROW < 5m	H	FLOOD DREST, SWA HRUB OR OL ESIDENTIAL, ENCED PAST	PLAIN QUAL MP [3] D FIELD [2] PARK, NEW FIEL	ITY	CONSERVATI URBAN OR IN	Riparlan	1
5] POOL / GLIDE AND MAXIMUM DEPTH Check ONE (ONLYI) 1m [6] 0.7~41m [4] 0.4~0.7m [2] 0.2~0.4m [1] < 0.2m [0] Comments	CI Check POOL W	AUN QUAL) HANNEL WIDT ONE (Or 2 & ave IDTH > RIFFLE WI IDTH < RIFFLE WI IDTH < RIFFLE WI	TH rage) IDTH [2] ☐ IDTH [1] ☐ IDTH [0] ☐ [Check FORRENTIAL VERY FAST [FAST [1] MODERATE [□ INTERMI] 	Primar, Seconda	Pool/ Current Maximum	
Indicate for funct of riffle-obligate s RIFFLE DEPTH BEST AREAS > 10cm [2] BEST AREAS 5-10cm [1] BEST AREAS < 5cm [metric=0]	species: RUI □ MAXII □ MAXII	N DEPTH NUM > 50cm [2] [NUM < 50cm [1] [Check ONE (CARIFFLE / STABLE (CARIFFLE)	Or 2 & averag RUN SUB g., Cobble, E BLE (e.g., Lar	e). STRATE RIF Boulder) [2]	FLE / RUI	tion NEMBEDD ONE [2] OW [1] ODERATE [0] KTENSIVE [-1	Riffle /	
6] GRADIENT (6.18 DRAINAGE AREA	ft/mi)	VERY LOW - LOV	enderman.	%1					

Comment RE: Reach consistency/ Is reach typical of steam?, Recreation/ Observed - Inferred, Other/ Sampling observations, Concerns, Access directions, etc.

		WIIW 000710	- COUNTY TO THE	Tiola Office			
Stream & Location.	· Polle R	un - East	Kemper Rd		RM:	0,3 <i>Date:</i>	9109120
LM 40			Scorers Full N	lame & Affiliation	7: MB1-		
River Code: -	009 -	_STORET#:		Long. 39 .2510	04 /84.	298907	Office verifie
BEST TYPES BEST TYPES BLDR /SLABS [10] BOULDER [9] COBBLE [8] GRAVEL [7] GRAVEL [7] SAND [6] BEDROCK [5]	POOL RIFFL X X X X X Y Y Y Y Y Y Y Y Y Y Y Y Y Y	STORET#: substrate TYPE BOXE: every type present OTHER TYPE HARDPAN DETRITUS SILT [2] ARTIFICIAL (Score natur 4 or more [2] sludge 3 or less [0] esence 0 to 3: 0-Abse Moderate amounts, but greater amounts (e.g. ed rootwad in deep / file POOLS > 1] ROOTWAI	Lat./ (NAD 83- S; ES POOL RIFFLE [0] al substrates; ignore from point-sources) nt; 1-Very small am t not of highest quality very large boulde ast water, or deep, 70cm [2]	Check ORIGIN LIMESTONE [1] TILLS [1] WETLANDS [0] HARDPAN [0] SANDSTONE [0] CALSTURINE [0] SHALE [-1] COAL FINES [-2]	ONE (Or 2 & SILT SILT One of margina so of highest er, large al pools. ERS [1] YTES [1]	AMOU Check ONE (Or EXTENSIVE: AVERAGE) QUALI HEAVY [-2 MODERATE 1] AMOU Check ONE (Or EXTENSIVE: MODERATE 2	INT 2 & average 25% [1] 25,75% [1] 25% [3]
2 ROOTMATS [1] Comments				STORY WOOD IN		- 	Cover laximum 20
HIGH [4]	VELOPMEN EXCELLENT [GOOD [5] FAIR [3] POOR [1]	T CHANNEI O NONE [6] RECOVEREI RECOVERIN	LIZATION D[4]	STABILITY HIGH [3] MODERATE [2] LOW [1]]		Channel laximum 20
A] BANK EROSION. River right looking downstre EROSION NONE / LITTLE [3] MODERATE [2] HEAVY / SEVERE [4] Comments	RIP RIP WIDI	ARIAN WIDTH 5 > 50m [4] ERATE 10-50m [3] ROW 5-10m [2] Y NARROW < 5m [1]	FLO RESIDENTI RESIDENTI FENCED P	OD PLAIN QUAL WAMP [3] OLD FIELD [2] AL, PARK, NEW FIELI	ITY R C C C C C C C C C C C C C C C C C C	CONSERVATION IRBAN OR INDU IINING / CONST predominant lan 0m riparlan.	JSTRIAL [0] RUCTION [0]
5] POOL / GLIDE AN MAXIMUM DEPTH Check ONE (ONLY!) □ > 1m [6] □ 0.7-<1m [4] □ 0.4-<0.7m [2] □ 0.2-<0.4m [1] □ < 0.2m [0] Comments	CH Check POOL WI	RUN QUALITY ANNEL WIDTH ONE (Or 2 & average) OTH > RIFFLE WIDTH OTH = RIFFLE WIDTH OTH < RIFFLE WIDTH	CI [2] TORRENT [1] VERY FAS [0] FAST [1] MODERA	INTERMIT	 TIAL [-1] TENT [-2] 1		Contact Contact ment on back) Pool / Current aximum
Indicate for function of riffle-obligate RIFFLE DEPTH BEST AREAS > 10cm [2] BEST AREAS < 5cm [metric=0] Comments	species: RUN ☐ MAXIM	Chec DEPTH RI UM > 50cm [2] ST UM < 50cm [1] MO	ck ONE (<i>Or 2 & ave</i> FFLE / RUN SI ABLE (e.g., Cobbl DD. STABLE (e.g.,	erage). UBSTRATE RIF le. Boulder) [2]	FLE / RUN	I EMBEDDEI DNE [2] DW [1] DOERATE [0]	FFLE [metrics DNESS RIFFLE RUIT Jaximum
DRAINAGE AREA	\	/ERY LOW - LOW [2- MODERATE [6-10] NIGH - VERY HIGH [10		%POOL:) %GLIDE		Gradient 4

ChicEPA

Stream & Location: Sycamore Creek - Loveland Rd. RM: 1.1 Date: 91091 zozz
LMSO Scorers Full Name & Affiliation: MAS - 1 MBI
River Code: 11 - 007 - STORET #: Lat./Long.:39.217190 184.331749 Office verified location
1] SUBSTRATE Check ONLY Two substrate TYPE BOXES; estimate % or note every type present BEST TYPES POOL RIFFLE OTHER TYPES POOL RIFFLE LIMESTONE [1] BOULDER [9] A A D DETRITUS [3] DETRITUS [3] DETRITUS [3] DETRITUS [3] DETRITUS [4] DETRITUS [5] DETRITUS [6] DETRITUS [7]
SAND [6] BEDROCK [5] W (Score natural substrates; ignore Point-sources) NUMBER OF BEST TYPES: 4 or more [2] sludge from point-sources) SHALE [-1] COAL FINES [-2] SANDSTONE [0] EXTENSIVE [-2] Maximum 20 Maximum 20 Maximum 20 Monore [1]
2] //STREAM COVER Indicate presence 0 to 3: 0-Absent; 1-Very small amounts or if more common of marginal quality; 2-Moderate amounts, but not of highest quality or in small amounts of highest quality; 3-Highest quality in moderate or greater amounts (e.g., very large boulders in deep or fast water, large diameter log that is stable, well developed rootwad in deep / fast water, or deep, well-defined, functional pools. O UNDERCUT BANKS [1] / POOLS > 70cm [2] / OXBOWS, BACKWATERS [1] / MODERATE 25-75% [7] / SPARSE 5-<25% [3] / SHALLOWS (IN SLOW WATER) [1] / SPARSE 5-<25% [3] / NEARLY ABSENT <5% [1] / NEARLY ABSENT <5% [1] / NEARLY ABSENT <5% [1] / OXDOWS, BACKWATERS [1] / OXBOWS, BACKWATERS [1] / SPARSE 5-<25% [3] / NEARLY ABSENT <5% [1] / OXBOWS, BACKWATERS [1]
3] CHANVEL MORPHOLOGY Check ONE in each category (Or 2 & average) SINUOSITY DEVELOPMENT CHANNELIZATION STABILITY HIGH [4]
4] BANK EROSION AND RIPARIAN ZONE Check ONE in each category for EACH BANK (Or 2 per bank & average) River right looking downstream RIPARIAN WIDTH REROSION WIDE > 50m [4] FOREST, SWAMP [3] SHRUB OR OLD FIELD [2] MODERATE [2] NARROW 5-10m [2] RESIDENTIAL, PARK, NEW FIELD [1] HEAVY / SEVERE [1] NONE [0] NONE [0] PENCED PASTURE, ROWCROP [0] Indicate predominant land use(s) past 100m riparian. Riparian Maximum 10
5] POOL / GLIDE AND RIFFLE / RUN QUALITY MAXIMUM DEPTH CHANNEL WIDTH Check ONE (ONLY!) Check ONE (Or 2 & average) > 1m [6]
Indicate for functional riffles; Best areas must be large enough to support a population of riffle-obligate species: Check ONE (Or 2 & average). RIFFLE DEPTH RUN DEPTH RIFFLE / RUN SUBSTRATE RIFFLE / RUN EMBEDDEDNESS BEST AREAS > 10cm [2]
6] GRADIENT (53.8 ft/mi) VERY LOW - LOW [2-4]

cess directions, etc.				F) MEASUREMENTS X width X depth max. depth X bankfull width bankfull X depth W/D ratio bankfull max. depth floodprone x² width entrench. ratio Legacy Tree:
Comment RE: Reach consistency/Is reach typical of steam?, Recreation/ Observed - Inferred, Other/ Sampling observations, Concerns, Access directions, etc.	>-:			WWTP / CSO / NPDES / INDUSTRY HARDENED / URBAN / DIRT&GRIME CONTAMINATED / LANDFILL BMPs-CONSTRUCTION-SEDIMENT LOGGING / IRRIGATION / COOLING BANK / EROSION / SURFACE FALSE BANK / MANURE / LAGOON WASH H ₂ 0 / TILE / H ₂ 0 TABLE ACID / MINE / QUARRY / FLOW NATURAL / WETLAND / STAGNANT PARK / GOLF / LAWN / HOME ATMOSPHERE / DATA PAUCITY
v/ Observed - Inferred, Other/				Circle some & COMMENT
s reach typical of steam?, Recreatior 4 , 3 <u>3</u> য়ত S	84.331749	84.33202		D/ MAINTENANCE PUBLIC / PRIVATE / BOTH / NA ACTIVE / HISTORIC / BOTH / NA YOUNG-SUCCESSION-OLD SPRAY / SNAG / REMOVED MODIFIED / DIPPED OUT / NA LEVEED / ONE SIDED RELOCATED / CUTOFFS MOVING-BEDLOAD-STABLE ARMOURED / SLUMPS ISLANDS / SCOURED IMPOUNDED / DESICCATED FLOOD CONTROL / DRAINAGE
Comment RE: Reach consistency/ Is reach typics $\mathcal{C}_{\boldsymbol{e}} = 39,21787,-84,3316\Xi$	Mid 39.217190, -84.3317	End 39,21663,-84.33202		ARITY ARITY B/AESTHETICS No NUISANCE ALGAE INVASIVE MACROPHYTES Och Com Com Com Com EXCESS TURBIDITY Cm Com SCOLORATION IN DEPTH Coll SHEEN OIL SHEEN
AJ SAMPLED REACH Check ALL that apply	۵	WADE CUP	بر	SED 29-44-70 20 C C C C C C C C C C C C C C C C C C

Stream Drawing:

ChicEPA

and Use Assessment Field Sheet
Stream & Location: Sycamore Creek Ust Sycamore (r WUTP RM: 0.5 Date: & 11 1702
LM SI Scorers Full Name & Affiliation: MAS - MB1
River Code: 1 - 007 - STORET #: Lat. / Long.: 39 .273905 /84 .324 723 NID location
1] SUBSTRATE Check ONLY Two substrate TYPE BOXES; estimate % or note every type present BEST TYPES POOL RIFFLE OTHER TYPES POOL RIFFLE ORIGIN QUALITY BLDR /SLABS [10] HARDPAN [4] HEAVY [-2]
BOULDER [9]
NUMBER OF BEST TYPES: 4 or more [2] sludge from point-sources) LACUSTURINE [0] NORMAL [0] NONE [1] Comments Contents
2] //STREAM COVER Indicate presence 0 to 3: 0-Absent; 1-Very small amounts or if more common of marginal quality; 2-Moderate amounts, but not of highest quality or in small amounts of highest quality; 3-Highest quality in moderate or greater amounts (e.g., very large boulders in deep or fast water, large diameter log that is stable, well developed rootwad in deep / fast water, or deep, well-defined, functional pools. 3 UNDERCUT BANKS [1]
3] CHANNEL MORPHOLOGY Check ONE in each category (Or 2 & average) SINUOSITY DEVELOPMENT CHANNELIZATION STABILITY HIGH [4]
4] BANK EROSION AND RIPARIAN ZONE Check ONE in each category for EACH BANK (Or 2 per bank & average) River right looking downstream RIPARIAN WIDTH REROSION WIDE > 50m [4] SHOULD FOREST, SWAMP [3] SHRUB OR OLD FIELD [2] SHRUB OR OLD FIELD [2] SHRUB OR OLD FIELD [2] SHRUB OR OLD FIELD [1] SHRUB OR
MAXIMUM DEPTH Check ONE (ONLY!) Check ONE (ONLY!) Check ONE (Or 2 & average) Check ALL that apply Check ALL that a
Indicate for functional riffles; Best areas must be large enough to support a population of riffle-obligate species: Check ONE (Or 2 & average). RIFFLE DEPTH RUN DEPTH RIFFLE / RUN SUBSTRATE RIFFLE / RUN EMBEDDEDNESS MAXIMUM > 50cm [2]
6] GRADIENT (28.0 ft/ml) VERY LOW - LOW [2-4]

ess directions, etc.	X width X depth max. depth X bankfull width bankfull X depth bankfull x depth W/D ratio bankfull max. depth floodprone x² width entrench. ratio
Comment RE: Reach consistency/ Is reach typical of steam?, Recreation/ Observed - Inferred, Other/ Sampling observations, Concerns, Access directions, etc. Dea 39,22456 - 84.324723	WWTP / CSO / NPDES / INDUSTRY HARDENED / URBAN / DIRT&GRIME CONTAMINATED / LANDFILL BMPs-CONSTRUCTION-SEDIMENT LOGGING / IRRIGATION / COOLING BANK / EROSION / SURFACE FALSE BANK / MANURE / LAGOON WASH H ₂ 0 / TILE / H ₂ 0 TABLE ACID / MINE / QUARRY / FLOW NATURAL / WETLAND / STAGNANT PARK / GOLF / LAWN / HOME ATMOSPHERE / DATA PAUCITY
/ Observed - Inferred, <i>Other</i>	Circle some & COMMENT
cy/ Is reach typical of steam?, Recreation - 84.324723 - 84.3258	DJ MAINTENANCE PUBLIC / PRIVATE / BOTH / NA ACTIVE / HISTORIC / BOTH / NA YOUNG-SUCCESSION-OLD SPRAY / SNAG / REMOVED MODIFIED / DIPPED OUT / NA LEVEED / ONE SIDED RELOCATED / CUTOFFS MOVING-BEDLOAD-STABLE ARMOURED / SCOURED IMPOUNDED / DESICCATED FLOOD CONTROL / DRAINAGE
Somment RE: Reach consistency/ Is reach typical of states and another	ARITY B/AESTHETICS Ble pess 2nd
H GGE I □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □	CL/ CL/ CL/ CL/ CD/ CD/ CD/ CD/ CD/ CD/ CD/ CD/ CD/ CD

Stream Drawing:

CHEA

und 030 A33033ment Field Officet
Stream & Location: Sycamore Creek Det Sycamore Creek west RM: 0.1 Date: 8/11/2077
Scorers Full Name & Affiliation:
RIVER Code: 1 - 007 - STORET #: Lat./Long.: 39 .22.6077 184 . 322.095 Office verified location
The substrate type boxes; estimate wor note every type present BEST TYPES POOL RIFFLE HARDPAN [4]
COAL FINES [-2]
2] //STREAM COVER Indicate presence 0 to 3: 0-Absent; 1-Very small amounts or if more common of marginal quality; 2-Moderate amounts, but not of highest quality or in small amounts of highest quality; 3-Highest quality in moderate or greater amounts (e.g., very large boulders in deep or fast water, large diameter log that is stable, well developed rootwad in deep / fast water, or deep, well-defined, functional pools. O UNDERCUT BANKS [1] O OVERHANGING VEGETATION [1] SHALLOWS (IN SLOW WATER) [1] BOULDERS [1] O ROOTWADS [1] O ROOTMATS [1] Comments AMOUNT Check ONE (Or 2 & average) EXTENSIVE >75% [11] MODERATE 25-75% [7] SPARSE 5-<25% [3] NEARLY ABSENT <5% [1] Comments
3] CHANNEL MORPHOLOGY Check ONE in each category (Or 2 & average) SINUOSITY DEVELOPMENT CHANNELIZATION STABILITY HIGH [4]
4] BANK EROSION AND RIPARIAN ZONE Check ONE in each category for EACH BANK (Or 2 per bank & average) River right looking downstream RIPARIAN WIDTH FLOOD PLAIN QUALITY FLOOD PLAIN QUALITY RIPARIAN WIDTH RIPARIAN WIDTH RIPARIAN WIDTH RIPARIAN WIDTH RIPARIAN QUALITY RIPARIAN WIDTH RIPARIAN QUALITY RIPARIAN WIDTH RIPARIAN QUALITY RIPARIAN WIDTH RIPARIAN WIDTH RIPARIAN WIDTH RIPARIAN WIDTH RIPARIAN QUALITY RIPARIAN WIDTH RIPARIAN QUALITY RIPARIA
MAXIMUM DEPTH Check ONE (ONLYI) Check ONE (ONLYI) Check ONE (Or 2 & average) Check ONE (ONLYI) Check ONE (Or 2 & average) Check ONE (Or 2 & average) Check ONE (Or 2 & average) Check ALL that apply C
Indicate for functional riffles; Best areas must be large enough to support a population of riffle-obligate species: Check ONE (Or 2 & average). RIFFLE DEPTH RUN DEPTH RIFFLE / RUN SUBSTRATE RIFFLE / RUN EMBEDDEDNESS MAXIMUM > 50cm [2] STABLE (e.g., Cobbie, Boulder) [2] NONE [2] BEST AREAS 5-10cm [1] MAXIMUM < 50cm [1] MOD. STABLE (e.g., Large Gravel) [1] CLOW [1] BEST AREAS < 5cm UNSTABLE (e.g., Fine Gravel, Sand) [0] MAXIMUM STABLE (e.g., Fine Gravel, Sand) [0]
6] GRADIENT (38.2 ft/mi) VERY LOW - LOW [2-4]

Chesia

	Stream & Location: Unnamed Tributary to Sycamore Creek RM: 1.2 Date: 7/ 22/2022
	LMSS -Upst. Blome Rd. bridge Scorers Full Name & Affiliation: MAS - MB1
	River Code: 11 - 049 - STORET #: Lat./Long.:39 - 217136 184 . 347321 Mid. location
	1] SUBSTRATE Check ONLYTwo substrate TYPE BOXES; estimate % or note every type present Check ONE (Or 2 & average)
	BEST TYPES POOL PIEELE OTHER TYPES POOL PIEELE ORIGIN QUALITY
	BLDR /SLABS [10] L C C HEAVY [-2]
	BOULDER [9] DETRITUS [3] DITILLS [1] SILT DIMODERATE [-1] Substrate [-1]
•	THAPPRANIO PEREIN
-	SAND [6] ARTIFICIAL [0] SANDSTONE [0] SANDSTONE [0] EXTENSIVE [-2]
CH	BEDROCK [5]
140	□ 3 or less [0] □ SHALE [-1] □ NONE [1]
, ,	Comments
	2] ///STREAM COVER Indicate presence 0 to 3: 0-Absent; 1-Very small amounts or if more common of marginal AMOUNT
	quality; 2-Moderate amounts, but not of highest quality or in small amounts of highest
	quality; 3-Highest quality in moderate or greater amounts (e.g., very large boulders in deep or fast water, large check ONE (Or 2 & average) diameter log that is stable, well developed rootwad in deep / fast water, or deep, well-defined, functional pools.
	UNDERCUT BANKS [1] POOLS > 70cm [2] OXBOWS, BACKWATERS [1] MODERATE 25-75% [7]
	OVERHANGING VEGETATION [1] O ROOTWADS [1] O AQUATIC MACROPHYTES [1] SPARSE 5-<25% [3] 3 SHALLOWS (IN SLOW WATER) [1] 3 BOULDERS [1] O LOGS OR WOODY DEBRIS [1] NEARLY ABSENT <5% [1]
	O ROOTMATS [1]
	Comments Maximum O
	20
	3] CHANNEL MORPHOLOGY Check ONE in each category (Or 2 & average)
	SINUOSITY DEVELOPMENT CHANNELIZATION STABILITY
	☐ HIGH [4] ☐ EXCELLENT [7] ☐ NONE [6] ☐ HIGH [3] ☐ MODERATE [3] ☐ GOOD [5] ☐ RECOVERED [4] ☐ MODERATE [2]
	☐ LOW [2] ☐ FAIR [3] ☐ RECOVERING [3] ☐ LOW [1]
	Onments None [1] Poor [1] RECENT OR NO RECOVERY [1] Channel Maximum Maxim
	Comments Maximum 11
	4] BANK EROSION AND RIPARIAN ZONE Check ONE in each category for EACH BANK (Or 2 per bank & average)
	River right looking downstream RIPARIAN WIDTH FLOOD PLAIN QUALITY
	EROSION WIDE > 50m [4] FOREST, SWAMP [3] CONSERVATION TILLAGE [1]
	□ □ NONE / LITTLE [3] □ □ MODERATE 10-50m [3] □ □ SHRUB OR OLD FIELD [2] □ □ URBAN OR INDUSTRIAL [0] □ □ MODERATE [2] □ □ NARROW 5-10m [2] □ □ RESIDENTIAL, PARK, NEW FIELD [1] □ □ MINING / CONSTRUCTION [0]
	MODERATE [2] NARROW 5-10m [2] PRESIDENTIAL, PARK, NEW FIELD [1] MINING / CONSTRUCTION [0] MINING / CONSTRUCTION [0] Indicate predominant land use(s)
	□ □ NONE [0] □ □ OPEN PASTURE, ROWCROP [0] past 100m riparian. Riparian
	Comments Maximum 5.7
	5] POOL / GLIDE AND RIFFLE / RUN QUALITY MAXIMUM DEPTH CHANNEL WIDTH CURRENT VELOCITY Recreation Potential
	Check ONE (ONLY!) Check ONE (Or 2 & average) Check ALL that apply Primary Contact
	□ > 1m [6]
	0.7-<1m [4] POOL WIDTH = RIFFLE WIDTH [1] VERY FAST [1] INTERSTITIAL [-1] (circle one and comment on back) 0.4-<0.7m [2] POOL WIDTH < RIFFLE WIDTH [0] FAST [1] INTERMITTENT [-2]
	□ 0.2-<0.4m [1]
	□ < 0.2m [0] Indicate for reach - pools and riffles. Current \ ρ
	Comments Maximum 12
	Indicate for functional riffles; Best areas must be large enough to support a population
	of riffle-obligate species: Check ONE (Or 2 & average).
	RIFFLE DEPTH RUN DEPTH RIFFLE / RUN SUBSTRATE RIFFLE / RUN EMBEDDEDNESS BEST AREAS > 10cm [2] MAXIMUM > 50cm [2] STABLE (e.g., Cobble, Boulder) [2] MONE [2]
	BEST AREAS 5-10cm [1] MAXIMUM < 50cm [1] MOD. STABLE (e.g., Cobbie, Boulder) [1] LOW [1]
•	TREST AREAS < 5cm TUNSTARI F (e.g. Fine Gravel Sand) [0] MODERATE [0] Riffle /
	[metric=0] Run Size (c.g., the state, said) EXTENSIVE [-1] Run Size (c.g., the state, said) Comments
	CDADIENT + C O
	6] GRADIENT (65. O ft/mi) VERY LOW - LOW [2-4] %POOL: %GLIDE: Gradient Maximum
	DRAINAGE AREA

מסס מושכנותום, מנכ.			F/ MEASUREMENTS x width x depth max. depth x bankfull width bankfull x depth w/D ratio bankfull max. depth floodprone x² width entrench. ratio	Callen Darn
Comment KE: Reach consistency is reach typical of steam?, Recreation, Observed - Interior, Other, Sampling observations, Concerns, Access directions, etc.			WWTP / CSO / NPDES / INDUSTRY HARDENED / URBAN / DIRT&GRIME CONTAMINATED / LANDFILL BMPS-CONSTRUCTION-SEDIMENT LOGGING / IRRIGATION / COOLING BANK / EROSION / SURFACE FALSE BANK / MANURE / LAGOON WASH H ₂ 0 / TILE / H ₂ 0 TABLE ACID / MINE / QUARRY / FLOW NATURAL / WETLAND / STAGNANT PARK / GOLF / LAWN / HOME ATMOSPHERE / DATA PAUCITY	x End
Observed - Interfed, Outer	÷.		Circle some & COMMENT	3
s teach typical of steams, necreation	set blechs tith mountainens	-84, 347321 84, 34769	D) MAINTENAMCE PUBLIC / PRINATE / BOTH / NA ACTIVE / HISTORIC / BOTH / NA YOUNG-SUCCESSION-OLD SPRAY / SNAG / REMOVED MODIFIED / DIPPED OUT / NA LEVEED / ONE SIDED RELOCATED / CUTOFFS MOVING-BEDLOAD-STABLE ARMOURED / SLUMPS ISLANDS / SCOURED IMPOUNDED / DESICCATED FLOOD CONTROL / DRAINAGE	
	Beg, 39.21745, -84	Mid 39, 217136 -	B/AESTHETTCS □ NUISANCE ALGAE □ INVASIVE MACROPHYTES □ EXCESS TURBIDITY □ DISCOLORATION □ FOAM / SCUM □ OIL SHEEN □ OIL SHEEN □ TRASH / LITTER □ NUISANCE ODOR □ SLUDGE DEPOSITS □ SLUDGE DEPOSITS □ CSOS/SSOS/OUTFALLS FOOL: □ > 1000f² □ > 3ft	
A/SAMPLEU KEACH Check ALL that apply METHOD	1st -sample pass-	DISTANCE DEN	0.5 Km	Deep. Deep Hale

Chicago

Stream & Location: Unnamed Trib to Sycamore Creek RM: 02 Date: 9/09/2022
LM 56 - ust Loveland - Moderia Rd. Scorers Full Name & Affiliation: MAS -> MBI.
River Code: 11 - 049 - STORET #: Lat./Long.: 39 -216632 184 - 337167 HB Ocation
1] SUBSTRATE Check ONLYTwo substrate TYPE BOXES; estimate % or note every type present Check ONE (Or 2 & average)
BEST TYPES POOL RIFFLE OTHER TYPES POOL RIFFLE ORIGIN QUALITY
LIMESTONE [1] LIMESTONE [1] LIMESTONE [1]
□□ COBBLE [8] × x □□ MUCK [2] □ WETLANDS [0] SILI □ NORMAL [0]
GRAVEL [7]
BEDROCK [5] (Score natural substrates; ignore RIP/RAP [0] MODERATE [-1] Maximum
NUMBER OF BEST TYPES: 44 or more [2] sludge from point-sources) LI LACUSTURINE [0] WONE [1] 20
Comments
2] //STREAM COVER Indicate presence 0 to 3: 0-Absent; 1-Very small amounts or if more common of marginal quality; 2-Moderate amounts, but not of highest quality or in small amounts of highest quality; 3-Highest quality in moderate or greater amounts (e.g., very large boulders in deep or fast water, large diameter log that is stable, well developed rootwad in deep / fast water, or deep, well-defined, functional pools. O UNDERCUT BANKS [1] O POOLS > 70cm [2] O OXBOWS, BACKWATERS [1] O OXBOWS, BACKWATERS [1] O AQUATIC MACROPHYTES [1] SPARSE 5-<25% [3] SHALLOWS (IN SLOW WATER) [1] O ROOTMATS [1] O ROOT
3] CHANNEL MORPHOLOGY Check ONE in each category (Or 2 & average) SINUOSITY DEVELOPMENT CHANNELIZATION STABILITY HIGH [4] EXCELLENT [7] NONE [6] HIGH [3] MODERATE [3] GOOD [5] RECOVERED [4] MODERATE [2] LOW [2] FAIR [3] RECOVERING [3] LOW [1] NONE [1] POOR [1] RECENT OR NO RECOVERY [1] Comments Channel Maximum 20
A] BANK EROSION AND RIPARIAN ZONE Check ONE in each category for EACH BANK (Or 2 per bank & average) River right looking downstream RIPARIAN WIDTH FLOOD PLAIN QUALITY RESIDENTIAL PARK, NEW FIELD [1] FENCED PASTURE [1] FENCED PASTURE [1] FINANCE PROGRAMM (Or 2 per bank & average) FLOOD PLAIN QUALITY FLOOD PLAIN QUALITY RESIDENTIAL PARK, NEW FIELD [1] FENCED PASTURE [1] FINANCE PROGRAMM (Or 2 per bank & average) FLOOD PLAIN QUALITY FLOOD PLAIN
5] POOL / GLIDE AND RIFFLE / RUIN QUALITY MAXIMUM DEPTH CHANNEL WIDTH CURRENT VELOCITY Recreation Potential
Check ONE (ONLY!) Check ONE (Or 2 & average) Check ALL that apply Primary Contact Secondary Contact Secondary Contact Check ONE (Or 2 & average) Primary Contact Secondary Contact Check ALL that apply Primary Contact Secondary Contact Check ONE (Or 2 & average) Primary Contact Secondary Contact Check ONE (Or 2 & average) Primary Contact Secondary Contact Check ONE (Or 2 & average) Primary Contact Secondary Contact Check ALL that apply Primary Contact Secondary Contact Check ONE (Or 2 & average) Primary Contact Secondary Contact Secondary Contact Check ONE (Or 2 & average) Primary Contact Secondary Contact Secondary Contact Check ONE (Or 2 & average) Primary Contact Secondary Contact Secondary Contact Check ONE (Or 2 & average) Primary Contact Secondary Contact Check ONE (Or 2 & average) Secondary Contact Secondary Contact Check ONE (Or 2 & average) Secondary Contact Secondary Contact Check ONE (Or 2 & average) Secondary Contact Seconda
O.2m [0] Indicate for reach - pools and riffles. Current
Comments Maximum 12
Indicate for functional riffles; Best areas must be large enough to support a population of riffle-obligate species: Check ONE (Or 2 & average). Check ONE (Or 2 & average). RIFFLE DEPTH RUN DEPTH RIFFLE / RUN SUBSTRATE RIFFLE / RUN EMBEDDEDNESS
□ BEST AREAS > 10cm [2] □ MAXIMUM > 50cm [2] □ STABLE (e.g., Cobble, Boulder) [2] □ NONE [2] □ NONE [2] □ MAXIMUM < 50cm [1] □ MOD. STABLE (e.g., Large Gravel) [1] □ LOW [1]
☐ BEST AREAS < 5cm ☐ UNSTABLE (e.g., Fine Gravel, Sand) [0] ☐ MODERATE [0] Riffle
Comments Extensive [-1] Run Maximum
6] GRADIENT (6.3 ft/ml) VERY LOW - LOW [2-4] %POOL: %GLIDE: Gradient
DRAINAGE AREA (5.6 mi²) MODERATE [6-10] %RUN: %RIFFLE: Maximum 10 10 10 10 10 10 10 1

	FT MEASUREMENTS X width X depth max. depth X bankfull X depth bankfull X depth WID ratio bankfull max. depth floodprone x² width entrench. ratio Legacy Tree:
Comment RE: Reach consistency is reach typical of steaming, when the consistency is reach typical of steaming seeming to the standard of the s	WWTP / CSO / NPDES / INDUSTRY HARDENED / URBAN / DIRT&GRIME CONTAMINATED / LANDFILL BMPs-CONSTRUCTION-SEDIMENT LOGGING / IRRIGATION / COOLING BANK / EROSION / SURFACE FALSE BANK / MANURE / LAGOON WASH H ₂ 0 / TILE / H ₂ 0 TABLE ACID / MINE / QUARRY / FLOW NATURAL / WETLAND / STAGNANT PARK / GOLF / LAWN / HOME ATMOSPHERE / DATA PAUCITY
	Circle some & COMMENT
84.337167 84.337167 4.33720	DJ MAINTENANCE PUBLIC / PRINATE / BOTH / NA ACTIVE / HISTORIC / BOTH / NA YOUNG-SUCCESSION-OLD SPRAY / SNAG / REMOVED MODIFIED / DIPPED OUT / NA LEVEED / ONE SIDED RELOCATED / CUTOFFS MOVING-BEDLOAD-STABLE ARMOURED / SLUMPS ISLANDS / SCOURED IMPOUNDED / DESICCATED FLOOD CONTROL / DRAINAGE
Deg 59,21625, -84,33737 Mid 39,216632, -84,337167 End 39,21721, -84,33720	BJAESTHETICS NUISANCE ALGAE INVASIVE MACROPHYTES EXCESS TURBIDITY DISCOLORATION FOAM / SCUM OIL SHEEN ITASH / LITTER NUISANCE ODOR SLUDGE DEPOSITS CSOS/SSOS/OUTFALLS POOL: \(\) AREA DEPTH
	0.5 Km

Stream Drawing:

QHEI Score.	26.0

Stream & Location									
NATI .	Duck	Creek - Nor	wood /Ho	erris Ave.		_ <i>RM:</i> _	6 Date	e: 7/ 13/	2022
			Scorers	Full Name	& Affiliation.	MAS-	MBI		
	004-	_STORET#:_		Lat./Long - (NAD 83 - decimal	39.16073	<u>3 /84</u>	· 438359		rerified Cation
1] SUBSTRATE Che esti	eck <i>ONLY</i> Two s mate % or note	substrate <i>TYPE BC</i> every type presen	XES;		Check (ONE (Or 2	£ average)		
BEST TYPES	POOL RIFFL	OTHER T	VDES	RIFFLE	ORIGIN	511E (O1 E 1	QUA	LITY	
☐ ☐ BLDR /SLABS [10	0]	HARDPA	N [4]		MESTONE [1]		HEAVY	[-2]	
☐ ☐ BOULDER [9] ☐ ☐ COBBLE [8]					LS [1] TLANDS [0]	SILT	MODER		Substrate
GRAVEL [7]	×	SILT [2]			RDPAN [0]		DNORMA DFREE [1	The second	(35)
SAND [6]	_ X	□ □ ARTIFIC		SA	NDSTONE [0]	EDDEN.	EXTEN	SIVE [-2]	0.
□ □ BEDROCK [5] NUMBER OF BEST	TVDES. []	Score n 4 or more [2] slud	atural substrate ge from point-	es; ignore RII	P/RAP [0]	W V	MODER	ATE [-1]	Maximum
Comments		3 or less [0]	g ,	□ѕн	ALE [-1]		D MODER	ալսյ 11	20
Substrate	C	d in bada	0.10		AL FINES [-2]	1.00	Said for special con-	3 2 ./	
2] INSTREAM COV					n grav h	ates			
quality; 3-Highest quality diameter log that is stab / UNDERCUT BAN / OVERHANGING \ 3 SHALLOWS (IN S ROOTMATS [1]	quality; 2-h y in moderate of le, well develop KS [1] /EGETATION [r greater amounts, r greater amounts ed rootwad in deel	but not of hig e g very larg	hest quality or in the boulders in de- pr deep, well-de OXBOW	n small amounts	of highest large pools. RS [1] TES [1]	Check ONE (IDENTIFY OF THE PROPERTY OF THE PRO	E >75% [11] E 25-75% [7 <25% [3] BSENT <5%	1
Comments								Cover Maximum 20	8
HIGH [4]	VELOPMEN EXCELLENT [GOOD [5] FAIR [3] POOR [1]	7] NONE [6] RECOVE	RED [4]		TABILITY HIGH [3] MODERATE [2] LOW [1]			Channel Maximum 20	(p.5)
4] BANK EROSION	AND RIPAR	RIAN ZONE Che	eck ONE in ea				& average)		
4] BANK EROSION River right looking downstra	eam RIP	ARIAN WIDTH	LR	FLOOD PI	AIN QUALI	TYLR			
EROSION NONE / LITTLE [3]	RIP.	ARIAN WIDTH > 50m [4] ERATE 10-50m [3	L R FO	FLOOD PI REST, SWAMP	-AIN QUALI	TY	CONSERVATIO	ON TILLAGE	[1]
River right looking downstrum ROSION NONE / LITTLE [3] MODERATE [2]	RIP.	ARIAN WIDTH > 50m [4] ERATE 10-50m [3 ROW 5-10m [2]		FLOOD PI REST, SWAMP RUB OR OLD F SIDENTIAL, PAI	_AIN QUALI [3] TELD [2] RK, NEW FIELD	TY DD		DUSTRIAL !	01
EROSION NONE / LITTLE [3]	RIP. RIP. RIP. RIP. RIP. RIP. RIP. RIP.	ARIAN WIDTH 5 > 50m [4] 6 = 80m [4] 7 ROW 5-10m [2] 7 NARROW < 5m		FLOOD PI REST, SWAMP RUB OR OLD F SIDENTIAL, PAI NCED PASTUR	_AIN QUALI' 3] ELD [2] RK, NEW FIELD E [1]	TY B C C C C C C C C C C C C C C C C C C	CONSERVATION URBAN OR IN MINING / CONSERVATION	DUSTRIAL STRUCTION and use(s)	01
EROSION NONE / LITTLE [3] MODERATE [2]	RIP.	ARIAN WIDTH 5 > 50m [4] 6 = 80m [4] 7 ROW 5-10m [2] 7 NARROW < 5m		FLOOD PI REST, SWAMP RUB OR OLD F SIDENTIAL, PAI	_AIN QUALI' 3] ELD [2] RK, NEW FIELD E [1]	TY B C C C C C C C C C C C C C C C C C C	CONSERVATION URBAN OR IN MINING / CONS predominant In Om riparian.	DUSTRIAL STRUCTION	[0]
River right looking downstrate R EROSION NONE / LITTLE [3] MODERATE [2] HEAVY / SEVERE [Comments FOOL / GLIDE A/	RIP. RIP. RIP. RIP. RIP. RIP. RIP. RIP.	ARIAN WIDTH 5 > 50m [4] ERATE 10-50m [3] ROW 5-10m [2] Y NARROW < 5m E [0]	R FO FO SHI	FLOOD PI REST, SWAMP RUB OR OLD F SIDENTIAL, PAI NCED PASTUR EN PASTURE,	-AIN QUALI [3] IELD [2] RK, NEW FIELD E [1] ROWCROP [0]	TY B C C C C C C C C C C C C C C C C C C	CONSERVATION URBAN OR IN MINING / CONS Predominant In Om riparlan.	DUSTRIAL STRUCTION and use(s) Riparian Maximum 10	0] [0] 3
River right looking downstrate [2] NONE / LITTLE [3] MODERATE [2] HEAVY / SEVERE [Comments POOL / GLIDE AI MAXIMUM DEPTH	RIP. RIP. RIP. RIP. RIP. RIP. RIP. RIP.	ARIAN WIDTH > 50m [4] ERATE 10-50m [3] ROW 5-10m [2] NARROW < 5m E [0] RUIN QUALITA	R FO FO FO FO FO FO FO F	FLOOD PI REST, SWAMP RUB OR OLD F SIDENTIAL, PAI NCED PASTURE, EN PASTURE,	-AIN QUALI [3] FIELD [2] RK, NEW FIELD E [1] ROWCROP [0]	TY B C C C C C C C C C C C C C C C C C C	CONSERVATION URBAN OR IN WINING / CONSERVATION OF PROCESSION Recreation	STRUCTION and use(s) Riparlan Maximum 10	0] [0] 3
River right looking downstrate R EROSION NONE / LITTLE [3] MODERATE [2] HEAVY / SEVERE [Comments FOOL / GLIDE A/	RIP. RIP. RIP. RIP. RIP. RIP. RIP. RIP.	ARIAN WIDTH > 50m [4] ERATE 10-50m [3] ROW 5-10m [2] NARROW < 5m E [0] ARROW ARROW C [0] ANNEL WIDTH ONE (Or 2 & avera	R FO	FLOOD PI REST, SWAMP RUB OR OLD F SIDENTIAL, PAI NCED PASTURE, EN PASTURE, CURRENT Check AL	-AIN QUALI [3] FIELD [2] RK, NEW FIELD E [1] ROWCROP [0] VELOCITY L that apply	TY B C C C C C C C C C C C C C C C C C C	CONSERVATION URBAN OR IN MINING / CONSERVATION Primary CONSERVATION UNITED TO THE CONSTRUCTION UNITED	STRUCTION and use(s) Riparian Maximum 10 n Potentia	3
EROSION EROSION NONE / LITTLE [3] MODERATE [2] HEAVY / SEVERE [Comments 5] POOL / GLIDE AI MAXIMUM DEPTH Check ONE (ONLY!) > 1m [6] 0.7-<1m [4]	RIP. RIP. RIP. RIP. RIP. RIP. RIP. RIP.	ARIAN WIDTH > 50m [4] ERATE 10-50m [3] ROW 5-10m [2] / NARROW < 5m E [0] / RUN QUALIT ANNEL WIDTH ONE (Or 2 & avera OTH > RIFFLE WID OTH = RIFFLE WID	R FO	FLOOD PI REST, SWAMP RUB OR OLD F SIDENTIAL, PAI NCED PASTURE, EN PASTURE, CURRENT Check AL DRRENTIAL [-1] ERY FAST [1]	-AIN QUALI [3] FIELD [2] RK, NEW FIELD E [1] ROWCROP [0] VELOCITY L that apply SLOW [1] INTERSTIT	IY R R R R R R R R R R R R R R R R R R R	CONSERVATION URBAN OR IN MINING / CONSERVATION Proposition Recreation Primary Secondar	DUSTRIAL STRUCTION and use(s) Riparian Maximum 10 n Potential	3
River right looking downstrate R EROSION NONE / LITTLE [3] MODERATE [2] HEAVY / SEVERE [Comments MAXIMUM DEPTH Check ONE (ONLY!) 1m [6] 0.7-<1m [4] 0.4-<0.7m [2]	RIP. RIP. RIP. RIP. RIP. RIP. RIP. RIP.	ARIAN WIDTH > 50m [4] ERATE 10-50m [3] ROW 5-10m [2] (NARROW < 5m E [0] / RUN QUALIT ANNEL WIDTH ONE (Or 2 & avera OTH > RIFFLE WID	R FO	FLOOD PI REST, SWAMP RUB OR OLD F SIDENTIAL, PAI NCED PASTURE, EN PASTURE, CURRENT Check AL DRRENTIAL [-1] ERY FAST [1] AST [1]	-AIN QUALI [3] IELD [2] RK, NEW FIELD E [1] ROWCROP [0] VELOCITY L that apply SLOW [1] INTERSTIT	IY R D D D D D D D D D D D D D D D D D D	CONSERVATION URBAN OR IN MINING / CONSERVATION Primary CONSERVATION UNITED TO THE CONSTRUCTION UNITED	DUSTRIAL STRUCTION and use(s) Riparian Maximum 10 In Potential Contact Ty Contact Comment on back	3
EROSION NONE / LITTLE [3] MODERATE [2] HEAVY / SEVERE [Comments MAXIMUM DEPTH Check ONE (ONLY!) 1m [6] 0.7-<1m [4] 0.4-<0.7m [2] 10.2-<0.4m [1] < 0.2m [0]	RIP. RIP. RIP. RIP. RIP. RIP. RIP. RIP.	ARIAN WIDTH > 50m [4] ERATE 10-50m [3] ROW 5-10m [2] / NARROW < 5m E [0] / RUN QUALIT ANNEL WIDTH ONE (Or 2 & avera OTH > RIFFLE WID OTH = RIFFLE WID	R FO FO SHI SH	FLOOD PI REST, SWAMP RUB OR OLD F SIDENTIAL, PAI NCED PASTURE, EN PASTURE, CURRENT Check AL DRRENTIAL [-1] ERY FAST [1] AST [1] ODERATE [1]	-AIN QUALI [3] FIELD [2] RK, NEW FIELD E [1] ROWCROP [0] VELOCITY L that apply SLOW [1] INTERSTIT	IY D Indicate past 10 IAL [-1]	CONSERVATION URBAN OR IN MINING / CONSERVATION Proposition Recreation Primary Secondar	DUSTRIAL STRUCTION and use(s) Riparian Maximum 10 n Potential	3
EROSION NONE / LITTLE [3] MODERATE [2] HEAVY / SEVERE [Comments MAXIMUM DEPTH Check ONE (ONLY!) 1m [6] 0.7-<1m [4] 0.4-<0.7m [2] 2.0.2-<0.4m [1]	RIP. RIP. RIP. RIP. RIP. RIP. RIP. RIP.	ARIAN WIDTH > 50m [4] ERATE 10-50m [3] ROW 5-10m [2] / NARROW < 5m E [0] / RUN QUALIT ANNEL WIDTH ONE (Or 2 & avera OTH > RIFFLE WID OTH = RIFFLE WID	R FO FO SHI SH	FLOOD PI REST, SWAMP RUB OR OLD F SIDENTIAL, PAI NCED PASTURE, EN PASTURE, CURRENT Check AL DRRENTIAL [-1] ERY FAST [1] AST [1] ODERATE [1]	-AIN QUALI [3] IELD [2] RK, NEW FIELD E [1] ROWCROP [0] VELOCITY L that apply SLOW [1] INTERSTIT EDDIES [4]	IY D Indicate past 10 IAL [-1]	CONSERVATION URBAN OR IN MINING / CONSERVATION Price predominant / Primary Secondar (circle one and conservation)	TOUSTRIAL STRUCTION and use(s) Riparian Maximum 10 The Potential Contact Ty Contact Maximum	3
River right looking downstrate R EROSION NONE / LITTLE [3] MODERATE [2] HEAVY / SEVERE [Comments MAXIMUM DEPTH-Check ONE (ONLY!) NIM [6] 0.7~(1m [4] 0.2~(0.7m [2] 0.2~(0	RIP. RIP. RIP. RIP. RIP. RIP. RIP. RIP.	ARIAN WIDTH > 50m [4] ERATE 10-50m [3] ROW 5-10m [2] / NARROW < 5m E [0] / RUN OUALIT ANNEL WIDTH ONE (Or 2 & avera OTH > RIFFLE WID OTH < RIFFLE WID OTH < RIFFLE WID S; Best areas	R FO O O O	FLOOD PI REST, SWAMP RUB OR OLD F SIDENTIAL, PAI NCED PASTURE, CURRENT Check AL DREENTIAL [-1] ERY FAST [1] AST [1] Indicate for read	AIN QUALI [3] [ELD [2] RK, NEW FIELD E [1] ROWCROP [0] VELOCITY L that apply I SLOW [1] INTERSTIT INTERSTIT EDDIES [1] h - pools and rift	IY R D D D D D D D D D D D D D D D D D D	CONSERVATION URBAN OR IN MINING / CONSERVATION Primary Secondar (circle one and conservation	TOUSTRIAL STRUCTION and use(s) Riparian Maximum 10 The Potential Contact Cy Contact Cy Contact Cy Contact Cy Contact Maximum 12	3
River right looking downstrate [2] Reposion None / Little [3] Moderate [2] Heavy / Severe [Comments 5] POOL / GLIDE A/ MAXIMUM DEPTHOLOGY [0] None [1] Note [1] Note [2] Note [2] Note [3] Note [4] Note [RIP. RIP. RIP. RIP. RIP. RIP. RIP. RIP.	ARIAN WIDTH > 50m [4] ERATE 10-50m [3] ROW 5-10m [2] / NARROW < 5m E [0] / RUN OUALIT ANNEL WIDTH ONE (Or 2 & avera OTH > RIFFLE WID OTH < RIFFLE WID OTH < RIFFLE WID S; Best areas	R FO SHI SHI RE: RE: PE PE PE PE PE PE PE PE	FLOOD PI REST, SWAMP RUB OR OLD F SIDENTIAL, PAI NCED PASTURE, CURRENT Check AL DRENTIAL [-1] ERY FAST [1] AST [1] Indicate for read rge enough	AIN QUALI [3] [ELD [2] RK, NEW FIELD [1] ROWCROP [0] VELOCITY L that apply L SLOW [1] INTERSTIT EDDIES [1] to support a	IN R PART OF THE P	Recreation Primary Secondal (circle one and co	TOUSTRIAL STRUCTION and use(s) Riparian Maximum 10 The Potential Contact Cy Contact Cy Contact Current Maximum 12 RIFFLE [me	3
River right looking downstrate R EROSION NONE / LITTLE [3] MODERATE [2] HEAVY / SEVERE [Comments MAXIMUM DEPTHCheck ONE (ONLY!) NIME [3] O.7~1m [4] O.2~0.4m [1] O.2~0.4m [1] O.2~1m [6] Comments Indicate for function of riffle-obligate RIFFLE DEPTH BEST AREAS > 10cm [7]	RIP. RIP. RIP. RIP. RIP. RIP. RIP. RIP.	ARIAN WIDTH > 50m [4] ERATE 10-50m [3] ROW 5-10m [2] / NARROW < 5m E [0] / RUN QUALIT ANNEL WIDTH ONE (Or 2 & avera OTH > RIFFLE WID OTH < RIFFLE WID S; Best areas C DEPTH UM > 50cm [2]	R FO SHI S	FLOOD PI REST, SWAMP RUB OR OLD F SIDENTIAL, PAI NCED PASTURE, CHECK AL ORRENTIAL [-1] ERY FAST [1] AST [1] Indicate for reach r 2 & average). RUN SUBST	AIN QUALI [3] [ELD [2] RK, NEW FIELD [1] ROWCROP [0] VELOCITY L that apply [INTERSTIT INTERSTIT EDDIES [1] to support a RATE RIFF	IN R R R R R R R R R R R R R R R R R R R	Recreation Primary Secondari (circle one and contents)	TOUSTRIAL STRUCTION and use(s) Riparian Maximum 10 The Potential Contact Cy Contact Cy Contact Current Maximum 12 RIFFLE [me	3
EROSION NONE / LITTLE [3] MODERATE [2] HEAVY / SEVERE [Comments NONE / LITTLE [3] HEAVY / SEVERE [2] HEAVY / SEVERE [2] OMMENTS NONE / LITTLE [3] MAXIMUM DEPTH- Check ONE (ONLY!) NONE / LITTLE [3] O.7 < 1m [4] O.7 < 1m [4] O.7 < 1m [4] O.2 < 0.4m [1] O.2 < 0.4m [1] O.2 < 0.7m [2] Moderate for function of riffle-obligate RIFFLE DEPTH	RIP. RIP. RIP. RIP. RIP. RIP. RIP. RIP.	ARIAN WIDTH > 50m [4] ERATE 10-50m [3] ROW 5-10m [2] / NARROW < 5m E [0] / RUN OUALIT ANNEL WIDTH ONE (Or 2 & avera OTH > RIFFLE WID OTH < RIFFLE WID OTH < RIFFLE WID S; Best areas C DEPTH UM > 50cm [2] UM < 50cm [1]	I R FOI SHI SHI SHI SHI SHI SHI SHI SHI SHI SH	FLOOD PI REST, SWAMP RUB OR OLD F SIDENTIAL, PAI NCED PASTURE, CHECK AL ORRENTIAL [-1] ERY FAST [1] AST [1] Indicate for reach r 2 & average). RUN SUBST	AIN QUALI [3] [ELD [2] RK, NEW FIELD [1] ROWCROP [0] VELOCITY L that apply INTERSTIT INTERSTIT EDDIES [1] to support a RATE RIFF der) [2] Gravel) [1]	IN R R R R R R R R R R R R R R R R R R R	CONSERVATION URBAN OR IN MINING / CONS MINING / CONS MINING / CONS MINING / CONS Primary Secondai (circle one and cons MINING / CONS MINING / CONS MINING MI	TOUSTRIAL STRUCTION and use(s) Riparian Maximum 10 The Potential Contact Cont	3
River right looking downstrate R EROSION NONE / LITTLE [3] MODERATE [2] HEAVY / SEVERE [Comments MAXIMUM DEPTH Check ONE (ONLY!) No.7-41m [4] O.7-41m [4] O.4-0.7m [2] O.2-0.4m [1] O.2-0.4m [1] O.5-0.5m [0] Comments Indicate for function of riffle-obligate RIFFLE DEPTH BEST AREAS > 10cm [BEST AREAS > 5cm [metric=0] BEST AREAS < 5cm [metric=0]	RIP. Wide Mod Mod Nari	ARIAN WIDTH > 50m [4] ERATE 10-50m [3] ROW 5-10m [2] / NARROW < 5m E [0] / RUN OUALIT ANNEL WIDTH ONE (Or 2 & avera OTH > RIFFLE WID OTH < RIFFLE WID OTH < RIFFLE WID S; Best areas C DEPTH UM > 50cm [2] UM < 50cm [1]	R FO SHI PE PE PE PE PE PE PE P	FLOOD PI REST, SWAMP RUB OR OLD F SIDENTIAL, PAI NCED PASTURE, CURRENT Check AL DRENTIAL [-1] ERY FAST [1] AST [1] Indicate for read rge enough 2 & average). RUN SUBST ., Cobble, Boul	AIN QUALI [3] [ELD [2] RK, NEW FIELD [1] ROWCROP [0] VELOCITY L that apply [INTERSTIT INTERSTIT EDDIES [1] th - pools and rift to support a RATE RIFF [der) [2] Gravel) [1] [s], Sand) [0]	IN R R R R R R R R R R R R R R R R R R R	Recreation Primary Secondar (circle one and contents) ONE [2] ODERATE [0] (TENSIVE [-1]	TOUSTRIAL STRUCTION and use(s) Riparian Maximum 10 The Potential Contact Ty Contact Ty Contact Ty Contact Maximum 12 RIFFLE [me EDNESS RIFFLE Maximum Run	3

FI MEASUREMENTS Freeway floodprone x2 width bankfull max. depth X bankfull width bankfull x depth entrench. ratio Comment RE: Reach consistency/ Is reach typical of steam?, Recreation/ Observed - Inferred, Other/ Sampling observations, Concerns, Access directions, etc. Legacy Tree. max. depth W/D ratio Xwidth x depth HARDENED / URBAN / DIRT&GRIME LOGGING / IRRIGATION / COOLING FALSE BANK / MANURE / LAGOON BMPs-CONSTRUCTION-SEDIMENT NATURAL / WETLAND / STAGNANT WWTP / CSO / NPDES / INDUSTRY ATMOSPHERE / DATA PAUCITY v6nd WASH H20 / TILE / H20 TABLE ACID / MINE / QUARRY / FLOW BANK / EROSION / SURFACE PARK / GOLF / LAWN / HOME CONTAMINATED / LANDFILL EJ ISSUES Circle some & COMMENT 1.90% FLOOD CONTROL / DRAINAGE PUBLIC / PRIVATE / BOTH / NA ACTIVE / HISTORIC / BOTH / NA MODIFIED / DIPPED OUT / NA MOVING-BEDLOAD-STABLE IMPOUNDED / DESICCATED YOUNG-SUCCESSION-OLD SPRAY / SNAG / REMOVED RELOCATED / CUTOFFS DI MAINTENANCE ARMOURED / SLUMPS LEVEED / ONE SIDED ISLANDS / SCOURED -84.43829 ,438359 -186, 43814 □ NUISANGE ALGAE
□ INVASIVE MACROPHYTES
□ EXCESS TURBIDITY
□ INSCOLORATION
□ FOAM / SCUM
□ OIL SHEEN 700 CSOS/SSOS/OUTFALLS BIAESTHETICS 16140 16073 STINDGE DEPOSITS CJ RECREATION AREA DEPTH
POOL: \Box 100ft2 \Box 3ft 100 AREA DEPTH TRASH / LITTER 5 4 Z ☐ SECCHI DEPTH☐ Zinormali | Cilow | Cilow | Cilow | Cilow | Cilow | Cilow | Cilory 1st-sample pass- 2nd --sample pass--A> 70 cm/CTB CLARITY STAGE □20-<40 cm Stream Drawing 40-70 cm AJ SAMPLED REACH Check ALL that apply □ < 20 cm HOH J.D ☐ <10%-CLOSED □ > 85%- OPEN CANOPY outlet sommater 55%-<85% 30%~25% 10%~<30% DISTANCE 0.5 Km 0.2 Km 0.15 Km 0.12 Km O IL. LINE METHOD WADE meters □ BOAT

Cheta

Stream & Location: Duck Creek . @ Duck Creek Rd. RM: 5.14 Date: 7/13/2022
LM72 Scorers Full Name & Affiliation: MAS - MB1
River Code: 11 - 004 - STORET#: Lat./Long.: 39 .165258 184 . 418817 Office verified NAD 83 - decimal 9 . 165258 184 . 418817 Mid location
1] SUBSTRATE Check ONLYTwo substrate TYPE BOXES; estimate % or note every type present Check ONE (Or 2 & average)
BEST TYPES POOL RIFFLE OTHER TYPES POOL RIFFLE ORIGIN QUALITY
LJ LJ BLDR /SLABS [10] X X LJ LJ HARDPAN [4] LIMESTONE [1] LJ HEAVY [-2]
BOULDER [9]
GRAVEL [7] A K D SILT [2] D SAND [6] D D ARTIFICIAL [0] A C SANDSTONE [0] A DEC. DESTENSIVE [-2]
Score natural substrates: ignore RIP/RAP [0]
NUMBER OF BEST TYPES: 24 or more [2] sludge from point-sources) LACUSTURINE [0] SINORMAL [0] 20
LiCOAL FINES [-2]
Algae covering suiface of Substrates
AMOUNT Quality; 2-Moderate amounts, but not of highest quality or in small amounts of highest quality; 3-Highest quality in moderate or greater amounts, but not of highest quality or in small amounts of highest quality; 3-Highest quality in moderate or greater amounts (e.g., very large boulders in deep or fast water, large diameter log that is stable, well developed rootwad in deep / fast water, or deep, well-defined, functional pools. O ONBOWS, BACKWATERS [1] ONBOWS, BACKWATERS [1] ONBOWS, BACKWATERS [1] OVERHANGING VEGETATION [1] O OV
Comments Constant Maximum 20
3] CHANNEL MORPHOLOGY Check ONE in each category (Or 2 & average)
SINUOSITY DEVELOPMENT CHANNELIZATION STABILITY
☐ HIGH [4] ☐ EXCELLENT [7] ☐ NONE [6] ☐ HIGH [3] ☐ MODERATE [3] ☐ GOOD [5] ☐ RECOVERED [4] ☐ MODERATE [2]
LOW [2] FAIR [3] RECOVERING [3] LOW [1]
None [1] Poor [1] RECENT OR NO RECOVERY [1] Channel Comments Channel Maximum
20
4] BANK EROSION AND RIPARIAN ZONE Check ONE in each category for EACH BANK (Or 2 per bank & average)
River right looking downstream RIPARIAN WIDTH FLOOD PLAIN QUALITY EROSION WIDE > 50m [4] FOREST, SWAMP [3] CONSERVATION TILLAGE [1]
NONE / LITTLE [3]
□ □ MODERATE [2] □ □ NARROW 5-10m [2] □ □ RESIDENTIAL, PARK, NEW FIELD [1] □ □ MINING / CONSTRUCTION [0] □ □ HEAVY / SEVERE [1] □ □ VERY NARROW < 5m [1] □ □ FENCED PASTURE [1] Indicate predominant land use(s)
Indicate predominant land use(s) NONE [0] OPEN PASTURE, ROWCROP [0] past 100m riparian. Riparian
Comments Maximum 10
5] POOL / GLIDE AND RIFFLE / RUN QUALITY MAXIMUM DEPTH CHANNEL WIDTH CURRENT VELOCITY Recreation Potential
Check ONE (ONLY!) Check ONE (Or 2 & average) Check ALL that apply Primary Contact
□ > 1m [6] □ POOL WIDTH > RIFFLE WIDTH [2] □ TORRENTIAL [-1] □ SLOW [1] Secondary Contact □ 0.7 < 1m [4] □ POOL WIDTH = RIFFLE WIDTH [1] □ VERY FAST [1] □ INTERSTITIAL [-1] (circle one and comment on back)
□ 0.4<0.7m [2] □ POOL WIDTH < RIFFLE WIDTH [0] □ FAST [1] □ INTERMITTENT [-2]
□ 0.2~0.4m [1] □ MODERATE [1] □ EDDIES [1] Pool / □ Indicate for reach - pools and riffles. Current
Comments
Indicate for functional riffles; Best areas must be large enough to support a population
Comments Maximum 12
Indicate for functional riffles; Best areas must be large enough to support a population of riffle-obligate species: Check ONE (Or 2 & average). RIFFLE DEPTH RUN DEPTH RIFFLE / RUN SUBSTRATE RIFFLE / RUN EMBEDDEDNESS BEST AREAS > 10cm [2] MAXIMUM > 50cm [2] STABLE (e.g., Cobble, Boulder) [2] NONE [2]
Indicate for functional riffles; Best areas must be large enough to support a population of riffle-obligate species; Check ONE (Or 2 & average). RIFFLE DEPTH RUN DEPTH RIFFLE / RUN SUBSTRATE RIFFLE / RUN EMBEDDEDNESS BEST AREAS > 10cm [2] MAXIMUM > 50cm [2] STABLE (e.g., Cobble, Boulder) [2] NONE [2] BEST AREAS 5-10cm [1] MAXIMUM < 50cm [1] MOD. STABLE (e.g., Large Gravel) [1] LOW [1] BEST AREAS < 5cm UNSTABLE (e.g., Fine Gravel, Sand) [0]
Indicate for functional riffles; Best areas must be large enough to support a population of riffle-obligate species; Check ONE (Or 2 & average). RIFFLE DEPTH RUN DEPTH RIFFLE / RUN SUBSTRATE RIFFLE / RUN EMBEDDEDNESS BEST AREAS > 10cm [2] MAXIMUM > 50cm [2] STABLE (e.g., Cobble, Boulder) [2] NONE [2] BEST AREAS 5-10cm [1] MAXIMUM < 50cm [1] MOD. STABLE (e.g., Large Gravel) [1] LOW [1] BEST AREAS < 5cm UNSTABLE (e.g., Fine Gravel, Sand) [0]
Indicate for functional riffles; Best areas must be large enough to support a population of riffle-obligate species: Check ONE (Or 2 & average). RIFFLE DEPTH RUN DEPTH RIFFLE / RUN SUBSTRATE RIFFLE / RUN EMBEDDEDNESS BEST AREAS > 10cm [2] MAXIMUM > 50cm [2] STABLE (e.g., Cobble, Boulder) [2] NONE [2] BEST AREAS 5-10cm [1] MAXIMUM < 50cm [1] MOD. STABLE (e.g., Large Gravel) [1] LOW [1] BEST AREAS < 5cm Moderate [0] Riffle / Run Moderate Riff
Indicate for functional riffles; Best areas must be large enough to support a population of riffle-obligate species; Check ONE (Or 2 & average). RIFFLE DEPTH RUN DEPTH RIFFLE / RUN SUBSTRATE RIFFLE / RUN EMBEDDEDNESS BEST AREAS > 10cm [2] MAXIMUM > 50cm [2] STABLE (e.g., Cobble, Boulder) [2] NONE [2] BEST AREAS 5-10cm [1] MAXIMUM < 50cm [1] MOD. STABLE (e.g., Large Gravel) [1] LOW [1] BEST AREAS < 5cm UNSTABLE (e.g., Fine Gravel, Sand) [0]

ess directions, etc.	F) MEASUREMENTS x width x depth max. depth x bankfull width bankfull x depth W/D ratio bankfull max. depth floodprone x² width entrench. ratio
Comment RE: Reach consistency/ Is reach typical of steam?, Recreation/Observed - Inferred, Other/ Sampling observations, Concerns, Access directions, etc. Beg 39, 14514 Mid 39, 165258, -84, 418817 End 39, 16534, -84, 41940	E//SSV/ES WWTP / CSO / NPDES / INDUSTRY HARDENED / URBAN / DIRT&GRIME CONTAMINATED / LANDFILL BMPs-CONSTRUCTION-SEDIMENT LOGGING / IRRIGATION / COOLING BANK / EROSION / SURFACE FALSE BANK / MANURE / LAGOON WASH H ₂ 0 / TILE / H ₂ 0 TABLE ACID / MINE / QUARRY / FLOW NATURAL / WETLAND / STAGNANT PARK / GOLF / LAWN / HOME ATMOSPHERE / DATA PAUCITY
/ Observed - Inferred, Other/	Circle some & COMMENT
39, 1651, -84,41811 39, 16525, -84,418817 39, 16525, -84,418817	DJ MAINTENANCE PUBLIC / PRIVATE / BOTH / NA ACTIVE / HISTORIC / BOTH / NA YOUNG-SUCCESSION-OLD SPRAY / SNAG / REMOVED MODIFIED / DIPPED OUT / NA LEVEED / ONE SIDED RELOCATED / CUTOFFS MOVING-BEDLOAD-STABLE ARMOURED / SLUMPS ISLANDS / SCOURED IMPOUNDED / DESICCATED FLOOD CONTROL / DRAINAGE
Comment RE: Reach consistency/ Is reach typical of 39, 16516, -84, 418	RMAL
A) SAMPLED REACH Check ALL that apply METHOD STAGE BOAT 1st -sample pass-2nd WADE HIGH	CL/OSED 1.81 83mp CL/OSED

Stream Drawing:

Stream & Location: Duck	Creek - 11 St-ol Place		B
LM73	Citch and Siel incle		RM: 4.58 Date: 7/22/2022
		Name & Affiliation:	
River Code: 11 - 004 -		t/Long. 39 . 15963	
1] SUBSTRATE Check ONLYTwo		83 - decimal °)	4 184 414392 Office verified location
estimate % or no	ote every type present	Check C	NE (Or 2 & average)
BEST TYPES POOL RIFE	OTHER TYPES	ORIGIN	QUALITY
BLDR /SLABS [10]	HARDPAN [4]	LIMESTONE [1]	[] HEAVY [-2]
BOULDER [9]	DETRITUS [3]		SILT MODERATE [-1] Substra
COBBLE [8]	MUCK [2]	■ WETLANDS [0]	NORMAL [0]
GRAVEL [7]		HARDPAN [0]	FREE
□ □ SAND [6] □ □ BEDROCK [5]	DARTIFICIAL [0]	SANDSTONE [0] OF PRINCE PRINCE	DEON DEXTENSIVE [-2] MODERATE [-1] MODERATE [-1] MODERATE [-1] NONE [1]
NUMBER OF BEST TYPES:	(Score natural substrates; igno	es) LACUSTURINE [0]	MODERATE [-1] Maximu
	☑ 3 or less [0]	SHALE [-1]	DNONE 111
Comments Y	TO SECTION OF THE SEC	☐ COAL FINES [-2]	Constitute Anna Sance Late
quality; 3-Highest quality in moderate diameter log that is stable, well developed to the control of the contro	presence 0 to 3: 0-Absent; 1-Very small a 2-Moderate amounts, but not of highest que or greater amounts (e.g., very large boul oped rootwad in deep / fast water, or deep / POOLS > 70cm [2]	uality or in small amounts lders in deep or fast water, p, well-defined, functional	of highest large Check ONE (Or 2 & average) pools. EXTENSIVE >75% [11] RS [1] MODERATE 25-75% [7] ES [1] SPARSE 5-25% [3]
Comments			Maximum 2
	Check ONE in each category (Or 2 & ave		20
MODERATE [3] GOOD [5] LOW [2] FAIR [3] NONE [1] POOR [1] Comments	☐ RECOVERED [4] ☐ RECOVERING [3] ☐ RECENT OR NO RECOVERY	MODERATE [2] Low [1]	Channel
			Maximum 20
River right looking downstream RI REROSION NONE / LITTLE [3] MODERATE [2] NA HEAVY / SEVERE [1], UVE Comments	DE > 50m [4]	OOD PLAIN QUALIT	20 2 per bank & average) TY CONSERVATION TILLAGE [1] URBAN OR INDUSTRIAL [0]
River right looking downstream RI REROSION MODE/LITTLE [3] MODERATE [2] MODERATE [2] MODERATE [1] MODERATE [1] MODERATE [2] MODERATE [2] MODERATE [3] MODERATE [3] MODERATE [4] MODERATE [4	IPARIAN WIDTH DE > 50m [4]	OOD PLAIN QUALIT SWAMP [3] DR OLD FIELD [2] ITIAL, PARK, NEW FIELD PASTURE [1] ISTURE, ROWCROP [0]	2 per bank & average) Conservation Tillage [1] Conservation Tillage [1] URBAN OR INDUSTRIAL [0] Indicate predominant land use(s) past 100m riparian. Riparian Maximum 10
River right looking downstream RI REROSION	IPARIAN WIDTH DE > 50m [4]	OOD PLAIN QUALIT SWAMP [3] DR OLD FIELD [2] ITIAL, PARK, NEW FIELD PASTURE [1] ASTURE, ROWCROP [0] URRENT VELOCITY Check ALL that apply NTIAL [-1] SLOW [1] AST [1] INTERSITE INTERMITI	22 per bank & average) TY R CONSERVATION TILLAGE [1] URBAN OR INDUSTRIAL [0] Indicate predominant land use(s) past 100m riparian. Riparian Maximum 10 Recreation Potential Primary Contact Secondary Contact Secondary Contact (circle one and comment on back)
River right looking downstream RI REROSION MONE / LITTLE [3] MODERATE [2] NA HEAVY / SEVERE [1], WE Comments POOL / GLIDE AND RIFFLE MAXIMUM DEPTH Check ONE (ONLYI) Check ONE (ONLYI) MODERATE [2] MODERATE [2] MODERATE [2] MODERATE [3] MODERATE [2] MODERATE [3] MODERATE [4] MOD	IPARIAN WIDTH DE > 50m [4]	OOD PLAIN QUALITY SWAMP [3] DR OLD FIELD [2] ITIAL, PARK, NEW FIELD PASTURE [1] ASTURE, ROWCROP [0] PREENT VELOCITY Check ALL that apply NTIAL [-1] SLOW [1] AST [1] INTERSITE LATE [1] EDDIES [1] te for reach - pools and riff	2 per bank & average) R CONSERVATION TILLAGE [1] URBAN OR INDUSTRIAL [0] Indicate predominant land use(s) past 100m riparian. Riparian Maximum 10 Recreation Potential Primary Contact Secondary Contact (circle one and comment on back) Pool/ Current Maximum 12
River right looking downstream RI REROSION	IPARIAN WIDTH DE > 50m [4]	OOD PLAIN QUALIT SWAMP [3] DR OLD FIELD [2] ITIAL, PARK, NEW FIELD PASTURE [1] ASTURE, ROWCROP [0] VIRRENT VELOCITY Check ALL that apply NITAL [-1] SLOW [1] AST [1] SLOW [1] AST [1] INTERSITE LATE [1] DEDDIES [1] te for reach - pools and riff	Recreation Potential Primary Contact Secondary Contact Secondary Contact (circle one and comment on back) Pool/ Current Maximum 12 Representation Primary Contact Secondary Contact Current Maximum 12
River right looking downstream RI REROSION	IPARIAN WIDTH DE > 50m [4]	OOD PLAIN QUALITSWAMP [3] DR OLD FIELD [2] ITIAL, PARK, NEW FIELD PASTURE [1] ASTURE, ROWCROP [0] VIRRENT VELOCITY Check ALL that apply NITIAL [-1] SLOW [1] AST [1] SLOW [1] AST [1] INTERMITE LATE [1] DEDDIES [4] the for reach - pools and riff enough to support a energe).	Recreation Potential Primary Contact Secondary Contact Secondary Contact Secondary Contact Secondary Contact Secondary Contact Course one and comment on back Primary Contact Secondary Contact
River right looking downstream RI REROSION	IPARIAN WIDTH DE > 50m [4]	OOD PLAIN QUALIT SWAMP [3] DR OLD FIELD [2] ITIAL, PARK, NEW FIELD PASTURE [1] ASTURE, ROWCROP [0] PREENT VELOCITY Check ALL that apply NTIAL [-1] SLOW [1] AST [1] INTERSITE LATE [1] EDDIES [1] Let for reach - pools and riff enough to support a average). SUBSTRATE RIFF pools. Boulder [2]	Recreation Potential Primary Contact Secondary Contact Secondary Contact (ctrcle one and comment on back) Repaid Naximum 12 Recreation Potential Primary Contact Secondary Contact Current Maximum 12 Recreation Potential Primary Contact Secondary Contact Secondary Contact Current Maximum 12 Recreation Potential Primary Contact Secondary Contact Secondary Contact Current Maximum 12 Recreation Potential Primary Contact Secondary Contact Se
River right looking downstream RI REROSION NONE / LITTLE [3] MO MODERATE [2] NA HEAVY / SEVERE [1], VE Comments POOL / GLIDE AND RIFFLE MAXIMUM DEPTH Check ONE (ONLYI) Check One One One One Best Areas > 10cm [2] Maximum Best Areas > 10cm [2] Maximum Best Areas > 5cm One One One Best Areas > 5cm One One Best Areas > 5cm One One Best Areas > 5cm One One One One O	IPARIAN WIDTH DE > 50m [4]	OOD PLAIN QUALIT SWAMP [3] DR OLD FIELD [2] ITIAL, PARK, NEW FIELD PASTURE [1] ASTURE, ROWCROP [0] IRRENT VELOCITY Check ALL that apply NITIAL [-1] SLOW [1] AST [1] INTERSITE INTERSITE LATE [1] EDDIES [1] te for reach - pools and riff enough to support a everage). SUBSTRATE RIFF pole, Boulder) [2] g, Large Gravel) [1]	Recreation Potential Primary Contact Secondary Contact Secondary Contact (ctrice one and comment on back) Res. Pool/ Current Maximum 12 Representation Res. Recreation Potential Primary Contact Secondary Contact Current Maximum 12 Recreation Potential Primary Contact Secondary Contact Secondary Contact Current Maximum 12 Recreation Potential Primary Contact Secondary Contact Second
River right looking downstream REROSION NONE / LITTLE [3] MO MODERATE [2] NA HEAVY / SEVERE [1], VE COMMENTS POOL / GLIDE AND RIFFLE MAXIMUM DEPTH Check ONE (ONLYI) Check One (ONLYI) POOL V O.7-<1m [4] POOL V O.7-<1m [4] POOL V O.2-<0.4m [1] POOL V O.2-<0.4m [1] AN COMMENTS Indicate for functional riff of riffle-obligate species: RIFFLE DEPTH RU BEST AREAS > 10cm [2] MAXI BEST AREAS > 5cm [metric=0]	IPARIAN WIDTH DE > 50m [4]	OOD PLAIN QUALIT SWAMP [3] DR OLD FIELD [2] ITIAL, PARK, NEW FIELD PASTURE [1] ASTURE, ROWCROP [0] IRRENT VELOCITY Check ALL that apply NITIAL [-1] SLOW [1] AST [1] INTERSITE INTERSITE LATE [1] EDDIES [1] te for reach - pools and riff enough to support a everage). SUBSTRATE RIFF pole, Boulder) [2] g, Large Gravel) [1]	Recreation Potential Primary Contact Secondary Contact Secondary Contact (ctrice one and comment on back) Res. Pool/ Current Maximum 12 Representation Res. Pool/ Current Maximum 12 Representation Res. Recreation Potential Primary Contact Secondary Contact Secondary Contact Current Maximum 12 Recreation Potential Primary Contact Secondary Conta
River right looking downstream RIREROSION WINDERSTE [2] MADERATE [2] MAXIMUM DEPTH Check ONE (ONLY!) Check ONE (ONLY!) MAXIMUM DEPTH Comments Indicate for functional riff of riffle-obligate species: RIFFLE DEPTH RU BEST AREAS > 10cm [2] MAXIMUM DEPTH COMMENTS COMMENTS	IPARIAN WIDTH DE > 50m [4]	OOD PLAIN QUALITY SWAMP [3] DR OLD FIELD [2] ITIAL, PARK, NEW FIELD PASTURE [1] ASTURE, ROWCROP [0] PREENT VELOCITY Check ALL that apply NTIAL [-1] SLOW [1] AST [1] INTERSITY PATE [1] EDDIES [1] THE FOR THE PROPERTY OF TH	Recreation Potential Primary Contact Secondary Contact Secondary Contact (circle one and comment on back) Representation Pool Appendix Propulation No RIFFLE [metric=0] None [2] No

FI MEASUREMENTS Roodprone x2 width bankfull max, depth bankfull X depth x bankfull width entrench, ratio Comment RE: Reach consistency/ Is reach typical of steam?, Recreation/ Observed - Inferred, Other/ Sampling observations, Concerns, Access directions, etc. Legacy Tree: max. depth W/D ratio Xwidth X depth LOGGING / IRRIGATION / COOLING FALSE BANK / MANURE / LAGOON NATURAL / WETLAND / STAGNANT HARDENED / URBAN / DIRT&GRIME WWTP / CSO / NPDES / INDUSTRY BMPs-CONSTRUCTION-SEDIMENT ATMOSPHERE / DATA PAUCITY ACID / MINE / QUARRY / FLOW BANK / EROSION / SURFACE WASH H20 / TILE / H20 TABLE PARK / GOLF / LAWN / HOME CONTAMINATED / LANDFILL El ISSUES 242,7403 Channe Circle some & COMMENT FLOOD CONTROL / DRAINAGE PUBLIC / PRIVATE / BOTH / NA ACTIVE / HISTORIC / BOTH / NA MODIFIED / DIPPED OUT / NA MOVING-BEDLOAD-STABLE IMPOUNDED / DESICCATED YOUNG-SUCCESSION-OLD SPRAY / SNAG / REMOVED RELOCATED / CUTOFFS DIMAINTENANCE ARMOURED / SLUMPS LEVEED / ONE SIDED ISLANDS / SCOURED -84.416392 -84.41668 39,15907,-84.41602 Armored wall D'NUISANCE ALGAE
☐ INVASIVE MACROPHYTES CSOS/SSOS/OUTFALLS **BIAESTHETICS** 16034 EXCESS TURBIDITY SLUDGE DEPOSITS POOL: ->100ft2 ->3ft AREA DEPTH DISCOLORATION Z NUISANCE ODOR D'TRASH / LITTER FOAM / SCUM OIL SHEEN ONIO 000 Mid C) RECREATION E 티 SECCHI DEPTH 1st -sample pass- 2nd 1st --sample pass--25 to cm/ CTB CLARITY STAGE □ 20-<40 cm Stream Drawing. AJ SAMPLED REACH □ 40-70 cm Check ALL that apply □ < 20 cm CHOSED Sta (+ C > 85%. OPEN CANOPY DISTANCE 30%~25% 22%-<85% 10%-<30% 0.5 Km 0.2 Km 0.15 Km 0.15 Km 0 0.12 Km O IL LINE METHOD meters □ BOAT WADE

Stream & Location: Duck Creek Dock Creek RM: 39 Date: 7/21/2022
Scorers Full Name & Affiliation: MAS - MB
River Code: 11 = NNH = STORET #: Lat./Long.: 29 15 83 52 194 (10 = 1/2) Office verified
11 S//RSTRATE Check ON/YTwo substrate TYPE BOXES
BEST TYPES POOL RIFFLE OTHER TYPES POOL RIFFLE OTHER TYPES ORIGIN ORIGIN ULMESTONE [1]
2] //STREAM COVER Indicate presence 0 to 3: 0-Absent; 1-Very small amounts or if more common of marginal quality; 2-Moderate amounts, but not of highest quality or in small amounts of highest quality; 3-Highest quality in moderate or greater amounts (e.g., very large boulders in deep or fast water, large diameter log that is stable, well developed rootwad in deep / fast water, or deep, well-defined, functional pools. O UNDERCUT BANKS [1] O OVERHANGING VEGETATION [1] ROOTWADS [1] O OVERHANGING VEGETATION [1] ROOTMATS [1] ROOTMATS [1] Comments AMOUNT Check ONE (Or 2 & average) Check ONE (Or 2 & average) Check ONE (Or 2 & average) AMOUNT Check ONE (Or 2 & average) Check ONE (Or 2 & average) AMOUNT Check ONE (Or 2 & average) Check ONE (Or 2 & average) AMOUNT Check ONE (Or 2 & average) AMOUNT Check ONE (Or 2 & average) Check ONE (Or 2 & average) AMOUNT Check ONE (Or 2 & average) Check ONE (Or 2 & average) AMOUNT Check ONE (Or 2 & average) Check
3] CHANNEL MORPHOLOGY Check ONE in each category (Or 2 & average) SINUOSITY DEVELOPMENT CHANNELIZATION STABILITY HIGH [4]
4] BANK EROSION AND RIPARIAN ZONE Check ONE in each category for EACH BANK (Or 2 per bank & average) River right looking downstream RIPARIAN WIDTH FLOOD PLAIN QUALITY FLOOD PLAIN QUALITY FLOOD PLAIN QUALITY FLOOD PLAIN QUALITY R CONSERVATION TILLAGE [1] ONNE / LITTLE [3] ONNE / LITTLE [4] ONNE / LITTLE [4] ONNE / LITTLE [5] ONNE / LI
MAXIMUM DEPTH Check ONE (ONLY!) > 1m [6] 0.7~1m [4] 6 DOOL WIDTH > RIFFLE WIDTH [1] 0.4~0.7m [2] 0.2~0.4m [1] Comments CURRENT VELOCITY Check ALL that apply Check
Indicate for functional riffles; Best areas must be large enough to support a population of riffle-obligate species: Check ONE (Or 2 & average). RIFFLE DEPTH RUN DEPTH RUN DEPTH RIFFLE / RUN SUBSTRATE RIFFLE / RUN EMBEDDEDNESS BEST AREAS > 10cm [2] BEST AREAS 5-10cm [1] BEST AREAS 5-10cm [1] BEST AREAS 5-10cm [1] BEST AREAS < 5cm [metric=0] Comments
6] GRADIENT (37.5 ft/mi) VERY LOW LOW [2-4]

ess directions, etc.	F) MEASUREMENTS X width X depth max. depth X bankfull width bankfull X depth WID ratio bankfull max. depth floodprone x² width entrench. ratio Legacy Tree:
of steam?, <i>Recreation/</i> Observed - Inferred, <i>Other/</i> Sampling observations, Concerns, Access directions, etc.	E7/SSUES WWTP I CSO I NPDES I INDUSTRY HARDENED I URBAN I DIRT&GRIME CONTAMINATED I LANDFILL BMPS-CONSTRUCTION-SEDIMENT LOGGING I IRRIGATION I COOLING BANK I EROSION I SURFACE FALSE BANK I MANURE I LAGOON WASH H20 I TILE I H20 TABLE ACID I MINE I QUARRY I FLOW NATURAL I MUNETLAND I STAGNANT PARK I GOLF I LAWN I HOME ATMOSPHERE I DATA PAUCITY
/ Observed - Inferred, <i>Other</i> /	Cirde some & COMMENT
s reach typical of steam?, Recreation 84, 407240 84, 4068	D) MAINTENANCE PUBLIC / PRIVATE / BOTH / NA ACTIVE / HISTORIC / BOTH / NA YOUNG-SUCCESSION-OLD SPRAY / SNAG / REMOVED MODIFIED / DIPPED OUT / NA LEVEED / ONE SIDED RELOCATED / CUTOFFS MOVING-BEDLOAD-STABLE ARMOURED / SLUMPS ISLANDS / SCOURED IMPOUNDED / DESICCATED FLOOD CONTROL / DRAINAGE
Comment RE: Reach consistency/ Is reach typical of stable 39, 15784, -84, 40765 mid 39, 158383, -84, 40068	ARITY BIAESTHETICS On Com
A) SAMPLED REACH Check ALL that apply METHOD STAGE BOAT 1st-sample pass-2rd BOAT 1	0.2 Km

CHEER

Stream & Location:	: Durk Creek Ust	Erie Ave	RM: 3.4 Date: 71 13 1 2022
LM 7.5		Scorers Full Name & Affiliation.	MAS-MBI
	004 - STORET #:	Lat./Long.:39 . 1486	1 184.406936 Mid location
1] SUBSTRATE Chec estin BEST TYPES BLDR /SLABS [10] BOULDER [9] COBBLE [8] GRAVEL [7] SAND [6] BEDROCK [5] NUMBER OF BEST Comments 2] ///STREAM COVE quality; 3-Highest quality diameter log that is stable OUNDERCUT BANK OVERHANGING V. SHALLOWS (IN SI	ck ONLY Two substrate TYPE BOXES; mate % or note every type present POOL RIFFLE OTHER TYPE HARDPAN [4] DETRITUS [3] MUCK [2] SILT [2] ARTIFICIAL [4] (Score natural TYPES: 4 or more [2] sludge from the substration of the substr	Check CORIGIN ORIGIN LIMESTONE [1] LIMESTONE [1] LIMESTONE [1] LIMESTONE [1] WETLANDS [0] HARDPAN [0] SANDSTONE [0] SANDSTONE [0] LACUSTURINE [0] SHALE [-1] COAL FINES [-2] COAL FINES	ONE (Or 2 & average) QUALITY HEAVY [-2] MODERATE [-1] Substrate NORMAL [0] FREE [1] MODERATE [-1] Maximum 20 MONE [1] On of marginal of highest NONE [1] On of marginal of highest Check ONE (Or 2 & average) pools
Comments [1]		•	Cover Maximum 20
SINUOSITY DEV HIGH [4] MODERATE [3] Low [2]	WHOLOGY Check ONE in each categ VELOPMENT CHANNELI EXCELLENT [7] NONE [6] GOOD [5] RECOVERED FAIR [3] RECOVERING POOR [1] RECENT OR N	ZATION STABILITY HIGH [3] MODERATE [2]	Channel Maximum 20
River right looking downstre EROSION NONE / LITTLE [3] MODERATE [2] HEAVY / SEVERE [1]	RIPARIAN WIDTH	PNE in each category for EACH BANK (OF FLOOD PLAIN QUALING PLOOD PLAIN QUALING PLOOD PLAIN QUALING PLOOD PLAIN QUALING PLOOD P	TY CONSERVATION TILLAGE [1] URBAN OR INDUSTRIAL [0]
5] POOL / GLIDE AM MAXIMUM DEPTH Check ONE (ONLY!) > 1m [6] 0.7 ~ 1m [4] 0.4 ~ 0.7m [2] 0.2 ~ 0.4m [1] < 0.2m [0] Comments	WD RIFFLE / RUN QUALITY CHANNEL WIDTH Check ONE (Or 2 & average) POOL WIDTH > RIFFLE WIDTH [POOL WIDTH < RIFFLE WIDTH [1] UVERY FAST [1] INTERSTIT	Primary Contact Secondary Contact (circle one and comment on back) Pool /
Indicate for function of riffle-obligate RIFFLE DEPTH BEST AREAS > 10cm [2] BEST AREAS 5-10cm [1] BEST AREAS < 5cm [metric=0]	species: Check RUN DEPTH RIF 2] □MAXIMUM > 50cm [2] □STA 1] □MAXIMUM < 50cm [1]	st be large enough to support of ONE (Or 2 & average). FLE / RUN SUBSTRATE RIFF BLE (e.g., Cobble, Boulder) [2] D. STABLE (e.g., Large Gravel) [1] BTABLE (e.g., Fine Gravel, Sand) [0]	
6] GRADIENT (64.9 DRAINAGE AREA (11.5	MODERATE [6-10]	/81 OOL.	%GLIDE: Gradient Maximum Maximum 10

Cheera

Stream & Location:	Duck Creek	Dat Erie	Ave	RM:	2 8 Date.	7/13/2022
LM76			l Name & Affiliation:		MBI	
River Code: 11 - 0			t./Long. 39 .14484	6 /84	406158 N	Office verified location
1] SUBSTRATE Check estima BEST TYPES BEDR ISLABS [10] COBBLE [8] GRAVEL [7] SAND [6] BEDROCK [5] NUMBER OF BEST T Comments 2] INSTREAM COVER quality; 3-Highest quality in	ONLYTwo substrate TYPE BO the % or note every type present OTHER TYPE BO OCH RIFFLE HARDPA DETRITL MUCK [2 ARTIFIC (Score in YPES: 24 or more [2] slud 3 or less [0] P Indicate presence 0 to 3: 0-A quality; 2-Moderate amounts, moderate or greater amounts	YES; (PES POOL RIFF IN [4] IS [3] IAL [0] atural substrates; ign ge from point-source beent; 1-Very small but not of highest cle.g., very large bou	Check CORIGIN LIMESTONE [1] TILLS [1] WETLANDS [0] HARDPAN [0] SANDSTONE [0] ORE RIP/RAP [0] ESHALE [-1] COAL FINES [-2] amounts or if more commo quality or in small amounts ulders in deep or fast water	SILT One of margin of highest large	QUAL HEAVY [LITY 2] ATE [-1] LIVE [-2] ATE [-1] ATE [-1] ATE [-1] LIVE [-2] AND AXIMUM 20 UNT Or 2 & average)
diameter log that is stable, UNDERCUT BANKS UNDERCUT BANKS SVERHANGING VE SHALLOWS (IN SLO ROOTMATS [1] Comments	GETATION [1] _/_ ROOT		OXBOWS, BACKWATE	RS [1]	EXTENSIVE MODERATE SPARSE 5 NEARLY AB	25-75% [7] 25% [3]
SINUOSITY DEVI	KCELLENT [7] NONE [6] OOD [5] RECOVE AIR [3] RECOVE	RED [4]	STABILITY HIGH [3] MODERATE [2] LOW [1]		ı	Channel Maximum 20
A] BANK EROSION A River right looking downstrear R EROSION NONE / LITTLE [3] MODERATE [2] HEAVY / SEVERE [1] Comments	☐ ☐ WIDE > 50m [4] ☐ ☐ MODERATE 10-50m [3 ☐ NARROW 5-10m [2]	FL FOREST SHRUB RESIDEI	tegory for EACH BANK (OR LOOD PLAIN QUALITY, SWAMP [3] OR OLD FIELD [2] NTIAL, PARK, NEW FIELD D PASTURE [1] ASTURE, ROWCROP [0]	IY R	CONSERVATIO URBAN OR INE MINING / CONS opredominant la Um riparian.	TRUCTION [0]
MAXIMUM DEPTH Check ONE (ONLY!) □ > 1m [6] □ 0.7-<1m [4]	O RIFFLE / RUN QUALIT CHANNEL WIDTI Check ONE (Or 2 & avera POOL WIDTH > RIFFLE WID POOL WIDTH = RIFFLE WID POOL WIDTH < RIFFLE WID	H CI age) TH [2]		TENT [-2]	Secondar (circle one and co	Contact Cy Contact
Indicate for function of riffle-obligate services RIFFLE DEPTH BEST AREAS > 10cm [2] BEST AREAS 5-10cm [1] BEST AREAS < 5cm [metric=0] Comments	RUN DEPTH MAXIMUM > 50cm [2] MAXIMUM < 50cm [1]	check ONE (Or 2 & RIFFLE / RUN STABLE (e.g., Co MOD. STABLE (e.	average). SUBSTRATE RIFF bble, Boulder) [2]	LE / RU	N EMBEDDE ONE [2] OW [1] ODERATE [0]	RIFFLE [metric=0] EDNESS Riffle
6] GRADIENT (31.4 DRAINAGE AREA	ft/mi) VERY LOW - LOW MODERATE [6-10]		%POOL:	%GLIDE		Gradient Maximum

sess directions, etc.	F) MEASUREMENTS x width x depth max. depth y bankfull width bankfull x depth W/D ratio bankfull max. depth floodprone x² width entrench. ratio
Comment RE: Reach consistency/ Is reach typical of steam?, Recreation/ Observed - Inferred, Other/ Sampling observations, Concerns, Access directions, etc. Sq. 4429 - 84,40590	WWTP / CSO / NPDES / INDUSTRY HARDENED / URBAN / DIRT&GRIME CONTAMINATED / LANDFILL BMPs-CONSTRUCTION-SEDIMENT LOGGING / IRRIGATION / COOLING BANK / EROSION / SURFACE FALSE BANK / MANURE / LAGOON WASH H ₂ 0 / TILE / H ₂ 0 TABLE ACID / MINE / QUARRY / FLOW NATURAL / WETLAND / STAGNANT PARK / GOLF / LAWN / HOME ATMOSPHERE / DATA PAUCITY
/ Observed - Inferred, Other/	Circle some & COMMENT
y/Is reach typical of steam?, Recreation - 84,40590 - 84,406158 - 84,40621	D) MAINTENANCE PUBLIC / PRIVATE / BOTH / NA ACTIVE / HISTORIC / BOTH / NA YOUNG-SUCCESSION-OLD SPRAY / SNAG / REMOVED MODIFIED / DIPPED OUT / NA LEVEED / ONE SIDED RELOCATED / CUTOFFS MOVING-BEDLOAD-STABLE ARMOURED / SLUMPS ISLANDS / SCOURED IMPOUNDED / DESICCATED FLOOD CONTROL / DRAINAGE
Somment RE: Reach consistency/ Is reach typical of steres 39, 14429 -84,40590 mid 39,144846, -84,406158 end 39,14555 -84,40621	ARITY B/AESTHETICS or cm cm cm cm cm cm cm cm cm c
A) SAMPLED REACH Check ALL that apply METHOD STAGE BOAT 1st-sample pass-2nd WADE DIP WADE DIP CALL LINE CHOORMAL DISTANCE DORY	0.5 Km

Stream Drawing:

CICIA

Stream & Location	7: Duck Cre	ek @ Woost	ter + Power	St.	RM: 2	O Date: 9 1721	7027
LM 77		Scol	rers Full Nam	ne & Affiliation:	MAS- N		
River Code: -	004	STORET #:		ng. 39 - 132 61	2 /84.400	768 Office V	verified ocation
1] SUBSTRATE Cheest BEST TYPES BEST TYPES BEST TYPES BUDDER [9] COBBLE [8] GRAVEL [7] SAND [6] BEDROCK [5] NUMBER OF BEST Comments	POOL RIFFLE O A C A C C C C C C C C C C	ry type present OTHER TYPES HARDPAN [4] DETRITUS [3] MUCK [2]	strates; ignore Doint-sources)	Check CONIGIN LIMESTONE [1] TILLS [1] WETLANDS [0] HARDPAN [0] SANDSTONE [0] RIPIRAP [0] LACUSTURINE [0] SHALE [-1] COAL FINES [-2]	SILT DECOME D	QUALITY HEAVY [-2] MODERATE [-1] S NORMAL [0]	Substra 18 Maximu 20
2] ///STREAM COV quality; 3-Highest qualit diameter log that is stab // UNDERCUT BAN // OVERHANGING 3 SHALLOWS (IN S // ROOTMATS [1]	quality; 2-Mode y in moderate or gre ble, well developed ro KS [1] VEGETATION [1]	erate amounts, but not o ater amounts (e.g., ven	of highest quality of highest quality of large boulders in later, or deep, well [2] OXB	or in small amounts	of highest Chec pools. RS [1] MO TES [1] SP	AMOUNT K ONE (Or 2 & average and average	I
☐ HIGH [4] ☐ ☐ MODERATE [3] ☐	EVELOPMENT EXCELLENT [7] GOOD [5]	ONE in each category CHANNELIZA ONONE [6] RECOVERED [4] RECOVERING [3] RECENT OR NO R	TION [STABILITY HIGH [3] MODERATE [2] LOW [1]		Channel Maximum 20	
A] BANK EROSION River right looking downstr EROSION NONE / LITTLE [3] DIMODERATE [2] HEAVY / SEVERE	RIPARI	AN WIDTH	FLOOD FOREST, SWA SHRUB OR OL RESIDENTIAL, FENCED PAST	PLAIN QUALIT MP [3] D FIELD [2] PARK, NEW FIELD	TY O CONSI O URBA TI O MININ	ERVATION TILLAGE N OR INDUSTRIAL [G / CONSTRUCTION ominant land use(s)	TOT "
5] POOL / GLIDE A. MAXIMUM DEPTI Check ONE (ONLY!) □ > 1m [6] □ 0.7~1m [4] □ 0.4~0.7m [2] □ 0.2~0.4m [1] □ < 0.2m [0] Comments	CHAN Check ONE POOL WIDTH	NEL WIDTH (Or 2 & average) RIFFLE WIDTH [2] RIFFLE WIDTH [1] RIFFLE WIDTH [0]	Check TORRENTIAL VERY FAST [FAST [1] MODERATE [ALL that apply [-1] SLOW [1] 1] INTERSTIT INTERMITI 1] EDDIES [1] each - pools and riff	Sel (circle	creation Potential rimary Contact condary Contact cone and comment on back Pool / Current Maximum	
Indicate for fund of riffle-obligate RIFFLE DEPTH BEST AREAS > 10cm BEST AREAS 5-10cm BEST AREAS < 5cm [metric=] Comments	Species: RUN DE [2] MAXIMUM: [1] MAXIMUM	PTH RIFFLI 50cm [2] STABLE 50cm [1] MOD. S	E (Or 2 & averag E / RUN SUB (e.g., Cobble, E	e). STRATE RIFF Soulder) [2] ge Gravel) [1]	LE / RUN EM ONONE [OLOW [1]		tric=0
DRAINAGE ARE	A MOD	/ LOW - LOW [2-4] ERATE [6-10] - VERY HIGH [10-6]			%GLIDE:	Gradient Maximum	8

ess directions, etc.	F) MEASUREMENTS X width X depth max. depth R bankfull X depth NUD ratio bankfull max. depth noodprone x² width entrench. ratio Legacy Tree:
Comment RE: Reach consistency/ Is reach typical of steam?, Recreation/ Observed - Inferred, Other/ Sampling observations, Concerns, Access directions, etc. Dec 39, 13213 - 84, 404768 M. d 39, 13313 - 84, 40414 EAG 39, 13313 - 84, 40414	WWTP / CSO / NPDES / INDUSTRY HARDENED / URBAN / DIRT&GRIME CONTAMINATED / LANDFILL BMPS-CONSTRUCTION-SEDIMENT LOGGING / IRRIGATION / COOLING BANK / EROSION / SURFACE FALSE BANK / MANURE / LAGOON WASH H20 / TILE / H20 TABLE ACID / MINE / QUARRY / FLOW NATURAL / WETLAND / STAGNANT PARK / GOLF / LAWN / HOME ATMOSPHERE / DATA PAUCITY
// Observed - Inferred, Other/	Circle some & COMMENT
each consistency/ Is reach typical of steam?, Recreation 39, 13213 - 84, 40530 39, 13215, -84, 40414 39, 13313 - 84, 40414	DJ MAINTENANCE PUBLIC / PRIVATE / BOTH / NA ACTIVE / HISTORIC / BOTH / NA YOUNG-SUCCESSION-OLD SPRAY / SNAG / REMOVED MODIFIED / DIPPED OUT / NA LEVEED / ONE SIDED RELOCATED / CUTOFFS MOVING-BEDLOAD-STABLE ARMOURED / SLUMPS ISLANDS / SCOURED IMPOUNDED / DESICCATED
omment RE: Reach consistency/ Is reach typical of s Dec 39, 13213 - 84, 40530 M.d 39, 132152 - 84, 40474 e.nd 39, 13313 - 84, 40414	BJAESTHETICS INUISANCE ALGAE INVASIVE MACROPHYTES EXCESS TURBIDITY DISCOLORATION IFOAM / SCUM OIL SHEEN TRASH / LITTER INUISANCE ODOR ISLUBGE DEPOSITS ZICSOS/SSOS/OUTFALLS ATTON AREA DEPTH POOL: []>100ft2[]>3ft
A) SAMPLED REACH Check ALL that apply Check ALL that apply NETHOD STAGE BOAT tst-semple pass-2nd wabe Child Child	DISTANCE CLARITY B

CICIA

			O.O.O.IIIOAAA	T TOTAL CHICA			
Stream & Location	Duck C	reek ust.	Wooster P	ike .	RM:	0_5 Date	2.7 22 2027
LM79				lame & Affiliation	7. MAS-1		
River Code: -	004	STORET#:	<i>Lat./</i> . — — (NAD 83 -	LONG.: 39 . 1220	155 184.4	11698	Office verified
BEST TYPES BEST TYPES BEST TYPES BEST TYPES BOULDER [9] COBBLE [8] GRAVEL [7] SAND [6] BEDROCK [5] NUMBER OF BEST Comments	POOL RIFFLE X X X X X X TYPES: 244	ory type present OTHER TYPES HARDPAN [4] DETRITUS [3] MUCK [2] SILT [2] ARTIFICIAL [0] (Score natural	FOOL RIFFLE	ORIGIN LIMESTONE [1] TILLS [1] WETLANDS [0] HARDPAN [0] SANDSTONE [0] RIP/RAP [0]	SILT	QUAI HEAVY MODER NORMA	(-2) ATE [-1] Substrate L [0]
quality; 3-Highest quality diameter log that is stabeled a UNDERCUT BANGO OVERHANGING VERHANGING VERHANGING SHALLOWS (IN SEROOTMATS [1])	quality; 2-Mo in moderate or g le, well developed KS [1] /EGETATION [1]	derate amounts, but n reater amounts (e.g., rootwad in deep / fas POOLS > 70	ot of highest qua very large boulde t water, or deep, cm [2]	llty or in small amoun	ts of highest cer, large cal pools.	HECK ONE (CEXTENSIVE MODERATE SPARSE 5- NEARLY AS	25-75% [7]
☐ HIGH [4] ☐ ☐ MODERATE [3] ☐ ☐ LOW [2] ☐	PHOLOGY Cher VELOPMENT EXCELLENT [7] GOOD [5] FAIR [3] POOR [1]	CHANNELI NONE [6] RECOVERED [RECOVERING	ZATION 4]	STABILITY HIGH [3] MODERATE [3] LOW [1]	2]		Channel Maximum 20
4] BANK EROSION River right looking downstr EROSION NONE / LITTLE [3] MODERATE [2] MHEAVY / SEVERE [RIPAI	RIAN WIDTH 50m [4]	FLO R FOREST, S SHRUB OF RESIDENTI FENCED P	OD PLAIN QUAL WAMP [3] OLD FIELD [2] AL, PARK, NEW FIEL	LITY CO CO CO CO CO CO CO CO CO C	NSERVATIONS INITIONS IN INITIONS IN INITIONS I CONSTITUTE IN INITIONS INITIONS IN TIONS IN INITIONS IN INITIONS	DIN TILLAGE [1] DUSTRIAL [0] STRUCTION [0] and use(s) Riparian Maximum 10
5] POOL / GLIDE AI MAXIMUM DEPTH Check ONE (ONLYI) > 1m [6] 0.7~1m [4] 0.4~0.7m [2] 0.2~0.4m [1] < 0.2m [0] Comments	CHAI Check OI POOL WIDT	RUN QUALITY NNEL WIDTH NE (Or 2 & average) H > RIFFLE WIDTH [1 H = RIFFLE WIDTH [1 H < RIFFLE WIDTH [0	CI TORRENT CONTROL CON	RENT VELOCIT neck ALL that apply IAL [-1] Z SLOW [1 ST [1] INTERST INTERMI TE [1] DEDDIES for reach - pools and] THAL [-1] TTENT [-2]	Primary Secondai circle one and ci	Pool/ Current Maximum
Indicate for fund of riffle-obligate RIFFLE DEPTH BEST AREAS > 10cm [BEST AREAS 5-10cm [BEST AREAS < 5cm [metric=] Comments	Species: RUN [2] MAXIMUN 1] MAXIMUN	DEPTH RIFI N > 50cm [2]	ONE (Or 2 & ave FLE / RUN S BLE (e.g., Cobb). STABLE (e.g.,	erage). UBSTRATE RIF le. Boulder) [2]	FLE / RUN Ø NON Ø LOV © MOD	EMBEDDI IE [2] / [1] DERATE [0]	RIffle /
6] GRADIENT (26.	A D MO	RY LOW - LOW [2-4] DERATE [6-10] SH - VERY HIGH [10-1	;;	%POOL:) %GLIDE:()%RIFFLE:(\supset	Gradient &

FI MEASUREMENTS floodprone x2 width bankfull max. depth bankfull x depth x bankfull width entrench, ratio Comment RE: Reach consistency/ Is reach typical of steam?, Recreation/ Observed - Inferred, Other/ Sampling observations, Concerns, Access directions, etc. Legacy Tree: max, depth W/D ratio Bark Xwidth X depth Heary LOGGING / IRRIGATION / COOLING FALSE BANK / MANURE / LAGOON NATURAL / WETLAND / STAGNANT WWTP / CSO / NPDES / INDUSTRY HARDENED / URBAN / DIRT&GRIME BMPs-CONSTRUCTION-SEDIMENT ATMOSPHERE / DATA PAUCITY ACID / MINE / QUARRY / FLOW WASH H20 / TILE / H20 TABLE BANK / EROSION / SURFACE PARK / GOLF / LAWN / HOME CONTAMINATED / LANDFILL El ISSUES Exp Hole Circle some & COMMENT Poo FLOOD CONTROL / DRAINAGE ACTIVE / HISTORIC / BOTH / NA PUBLIC / PRIVATE / BOTH / NA MODIFIED / DIPPED OUT / NA AOVING-BEDLOAD-STABLE IMPOUNDED / DESICCATED YOUNG-SUCCESSION-OLD SPRAY / SNAG / REMOVED RELOCATED / CUTOFFS Rip-DIMAINTENANCE ARMOURED / SLUMPS **LEVEED / ONE SIDED** SLANDS / SCOURED lap 34, 41 1180 184.411698 -84.41100 38:13 122455 INVASIVE MACROPHYTES h627 39, 12220 CSOs/SSOs/OUTFALLS EXCESS TURBIDITY ☐ NUISANCE ALGAE SLUDGE DEPOSITS POOL: ->100ft2 ->3ft AREA DEPTH INUISANCE ODOR DISCOLORATION TRASH / LITTER 33 FOAM / SCUM OIL SHEEN 3 eng-570 30 CJ RECREATION 틍 ☐ SECCHI DEPTH☐ ZNORMAU □LOW □DRY 1st -sample pass- 2nd 35 70 cm/ CTB --sample pass--CLARITY STAGE 20-<40 cm Stream Drawing. 4) SAMPLED REACH 40-70 cm Check ALL that apply HIGH < 20 cm Poc an I <10%-CLOSED □ > 85%- OPEN CANOPY ☐ 10%-<30% Z30%-<55% DISTANCE 0.15 Km 55%-<85% 0.5 Km OTHER METHOD meters WADE BOAT

Stream & Location:	Unnamed Tr. butary to Di	ick CreeK	RM: _ O. Date: 7 13 2022
LM80	Sca		
River Code: 1 - 0	<u> </u>	(NAD 83 - decimal 9) 3 9 - 166812	- 184.419261 M.d. Office verified location
estima	ONLYTwo substrate TYPE BOXES; ate % or note every type present OTHER TYPES OTHER	POOL RIFFLE ORIGIN Limestone [1] TILLS [1] WETLANDS [0] HARDPAN [0] SANDSTONE [0] Distrates; ignore	GUALITY GUALITY HEAVY [-2] SILT MODERATE [-1] NORMAL [0] FREE [1] MODERATE [-2] MAXIMUM NORMAL [0] NORMAL [0] NORMAL [0] NORMAL [0]
quality; 3-Highest quality in	quality; 2-Moderate amounts, but not n moderate or greater amounts (e.g., ve, well developed rootwad in deep / fast versions [1] POOLS > 70ci	AQUATIC MACROPHYTE	highest arge Check ONE (<i>Or</i> 2 & average) cols. ☐ EXTENSIVE >75% [11] S[1] ☐ MODERATE 25-75% [7] ES [1] ☐ SPARSE 5-<25% [3]
SINUOSITY DEVI	## Color of the co	ATION STABILITY HIGH [3] MODERATE [2] LOW [1]	Channel Maximum 20
4] BANK EROSION A River right looking downstrear EROSION DINONE / LITTLE [3] DINONE / LITTLE [3] DINONE / LITTLE [1] DINONE / LITTLE [1] Comments	RIPARIAN WIDTH	E in each category for EACH BANK (Or 2 FLOOD PLAIN QUALITY FOREST, SWAMP [3] SHRUB OR OLD FIELD [2] RESIDENTIAL, PARK, NEW FIELD [1] FENCED PASTURE [1] OPEN PASTURE, ROWCROP [0]	Y CONSERVATION TILLAGE [1] URBAN OR INDUSTRIAL [0]
MAXIMUM DEPTH Check ONE (ONLY!) > 1m [6]	CD RIFFLE / RUN QUALITY CHANNEL WIDTH Check ONE (Or 2 & average) POOL WIDTH > RIFFLE WIDTH [2] POOL WIDTH = RIFFLE WIDTH [1] POOL WIDTH < RIFFLE WIDTH [0]	CURRENT VELOCITY Check ALL that apply TORRENTIAL [-1] SLOW [1] VERY FAST [1] INTERSTITIA FAST [1] INTERMITTE MODERATE [1] EDDIES [1] Indicate for reach - pools and riffle	NT [-2]
Indicate for funct of riffle-obligate s RIFFLE DEPTH BEST AREAS > 10cm [2] BEST AREAS 5-10cm [1] BEST AREAS < 5cm [metric=0] Comments	SPECIES: Check O RUN DEPTH RIFFI ☐ MAXIMUM > 50cm [2] ☐ STABL ☐ MAXIMUM < 50cm [1] ☐ MOD. ☐ UNSTA	LE (e.g., Cobble, Boulder) [2]	DOPUIATION NO RIFFLE [metric=0] LE / RUN EMBEDDEDNESS NONE [2] LOW [1] MODERATE [0] RIFFLE [0] RAWINUM MAXIMUM MAXIMUM RESTRICT MAXIMUM RESTRICT MAXIMUM RESTRICT MAXIMUM RESTRICT MAXIMUM RESTRICT MAXIMUM RESTRICT RESTRICT MAXIMUM RESTRICT RES
6] GRADIENT (114.00		=	GLIDE: Gradient H

ess directions, etc.				F/ MEASUREMENTS x width x depth max. depth pankfull width bankfull x depth w/D ratio bankfull max. depth floodprone x² width entrench. ratio	7.00
Comment RE: Reach consistency/ Is reach typical of steam?, Recreation/ Observed - Inferred, Other/ Sampling observations, Concerns, Access directions, etc. トスタ・16639・・8 4 , 4 1 8 8 8				E7/SS//ES WWTP / CSO / NPDES / INDUSTRY HARDENED / URBAN / DIRT&GRIME CONTAMINATED / LANDFILL BMPsCONSTRUCTION-SEDIMENT LOGGING / IRRIGATION / COOLING BANK / EROSION / SURFACE FALSE BANK / MANURE / LAGOON WASH H20 / TILE / H20 TABLE ACID / MINE / QUARRY / FLOW NATURAL / WETLAND / STAGNANT PARK / GOLF / LAWN / HOME ATMOSPHERE / DATA PAUCITY	
/ Observed - Inferred, Other/ S				Circle some & COMMENT	Mad Tree
reach typical of steam?, Recreation $-8~4~\mu$, $4~1~8~8$	192611-84.419261	-84,41973		D) MAINTENAANCE PUBLIC / PRINATE / BOTH / NA ACTIVE / HISTORIC / BOTH / NA YOUNG-SUCCESSION-OLD SPRAY / SNAG / REMOVED MODIFIED / DIPPED OUT / NA LEVEED / ONE SIDED RELOCATED / CUTOFFS MOVING-BEDLOAD-STABLE ARMOURED / SLUMPS ISLANDS / SCOURED IMPOUNDED / DESICCATED FLOOD CONTROL / DRAINAGE	
omment RE: Reach consistency/ Is beg 39 Ibu 39	mid 39.166812	end 39,16711		ARITY B/AESTHETICS Step pass 2nd Nullsance algae Invasive macrophytes Invasive ma	
Y ED REACH k ALL that apply	METHOD STAGE T BOAT 1st-sample pass- 2nd —	WADE CHIGH	DISTANCE DERY	RITY Passs- 2nd Office of the company of the comp	

ChicEPA

Stream & Location: Unno med Tributary to Little Dick Creek RM: 0.2 Date: 7/13/2027
CM82 @ passball fields Scorers Full Name & Affiliation: MAS -> MBI
Piver Code: -077 - STORET#: Lat./Long.:39 .182451 /84 . 369927 M. Office verified location
SUBSTRATE Check ONLY Two substrate TYPE BOXES; estimate % or note every type present Check ONE (Or 2 & average)
BEST TYPES POOL RIFFLE OTHER TYPES POOL RIFFLE ORIGIN QUALITY
BLDR /SLABS [10]
OBBLE [8] X D D MUCK [2] D WETLANDS [0] SILT D NORMAL [0]
GRAVEL [7]
DEDROCK [5] X (Score natural substrates: ignore RIP/RAP [0] (MODERATE [-1]
UMBER OF BEST TYPES: 4 or more [2] sludge from point-sources) LACUSTURINE [0] SALE [-1] NONE [1]
Comments Coal Fines [-2]
///STREAM COVER Indicate presence 0 to 3: 0-Absent; 1-Very small amounts or if more common of marginal
quality; 2-Moderate amounts, but not of highest quality or in small amounts of highest quality; 3-Highest quality in moderate or greater amounts (e.g., very large boulders in deep or fast water, large Check ONE (Or 2 & average)
diameter log that is stable, well developed rootwad in deep / fast water, or deep, well-defined, functional pools. [In the content of the c
O UNDERCUT BANKS [1] O POOLS > 70cm [2] O OXBOWS, BACKWATERS [1] MODERATE 25-75% [7] O OVERHANGING VEGETATION [1] O ROOTWADS [1] O AQUATIC MACROPHYTES [1] SPARSE 5-<25% [3]
3 SHALLOWS (IN SLOW WATER) [1] 3 BOULDERS [1] 2 LOGS OR WOODY DEBRIS [1] □ NEARLY ABSENT <5% [1]
Cover (S) Comments
Waxing 10
CHANNEL MORPHOLOGY Check ONE in each category (Or 2 & average)
SINUOSITY DEVELOPMENT CHANNELIZATION STABILITY
HIGH [4]
LOW [2] FAIR [3] RECOVERING [3] LOW [1] NONE [1] POOR [1] RECENT OR NO RECOVERY [1] Channel
Z KOOKII Z KOOKII OKIO KEOOYEKIII
011111101113
comments 20
BANK EROSION AND RIPARIAN ZONE Check ONE in each category for EACH BANK (Or 2 per bank & average)
BANK EROSION AND RIPARIAN ZONE Check ONE in each category for EACH BANK (Or 2 per bank & average) River right looking downstream RIPARIAN WIDTH
BANK EROSION AND RIPARIAN ZONE Check ONE in each category for EACH BANK (Or 2 per bank & average) River right looking downstream RIPARIAN WIDTH REROSION RIPARIAN WIDTH REROS
BANK EROSION AND RIPARIAN ZONE Check ONE in each category for EACH BANK (Or 2 per bank & average) River right looking downstream RIPARIAN WIDTH FLOOD PLAIN QUALITY REROSION WIDE > 50m [4] FOREST, SWAMP [3] NONE / LITTLE [3] MODERATE [2] MODERATE [2] RESIDENTIAL, PARK, NEW FIELD [1] MINING / CONSTRUCTION [0]
BANK EROSION AND RIPARIAN ZONE Check ONE in each category for EACH BANK (Or 2 per bank & average) River right looking downstream RIPARIAN WIDTH FLOOD PLAIN QUALITY ROSION WIDE > 50m [4] FOREST, SWAMP [3] SHRUB OR OLD FIELD [2] WODERATE [2] MODERATE [2] RESIDENTIAL, PARK, NEW FIELD [1] HEAVY / SEVERE [1] NONE [0] NONE [0] WIDE > 50m [4] FOREST, SWAMP [3] SHRUB OR OLD FIELD [2] RESIDENTIAL, PARK, NEW FIELD [1] Indicate predominant land use(s) past 100m riparian. Riparian
BANK EROSION AND RIPARIAN ZONE Check ONE in each category for EACH BANK (Or 2 per bank & average) River right looking downstream RIPARIAN WIDTH FLOOD PLAIN QUALITY RIPARIAN WIDTH FOREST, SWAMP [3] CONSERVATION TILLAGE [1] CONSERVATION TILLAGE [1] CONSERVATION TILLAGE [1] WIDE > 50m [4] SHRUB OR OLD FIELD [2] URBAN OR INDUSTRIAL [0] URBAN OR INDUSTRIAL [0] URBAN OR INDUSTRIAL [0] MINING / CONSTRUCTION [0] HEAVY / SEVERE [1] VERY NARROW < 5m [1] FENCED PASTURE [1] Indicate predominant land use(s) past 100m riparian. Riparian Rip
BANK EROSION AND RIPARIAN ZONE Check ONE in each category for EACH BANK (Or 2 per bank & average) River right looking downstream RIPARIAN WIDTH FLOOD PLAIN QUALITY RIPARIAN WIDTH FLOOD PLAIN QUALITY RIPARIAN WIDTH FOREST, SWAMP [3] CONSERVATION TILLAGE [1] URBAN OR INDUSTRIAL [0] INDUSTR
BANK EROSION AND RIPARIAN ZONE Check ONE in each category for EACH BANK (Or 2 per bank & average) River right looking downstream RIPARIAN WIDTH FLOOD PLAIN QUALITY RIPARIAN WIDTH FOREST, SWAMP [3] CONSERVATION TILLAGE [1] URBAN OR INDUSTRIAL [0] INDUSTRIAL [0] INDUSTRIAL [0] INDUSTRIAL [0] URBAN OR INDUSTRIAL [0] IN
BANK EROSION AND RIPARIAN ZONE Check ONE in each category for EACH BANK (Or 2 per bank & average) River right looking downstream RIPARIAN WIDTH FLOOD PLAIN QUALITY CONSERVATION TILLAGE [1] CONSERVAT
BANK EROSION AND RIPARIAN ZONE Check ONE in each category for EACH BANK (Or 2 per bank & average) River right looking downstream RIPARIAN WIDTH FLOOD PLAIN QUALITY CONSERVATION TILLAGE [1] CONSERVAT
BANK EROSION AND RIPARIAN ZONE Check ONE in each category for EACH BANK (Or 2 per bank & average) River right looking downstream RIPARIAN WIDTH FLOOD PLAIN QUALITY CONSERVATION TILLAGE [1] DINONE / LITTLE [3] MODERATE 10-50m [3] SHRUB OR OLD FIELD [2] URBAN OR INDUSTRIAL [0] WINING / CONSTRUCTION [0] HEAVY / SEVERE [1] VERY NARROW < 5m [1] FENCED PASTURE [1] Indicate predominant land use(s) past 100m riparian. Riparian Maximum Riparian
BANK EROSION AND RIPARIAN ZONE Check ONE in each category for EACH BANK (Or 2 per bank & average) River right looking downstream RIPARIAN WIDTH FLOOD PLAIN QUALITY CONSERVATION TILLAGE [1] WIDE > 50m [4] SHRUB OR OLD FIELD [2] URBAN OR INDUSTRIAL [0] HEAVY / SEVERE [1] VERY NARROW < 5m [1] FENCED PASTURE [1] Indicate predominant land use(s) past 100m riparian. Riparian
BANK EROSION AND RIPARIAN ZONE Check ONE in each category for EACH BANK (Or 2 per bank & average) River right looking downstream RIPARIAN WIDTH FLOOD PLAIN QUALITY CONSERVATION TILLAGE [1] GONSERVATION TILLAGE [1] GONSERVAT
BANK EROSION AND RIPARIAN ZONE Check ONE in each category for EACH BANK (Or 2 per bank & average)
BANK EROSION AND RIPARIAN ZONE Check ONE in each category for EACH BANK (Or 2 per bank & average) River right looking downstream RIPARIAN WIDTH FLOOD PLAIN QUALITY CONSERVATION TILLAGE [1] URBAN OR INDUSTRIAL [0] Indicate predominant land use(s) past 100m riparian. Riparian
BANK EROSION AND RIPARIAN ZONE Check ONE in each category for EACH BANK (Or 2 per bank & average)
BANK EROSION AND RIPARIAN ZONE Check ONE in each category for EACH BANK (Or 2 per bank & average)
BANK EROSION AND RIPARIAN ZONE Check ONE in each category for EACH BANK (Or 2 per bank & average)
BANK EROSION AND RIPARIAN ZONE Check ONE in each category for EACH BANK (Or 2 per bank & average)
BANK EROSION AND RIPARIAN ZONE Check ONE in each category for EACH BANK (Or 2 per bank & average)

F] MEASUREMENTS bankfull max. depth floodprone x2 width bankfull x depth x bankfull width entrench, ratio Comment RE: Reach consistency/ Is reach typical of steam?, Recreation/ Observed - Inferred, Other/ Sampling observations, Concerns, Access directions, etc. egacy Tree. max. depth W/D ratio x depth x width walking Bridge LOGGING / IRRIGATION / COOLING HARDENED / URBAN / DIRT&GRIME FALSE BANK / MANURE / LAGOON BMPs-CONSTRUCTION-SEDIMENT WWTP / CSO / NPDES / INDUSTRY NATURAL / WETLAND / STAGNAN ATMOSPHERE / DATA PAUCITY ACID / MINE / QUARRY / FLOW WASH H₂0 / TILE / H₂0 TABLE PARK / GOLF / LAWN / HOME **BANK / EROSION / SURFACE** CONTAMINATED / LANDFILL C Circle some & COMMENT Poul FLOOD CONTROL / DRAINAGE PUBLIC / PRIVATE / BOTH / NA ACTIVE / HISTORIC / BOTH / NA MODIFIED / DIPPED OUT / NA MOVING-BEDLOAD-STABLE IMPOUNDED / DESICCATED YOUNG-SUCCESSION-OLD SPRAY / SNAG / REMOVED RELOCATED / CUTOFFS D] MAINTENANCE **ARMOURED / SLUMPS LEVEED / ONE SIDED** ISLANDS / SCOURED -84.369927 alist -84.36976 -84.37009 INVASIVE MACROPHYTES 39, 182451 CSOs/SSOs/OUTFALLS gew es 39-18200 2001 **BIAESTHETICS EXCESS TURBIDITY** SLUDGE DEPOSITS C) RECREATION AREA DEPTH POOL: $\square > 100ft^2 \square > 3ft$ ☐ NUISANCE ODOR Buidge DISCOLORATION ☐ TRASH / LITTER FOAM / SCUM OIL SHEEN E □ SECCHI DEPTH□ 1st -sample pass- 2nd □ NORMAL □ □ > 70 cm/ CTB --sample pass--CLARITY STAGE Stream Drawing. □ 20-<40 cm AJ SAMPLED REACH □ 40-70 cm 1st --sample p Check ALL that apply D LOW THIGH | DRY dn 🗆 <10%- CLOSED □ > 85%- OPEN x stail CANOPY DISTANCE 30%-<55% 55%-<85% 10%-<30% 0.15 Km 0.12 Km METHOD 0,5 Km 0.2 Km OTHER OTHER L. LINE meters WADE BOAT

Chefa

verd wither

	Stream & Location: East Fork Duck Creek Behild School RM: 0.5 Date: 71 141 2022
	LM84 Scorers Full Name & Affiliation: MBI - MAS
	River Code: 1 = 05 = STORET #: Lat./Long.: 99 . 165153 184 . 4 66 5500 Office verified
	1] SUBSTRATE Check ONLYTwo substrate TYPE BOXES; estimate % or note every type present REST TYPES OTHER TYPES ORIGIN
	BLDR /SLABS [10] HARDPAN [4] POOL RIFFLE LIMESTONE [1] HEAVY [-2]
	BOULDER [9]
	LEGRAVEL 171 X X I I I SILT 121 I HARDPAN 101 I I I I I I I I I I I I I I I I I I
	□ □ BEDROCK [5]
	NUMBER OF BEST TYPES: 4 or more [2] sludge from point-sources) LACUSTURINE [0] NORMAL [0] SHALE [-1] NONE [1]
	COAL FINES [-2]
	2] INSTREAM COVER Indicate presence 0 to 3: 0-Absent; 1-Very small amounts or if more common of marginal quality; 2-Moderate amounts, but not of highest quality or in small amounts of highest
	quality; 3-Highest quality in moderate or greater amounts (e.g., very large boulders in deep or fast water, large diameter log that is stable, well developed rootwad in deep / fast water, or deep, well-defined, functional pools. Check ONE (Or 2 & average) EXTENSIVE >75% [11]
	O UNDERCUT BANKS [1] POOLS > 70cm [2] OXBOWS, BACKWATERS [1] MODERATE 25-75% [7]
	3 SHALLOWS (IN SLOW WATER) [1] / BOULDERS [1] / LOGS OR WOODY DEBRIS [1] NEARLY ABSENT <5% [1]
	Maximum 15
	3] CHANNEL MORPHOLOGY Check ONE in each category (Or 2 & average)
	SINUOSITY DEVELOPMENT CHANNELIZATION STABILITY HIGH [4] EXCELLENT [7] NONE [6] ZHIGH [3]
	☐ MODERATE [3] ☐ GOOD [5] ☐ RECOVERED [4] ☐ MODERATE [2]
/	□ NONE [1] □ POOR [1] □ RECENT OR NO RECOVERY [1] Channel
	Comments Maximum 10.5
	4] BANK EROSION AND RIPARIAN ZONE Check ONE in each category for EACH BANK (Or 2 per bank & average)
	River right looking downstream RIPARIAN WIDTH L R FLOOD PLAIN QUALITY R
	□ NONE / LITTLE [3] □ MODERATE 10-50m [3] □ SHRUB OR OLD FIELD [2] □ URBAN OR INDUSTRIAL [0]
	D HEAVY / SEVERE 111 D CVERY NARROW 5-10m [2] L'RESIDENTIAL, PARK, NEW FIELD [1] MINING / CONSTRUCTION [0]
	□ ☑NONE [0] □ □ OPEN PASTURE, ROWCROP [0] past 100m riparian. Riparian.
	Comments Maximum 4
	5] POOL / GLIDE AND RIFFLE / RUN OUALITY
	MAXIMUM DEPTH CHANNEL WIDTH CURRENT VELOCITY Check ONE (ONLY!) Check ONE (Or 2 & average) Check ALL that apply Check ONE (Only!) Check ONE (Or 2 & average) Check ALL that apply Primary Contact
	1 m [6] POOL WIDTH > RIFFLE WIDTH [2] TORRENTIAL [-1] Z SLOW [1] Secondary Contact
	□ 0.4-<0.7m [2] □ POOL WIDTH < RIFFLE WIDTH [0] □ FAST [1] □ INTERMITTENT [-2]
	□ 0.2<0.4m [1] □ < 0.2m [0] Indicate for reach - pools and riffles.
	Comments Maximum 8
	Indicate for functional riffles; Best areas must be large enough to support a population
	RIFFLE DEPTH RUN DEPTH RIFFLE / RUN SUBSTRATE RIFFLE / RUN EMBEDDEDNESS
	□ BEST AREAS > 10cm [2] □ MAXIMUM > 50cm [2] □ STABLE (e.g., Cobble, Boulder) [2] □ NONE [2]
	☐ BEST AREAS < 5cm ☐ UNSTABLE (e.g., Fine Gravel, Sand) [0] ☐ MODERATE [0] RIFIE
	Comments DEXTENSIVE [-1] Run Maximum 8
	6] GRADIENT (123,0 ft/mi) VERY LOW LOW [24] %POOL: (2) %GLIDE:
	DRAINAGE AREA MODERATE [6-10] MODERATE [6-10] Maximum Maxi

				F) MEASUREMENTS X width X depth max, depth R bankfull X depth WiD ratio bankfull max, depth floodprone x² width entrench, ratio Legacy Tree:
of steam?, Recreation/ Observed - Interred, Orrer/ Sampling Observation, Construction				WWTP / CSO / NPDES / INDUSTRY HARDENED / URBAN / DIRT&GRIME CONTAMINATED / LANDFILL BMPS-CONSTRUCTION-SEDIMENT LOGGING / IRRIGATION / COOLING BANK / EROSION / SURFACE FALSE BANK / MANURE / LAGOON WASH H ₂ 0 / TILE / H ₂ 0 TABLE ACID / MINE / QUARRY / FLOW NATURAL / WETLAND / STAGNANT PARK / GOLF / LAWN / HOME ATMOSPHERE / DATA PAUCITY
/ Observed - Interred, Outer				Circle some & COMMENT
	39 165153 -84,400550	-84.39985		DJ MAIN/TE/NANCE PUBLIC / PRIVATE / BOTH / NA ACTIVE / HISTORIC / BOTH / NA YOUNG-SUCCESSION-OLD SPRAY / SNAG / REMOVED MODIFIED / DIPPED OUT / NA LEVEED / ONE SIDED RELOCATED / CUTOFFS MOVING-BEDLOAD-STABLE ARMOURED / SLUMPS ISLANDS / SCOURED IMPOUNDED / DESICCATED FLOOD CONTROL / DRAINAGE
Comment RE: Reach consistency/ Is reach typical $39.16473-84.46113$		end 39.16564		ARITY BJAESTHETICS Ne pass- 2nd M
AJ SAMPLED REACH C Check ALL that apply	D STAGE		بالمات	0.2 Km

LM85 Scorers Full Name & Affiliation: NAS NASI	
Scorers ruin Name & Anniation. 14.35 PID	
NAD 83 - decimal 9 21 - 174 56 5 . 10 4 . 345161 MID location]
1] SUBSTRATE Check ONLYTwo substrate TYPE BOXES; estimate % or note every type present Check ONE (Or 2 & average)	
BEST TYPES POOL RIFFLE OTHER TYPES POOL RIFFLE ORIGIN QUALITY	
□□ BOULDER [9] □□ DETRITUS [3] □□ TILLS [1] □ MODERATE [-1] Substra	ite
COBBLE [8]	
SAND [6] ARTIFICIAL [0] SANDSTONE [0] SANDSTONE [-2]	
BEDROCK [5]	m
Commants U3 or less [0] Direct [1]	
COAL FINES [-2]	
21 //STREAM COVER Indicate presence 0 to 3: 0-Absent; 1-Very small amounts or if more common of marginal	
quality; 2-Moderate amounts, but not of highest quality or in small amounts of highest quality; 3-Highest quality in moderate or greater amounts (e.g., very large boulders in deep or fast water, large Check ONE (Or 2 & average)	
diameter log that is stable, well developed rootwad in deep / fast water, or deep, well-defined, functional pools. OUNDERCUT BANKS [1] POOLS > 70cm [2] OXBOWS, BACKWATERS [1] MODERATE 25-75% [7]	
OVERHANGING VEGETATION [1] / ROOTWADS [1] OVERHANGING VEGETATION [1] PARSE 5-<25% [3]	
3 SHALLOWS (IN SLOW WATER) [1] 3 BOULDERS [1] / LOGS OR WOODY DEBRIS [1] NEARLY ABSENT <5% [1]	
Comments Cover Maximum (5)	
20	
3] CHANNEL MORPHOLOGY Check ONE in each category (Or 2 & average) SINUOSITY DEVELOPMENT CHANNELIZATION STABILITY	
□ HIGH [4] □ EXCELLENT [7] □ NONE [6] □ HIGH [3]	
☐ MODERATE [3] ☐ GOOD [5] ☐ RECOVERED [4] ☐ MODERATE [2] ☐ LOW [2] ☐ FAIR [3] ☐ RECOVERING [3] ☐ LOW [1]	
□ NONE [1] □ POOR [1] □ RECENT OR NO RECOVERY [1] Channel	
Comments Maximum 1	
4] BANK EROSION AND RIPARIAN ZONE Check ONE in each category for EACH BANK (Or 2 per bank & average)	
River right looking downstream RIPARIAN WIDTH FLOOD PLAIN QUALITY	
EROSION DWIDE > 50m [4] DFOREST, SWAMP [3] DCONSERVATION TILLAGE [1]	
□ □ NONE / LITTLE [3] □ □ MODERATE 10-50m [3] □ SHRUB OR OLD FIELD [2] □ □ URBAN OR INDUSTRIAL [0] □ MODERATE [2] □ □ NARROW 5-10m [2] □ □ RESIDENTIAL PARK NEW FIELD [1] □ MINING / CONSTRUCTION [0]	
□ NONE / LITTLE [3] □ MODERATE 10-50m [3] □ SHRUB OR OLD FIELD [2] □ URBAN OR INDUSTRIAL [0] □ MODERATE [2] □ NARROW 5-10m [2] □ RESIDENTIAL, PARK, NEW FIELD [1] □ MINING / CONSTRUCTION [0] □ HEAVY / SEVERE [1] □ VERY NARROW < 5m [1] □ FENCED PASTURE [1] Indicate predominant land use(s)	
□ NONE / LITTLE [3] □ MODERATE 10-50m [3] □ SHRUB OR OLD FIELD [2] □ URBAN OR INDUSTRIAL [0] □ MODERATE [2] □ NARROW 5-10m [2] □ RESIDENTIAL, PARK, NEW FIELD [1] □ MINING / CONSTRUCTION [0]	
□ NONE / LITTLE [3] □ MODERATE 10-50m [3] □ SHRUB OR OLD FIELD [2] □ URBAN OR INDUSTRIAL [0] □ MODERATE [2] □ NARROW 5-10m [2] □ RESIDENTIAL, PARK, NEW FIELD [1] □ MINING / CONSTRUCTION [0] □ HEAVY / SEVERE [1] □ VERY NARROW < 5m [1] □ FENCED PASTURE [1] Indicate predominant land use(s) past 100m riparian. Riparian Riparian.	
NONE / LITTLE [3]	
None Little [3]	
None Little [3]	
None / LITTLE [3]	

ess directions, etc.	F) MEASUREMENTS x width x depth max. depth pankfull width bankfull x depth WID ratio bankfull max. depth floodprone x² width entrench. ratio Legacy Tree:	anoxic
Comment RE: Reach consistency/ Is reach typical of steam?, Recreation/ Observed - Inferred, Other/ Sampling observations, Concerns, Access directions, etc. Drg 18004 - 84 39503 mid 39, 17908 - 84, 39522	WWTP / CSO / NPDES / INDUSTRY HARDENED / URBAN / DIRT&GRIME CONTAMINATED / LANDFILL BMPs-CONSTRUCTION-SEDIMENT LOGGING / IRRIGATION / COOLING BANK / EROSION / SURFACE FALSE BANK / MANURE / LAGOON WASH H ₂ 0 / TILE / H ₂ 0 TABLE ACID / MINE / QUARRY / FLOW NATURAL / WETLAND / STAGNANT PARK / GOLF / LAWN / HOME ATMOSPHERE / DATA PAUCITY	x End water bact
م/ Observed - Inferred, O <i>ther</i> /	Circle some & COMMENT	Glibe
s reach typical of steam?, Recreation - 8 4 . 39 5 2 2.	D/ M/A/N/TENANCE PUBLIC / PRIVATE / BOTH / NA ACTIVE / HISTORIC / BOTH / NA YOUNG-SUCCESSION-OLD SPRAY / SNAG / REMOVED MODIFIED / DIPPED OUT / NA LEVEED / ONE SIDED RELOCATED / CUTOFFS MOVING-BEDLOAD-STABLE ARMOURED / SLUMPS ISLANDS / SCOURED IMPOUNDED / DESICCATED FLOOD CONTROL / DRAINAGE	Pools
mid 39.179568 end 39.17908	BJAESTHETICS □ NUISANCE ALGAE □ INVASIVE MACROPHYTES □ EXCESS TURBIDITY □ DISCOLORATION □ FOAM / SCUM □ OIL SHEEN □ TRASH / LITTER □ NUISANCE ODOR □ SLUDGE DEPOSITS □ SLUDGE DEPOSITS ■ CSOS/SSOS/OUTFALLS ### COOL: □ > 100ff² □ > 3ff	10013
MAL COMMAN	CLARITY 1stsample pass 2nd < 20 cm < 20 cm < 40-70 cm < 20 cm < 20 cm < 20 cm < 20 cm < 20 cm < 20 cm < 20 cm < 20 cm < 20 cm < 20 cm < 20 cm < 20 cm < 20 cm < 20 cm < 20 cm < 20 cm < 20 cm < 20 cm < 20 cm < 20 cm < 20 cm < 20 cm < 20 cm < 20 cm < 20 cm < 20 cm < 20 cm < 20 cm < 20 cm < 20 cm < 20 cm < 20 cm < 20 cm < 20 cm < 20 cm < 20 cm < 20 cm < 20 cm < 20 cm < 20 cm < 20 cm < 20 cm < 20 cm < 20 cm < 20 cm < 20 cm < 20 cm < 20 cm < 20 cm < 20 cm < 20 cm < 20 cm < 20 cm < 20 cm < 20 cm < 20 cm < 20 cm < 20 cm < 20 cm < 20 cm < 20 cm < 20 cm < 20 cm < 20 cm < 20 cm < 20 cm < 20 cm < 20 cm < 20 cm < 20 cm < 20 cm < 20 cm < 20 cm < 20 cm < 20 cm < 20 cm < 20 cm < 20 cm < 20 cm < 20 cm < 20 cm < 20 cm < 20 cm < 20 cm < 20 cm < 20 cm < 20 cm < 20 cm < 20 cm < 20 cm < 20 cm < 20 cm < 20 cm < 20 cm < 20 cm < 20 cm < 20 cm < 20 cm < 20 cm < 20 cm < 20 cm < 20 cm < 20 cm < 20 cm < 20 cm < 20 cm < 20 cm < 20 cm < 20 cm < 20 cm < 20 cm < 20 cm < 20 cm < 20 cm < 20 cm < 20 cm < 20 cm < 20 cm < 20 cm < 20 cm < 20 cm < 20 cm < 20 cm < 20 cm < 20 cm < 20 cm < 20 cm < 20 cm < 20 cm < 20 cm < 20 cm < 20 cm < 20 cm < 20 cm < 20 cm < 20 cm < 20 cm < 20 cm < 20 cm < 20 cm < 20 cm < 20 cm < 20 cm < 20 cm < 20 cm < 20 cm < 20 cm < 20 cm < 20 cm < 20 cm < 20 cm < 20 cm < 20 cm < 20 cm < 20 cm < 20 cm < 20 cm < 20 cm < 20 cm < 20 cm < 20 cm < 20 cm < 20 cm < 20 cm < 20 cm < 20 cm < 20 cm < 20 cm < 20 cm < 20 cm < 20 cm < 20 cm < 20 cm < 20 cm < 20 cm < 20 cm < 20 cm < 20 cm < 20 cm < 20 cm < 20 cm < 20 cm < 20 cm < 20 cm < 20 cm	Stream Drawing:

· dark w/ terial colonies on substrate Fish Sycamor

Cheta

OHEI Score: 56.5

Stream & Location: Little Duck Creek - ad Camargo Rd. RM: 24 Date: 7/ 14/ 202
Scorers Full Name & Affiliation: MAS-MBI
River Code: 11 - 076 - STORET #: Lat./Long.: 39 160 582 184 . 380929 Milo location
1] SUBSTRATE Check ONLY Two substrate TYPE BOXES; estimate % or note every type present Check ONE (Or 2 & average)
BEST TYPES POOL RIFFLE OTHER TYPES POOL RIFFLE ORIGIN BLDR /SLABS [10] ×
2] //STREAM COVER Indicate presence 0 to 3: 0-Absent; 1-Very small amounts or if more common of marginal quality; 2-Moderate amounts, but not of highest quality or in small amounts of highest quality; 3-Highest quality in moderate or greater amounts (e.g., very large boulders in deep or fast water, large diameter log that is stable, well developed rootwad in deep / fast water, or deep, well-defined, functional pools. O UNDERCUT BANKS [1]
3] CHANNEL MORPHOLOGY Check ONE in each category (Or 2 & average) SINUOSITY DEVELOPMENT CHANNELIZATION STABILITY HIGH [4]
4] BANK EROSION AND RIPARIAN ZONE Check ONE in each category for EACH BANK (Or 2 per bank & average) River right looking downstream RIPARIAN WIDTH FLOOD PLAIN QUALITY REGISTRATION TILLAGE [1] GLONSERVATION
MAXIMUM DEPTH Check ONE (ONLY!) Check ONE (ONLY!) Check ONE (Or 2 & average) Check ONE (Or 2 & average) Check ONE (Or 2 & average) Check ALL that apply Chec
Indicate for functional riffles; Best areas must be large enough to support a population of riffle-obligate species: Check ONE (Or 2 & average). RIFFLE DEPTH RUN DEPTH RIFFLE / RUN SUBSTRATE RIFFLE / RUN EMBEDDEDNESS BEST AREAS > 10cm [2] MAXIMUM > 50cm [2] MAXIMUM > 50cm [2] MAXIMUM > 50cm [2] MAXIMUM > 50cm [1] MOD. STABLE (e.g., Cobble, Boulder) [2] NONE [2] MAXIMUM < 50cm [1] MOD. STABLE (e.g., Large Gravel) [1] MODERATE [0] MAXIMUM < 50cm [1] MAXIMUM < 50cm [1] MODERATE [0] MODERATE [0] MAXIMUM < 50cm [1] MODERATE [0]
6] GRADIENT (333,0 ft/mi) VERY LOW - LOW [2-4]

ess directions, etc.	FINEASUREMENTS x width x depth max. depth bankfull width bankfull x depth WID ratio bankfull max. depth floedprone x² width entrench. ratio Legacy Tree:	
of steam?, <i>Recreation/</i> Observed - Inferred, <i>Other/</i> Sampling observations, Concerns, Access directions, exc.	EJ/SSUES WWYTP / CSO / NPDES / INDUSTRY HARDENED / URBAN / DIRT&GRIME CONTAMINATED / LANDFILL BMPS-CONSTRUCTION-SEDIMENT LOGGING / IRRIGATION / COOLING BANK / EROSION / SURFACE FALSE BANK / MANURE / LAGOON WASH H20 / TILE / H20 TABLE ACID / MINE / QUARRY / FLOW NATURAL / WETLAND / STAGNANT PARK / GOLF / LAWN / HOME ATMOSPHERE / DATA PAUCITY	
/ Observed - Inferred, Other/	Circle some & COMMENT	
8 4, 38103 -84, 380929 -84, 3808/	DJ MAINTENANCE PUBLIC / PRIVATE / BOTH / NA ACTIVE / HISTORIC / BOTH / NA YOUNG-SUCCESSION-OLD SPRAY / SNAG / REMOVED MODIFIED / DIPPED OUT / NA LEVEED / ONE SIDED RELOCATED / CUTOFFS MOVING-BEDLOAD-STABLE ARMOURED / SLUMPS ISLANDS / SCOURED IMPOUNDED / DESICCATED FLOOD CONTROL / DRAINAGE	
Comment RE: Reach consistency/ Is reach typical bec 39.1 \$955 - 84.3810 Mid 39.160582 - 84.380 end 39.16127 - 84.380	ARITY BIALSTHETICS ARITY BIALSTHETICS O cm INVASIVE MACROPHYTES O cm INVASIVE M	
A) SAMPLED REACH Check ALL that apply METHOD STAGE 1st -sample pass-2nd	0.5 Km	•

Cheta

and Coortoocoment Field Check	
Stream & Location: Little Dock Creek ad Phiny le Rd, RM: 19 Date: 7	7/14/2022
LM 87 Scorers Full Name & Affiliation: MAS - MBI	2 -0 -0
River Code: 11 - 076 - STORET#: Lat./Long.: 39 . 158639 184.380862	Office verified location
1] SUBSTRATE Check ONLY Two substrate TYPE BOXES; estimate % or note every type present Check ONE (Or 2 & average)	
Detail D	Substrate
· Commonic	2 & average) 75% [11] 5-75% [7] 9% [3]
	thannel (1,2)
4] BANK EROSION AND RIPARIAN ZONE Check ONE in each category for EACH BANK (Or 2 per bank & average) River right looking downstream RIPARIAN WIDTH REROSION WIDE > 50m [4] SHRUB OR OLD FIELD [2] MODERATE [2] NARROW 5-10m [2] RESIDENTIAL, PARK, NEW FIELD [1] NONE [0] WIDE > 50m [4] FOREST, SWAMP [3] SHRUB OR OLD FIELD [2] RESIDENTIAL, PARK, NEW FIELD [1] Indicate predominant land past 100m riparian. RIPARIAN WIDTH RIPARIAN WIDTH REPOSION AND RIPARIAN ZONE Check ONE in each category for EACH BANK (Or 2 per bank & average) RIPARIAN WIDTH REPOSION AND RIPARIAN ZONE Check ONE in each category for EACH BANK (Or 2 per bank & average) RIPARIAN WIDTH REPOSION AND RIPARIAN ZONE Check ONE in each category for EACH BANK (Or 2 per bank & average) RIPARIAN WIDTH REPOSION AND RIPARIAN ZONE Check ONE in each category for EACH BANK (Or 2 per bank & average) RIPARIAN WIDTH REPOSION AND RIPARIAN ZONE Check ONE in each category for EACH BANK (Or 2 per bank & average) RIPARIAN WIDTH REPOSION AND RIPARIAN ZONE CHECK ONE in each category for EACH BANK (Or 2 per bank & average) RIPARIAN WIDTH REPOSION AND RIPARIAN ZONE CHECK ONE in each category for EACH BANK (Or 2 per bank & average) RIPARIAN WIDTH REPOSION AND RIPARIAN ZONE CHECK ONE in each category for EACH BANK (Or 2 per bank & average) RIPARIAN WIDTH REPOSION AND RIPARIAN ZONE CHECK ONE IN EACH BANK (OR 2 per bank & average) RIPARIAN WIDTH REPOSION AND RIPARIAN ZONE CHECK ONE IN EACH BANK (OR 2 per bank & average) RIPARIAN WIDTH REPOSION AND RIPARIAN ZONE CHECK ONE IN EACH BANK (OR 2 per bank & average) RIPARIAN WIDTH REPOSION AND RIPARIAN ZONE CHECK ONE IN EACH BANK (OR 2 per bank & average) RIPARIAN WIDTH REPOSION AND RIPARIAN CHECK ONE IN EACH BANK (OR 2 per bank & average) RIPARIAN WIDTH REPOSION AND RIPARIAN CHECK ONE IN EACH BANK (OR 2 per bank & average) RIPARIAN WIDTH REPOSION AND RIPARIAN CHECK ONE IN EACH BANK (OR 2 per bank & average) RIPARIAN CHECK ONE IN EACH BANK (OR 2 per bank & average) RIPARIAN CHECK ONE IN EACH BANK (OR 2 per bank & average) RE	STRIAL [0] RUCTION [0]
□ < 0.2m [0] Indicate for reach - pools and riffles.	Contact Contact Lent on back Pool/ Current ximum
RIFFLE DEPTH BEST AREAS > 10cm [2] BEST AREAS > 10cm [2] BEST AREAS 5-10cm [1] BEST AREAS 5-10cm [1] BEST AREAS < 5cm [metric=0] RUN DEPTH RIFFLE / RUN SUBSTRATE RIFFLE / RUN EMBEDDED NONE [2] NONE [2] NONE [2] MAXIMUM < 50cm [1] MOD. STABLE (e.g., Cobble, Boulder) [2] MAXIMUM < 50cm [1] MODERATE [0] MODERATE [0]	FLE [metric=0] NESS Riffle Run ximum
	radient

		FT MEASUREMENTS TRY X width L max. depth That. depth	
bes 39.15820 -84.38090 mid 39.158639 -84.380862		WWTP / CSO / NPDES / INDUSTRY HARDENED / URBAN / DIRT&GRIME CONTAMINATED / LANDFILL BMPS-CONSTRUCTION-SEDIMENT LOGGING / IRRIGATION / COOLING BANK / EROSION / SURFACE FALSE BANK / MANURE / LAGOON WASH H ₂ 0 / TILE / H ₂ 0 TABLE ACID / MINE / QUARRY / FLOW NATURAL / WETLAND / STAGNANT PARK / GOLF / LAWN / HOME ATMOSPHERE / DATA PAUCITY	Prontes o Pool
		Circle some & COMMENT	Brood Clife
-84.380862	84.38103	DJ MAINTENANCE PUBLIC / PRIVATE / BOTH / NA ACTIVE / HISTORIC / BOTH / NA YOUNG-SUCCESSION-OLD SPRAY / SNAG / REMOVED MODIFIED / DIPPED OUT / NA LEVEED / ONE SIDED RELOCATED / CUTOFFS MOVING-BEDLOAD-STABLE ARMOURED / SLUMPS ISLANDS / SCOURED IMPOUNDED / DESICCATED FLOOD CONTROL / DRAINAGE	Trib Peol
bes 39.15820 -8.	1 39.15915 -	BJAESTHETICS NUISANGE ALGAE INVASIVE MACROPHYTES EXCESS TURBIDITY DISCOLORATION FOAM / SCUM ITASH / LITTER INUISANGE ODOR SLUGGE DEPOSITS CSOS/SSOS/OUTFALLS POOL: > 100ft2 > 3ft	660)
Check ALL that apply ETHOD STAGE	1 1	CLARITY	swing:

Qualitative Habitat Evaluation Index and Use Assessment Field Sheet

Stream & Location: Little Duck Creek - Settle St. RM: 1.0 Date: 71 221 2022
Lman Scorers Full Name & Affiliation: MAS NAI
River Code: 11 = 076 = STORET#: Lat/Long.: 39 .156941 184 . 384261 Middle location
1] SUBSTRATE Check ONLY Two substrate TYPE BOXES; estimate % or note every type present Check ONE (Or 2 & average)
BEST TYPES POOL RIFFLE OTHER TYPES POOL RIFFLE ORIGIN QUALITY
□□ BLDR /SLABS [10] ~ ~ □ □ HARDPAN [4] □ LIMESTONE [1] □ HEAVY [-2]
D BOULDER [9] DETRITUS [3] A TILLS [1] SILT MODERATE [-1] SUBSTRAIN SILT NORMAL [0]
□ GRAVELI71 A X □ □ SILT 121 □ □ HARDPAN (6) □ FDEE (4)
SAND [6] SAND [6] SET TYPES: 4 or more [2] sludge from point-sources) Comments SANDSTONE [0]
NUMBER OF BEST TYPES: 4 or more [2] sludge from point-sources) LACUSTURINE [0] NORMAL [0] Maximum 20 SMALE [-1] NONE [1]
Comments
21 /A/CTDE A/A COL/ED Indicate processes 0 to 2: A Absort 4 Very small encycle of Francisco
2] INSTREAM COVER Indicate presence 0 to 3: 0-Absent; 1-Very small amounts or if more common of marginal quality; 2-Moderate amounts, but not of highest quality or in small amounts of highest quality; 3-Highest quality in moderate or greater amounts (e.g., very large boulders in deep or fast water, large Check ONE (Or 2 & average)
diameter log that is stable, well developed rootwad in deep / fast water, or deep, well-defined, functional pools.
O UNDERCUT BANKS [1] O POOLS > 70cm [2] O OXBOWS, BACKWATERS [1] MODERATE 25-75% [7] OVERHANGING VEGETATION [1] / ROOTWADS [1] O AQUATIC MACROPHYTES [1] SPARSE 5-25% [3]
3 SHALLOWS (IN SLOW WATER) [1] 2 BOULDERS [1] / LOGS OR WOODY DEBRIS [1] NEARLY ABSENT <5% [1]
2 ROOTMATS [1] Comments
Maximum 1/5
3] CHANNEL MORPHOLOGY Check ONE in each category (Or 2 & average)
SINUOSITY DEVELOPMENT CHANNELIZATION STABILITY
☐ HIGH [4] ☐ EXCELLENT [7] ☐ NONE [6] ☐ HIGH [3] ☐ MODERATE [3] ☐ GOOD [5] ☐ RECOVERED [4] ☐ MODERATE [2]
LOW [2] FAIR [3] RECOVERING [3] DLOW [1]
□ NONE [1] □ POOR [1] □ RECENT OR NO RECOVERY [1] Channel Comments
20
4] BANK EROSION AND RIPARIAN ZONE Check ONE in each category for EACH BANK (Or 2 per bank & average) River right looking downstream RIPARIAN WIDTH FLOOD PLAIN QUALITY
EROSION WIDE > 50m [4] FOREST, SWAMP [3] CONSERVATION TILLAGE [1]
□ □ NONE / LITTLE [3] □ □ MODERATE 10-50m [3] □ □ SHRUB OR OLD FIELD [2] □ □ URBAN OR INDUSTRIAL [0]
MODERATE [2]
□ □ NONE [0] □ □ OPEN PASTURE, ROWCROP [0] past 100m riparian. Riparian
Comments Maximum 10
5] POOL / GLIDE AND RIFFLE / RUN QUALITY
MAXIMUM DEPTH CHANNEL WIDTH CURRENT VELOCITY Check ONE (ONLY!) Check ONE (Or 2 & average) Check ALL that apply Check ALL that appl
POOL WIDTH > RIFFLE WIDTH [2] TORRENTIAL [-1] SLOW [1] Secondary Contact
□ 0.7-<1m [4] □ POOL WIDTH = RIFFLE WIDTH [1] □ VERY FAST [1] □ INTERSTITIAL [-1] □ POOL WIDTH < RIFFLE WIDTH [0] □ FAST [1] □ INTERMITTENT [-2]
□ 0.2<0.4m [1] □ MODERATE [1] □ EDDIES [1] Pool/
Comments Indicate for reach - pools and riffles. Current Maximum
12
Indicate for functional riffles; Best areas must be large enough to support a population of riffle-obligate species: Check ONE (Or 2 & average).
RIFFLE DEPTH RUN DEPTH RIFFLE / RUN SUBSTRATE RIFFLE / RUN EMBEDDEDNESS
☐ BEST AREAS > 10cm [2] ☐ MAXIMUM > 50cm [2] ☐ STABLE (e.g., Cobble, Boulder) [2] ☐ NONE [2] ☐ NONE [2] ☐ MAXIMUM < 50cm [1] ☐ MOD. STABLE (e.g., Large Gravel) [1] ☐ LOW [1]
BEST AREAS < 5cm LINSTARI F (e.g. Fine Grave) Sand) (0) CIMODEDATE to: Riffle
[metric=0] Comments [metric=0] EXTENSIVE [-1] Maximum
6] GRADIENT (3/2.0 ft/mi) VERY LOW LOW [2-4] %POOL: %GLIDE: Gradient
DRAINAGE AREA MODERATE [6-10]
(0.55 ml²) HIGH - VERY HIGH [10-6] %RUN: %RIFFLE: Maximum 10

ess directions, etc.				T MEASUREMENTS T width T depth max. depth T bankfull width bankfull T depth WID ratio bankfull max. depth floodprone x² width entrench. ratio Legacy Tree:		xend
Comment RE: Reach consistency/ Is reach typical of steam?, Recreation/ Observed - Inferred, Other/ Sampling observations, Concerns, Access directions, etc.				WWTP / CSO / NPDES / INDUSTRY HARDENED / URBAN / DIRT&GRIME CONTAMINATED / LANDFILL BMPs-CONSTRUCTION-SEDIMENT LOGGING / IRRIGATION / COOLING BANK / EROSION / SURFACE FALSE BANK / MANURE / LAGOON WASH H ₂ 0 / TILE / H ₂ 0 TABLE ACID / MINE / QUARRY / FLOW NATURAL / WETLAND / STAGNANT PARK / GOLF / LAWN / HOME ATMOSPHERE / DATA PAUCITY		Poul
/ Observed - Inferred, Other/				Circle some & COMMENT		Glide
reach typical of steam?, Recreation - 84 , 38 4 7 7	-84, 384261	-84,38350		DJ MAINTENANCE PUBLIC / PRIVATE / BOTH / NA ACTIVE / HISTORIC / BOTH / NA YOUNG-SUCCESSION-OLD SPRAY / SNAG / REMOVED MODIFIED / DIPPED OUT / NA LEVEED / ONE SIDED RELOCATED / CUTOFFS MOVING-BEDLOAD-STABLE ARMOURED / SLUMPS ISLANDS / SCOURED IMPOUNDED / DESICCATED		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
omment RE: Reach consistency/ Is	mid 39.156941	PAND 39.15716		BJAESTHETICS NUISANCE ALGAE INVASIVE MACROPHYTES EXCESS TURBIDITY IDISCOLORATION FOAM / SCUM ITASH / LITTER INUISANCE ODOR SLUGGE DEPOSITS CSOS/SSOS/OUTFALLS POOL: >100ft2 >3ft		Glide
AJ SAMPLED REACH Check All that apply	۵	WADE CHIGH	OTHER ZINORMALD	0.5 Km	Stream Drawing:	Glide Start Piling

OF STA

Qualitative Habitat Evaluation Index and Use Assessment Field Sheet

Stream & Location: Little Duck Creek - Wooster + Red Bank Rds. RM: 0.49 Date: 7/21/2022
LM92 Scorers Full Name & Affiliation: MBI - MAS
River Code: 1 - 076 - STORET #: Lat./Long.: 39 . 135 668 /8 4 . 401274 Office verified location
1] SUBSTRATE Check ONLY Two substrate TYPE BOXES; estimate % or note every type present Check ONE (Or 2 & average)
BEST TYPES POOL RIFFLE OTHER TYPES POOL RIFFLE ORIGIN QUALITY BLDR /SLABS [10]
GRAVEL [7] SAND [6] SAND [6] SAND [6] SAND [7] SAND [8] S
NUMBER OF BEST TYPES: 24 or more [2] sludge from point-sources) LACUSTURINE [0] SINORMAL [0] 20 NONE [1] NONE [1]
2] INSTREAM COVER Indicate presence 0 to 3: 0-Absent; 1-Very small amounts or if more common of marginal quality; 2-Moderate amounts, but not of highest quality or in small amounts of highest quality; 3-Highest quality in moderate or greater amounts (e.g., very large boulders in deep or fast water, large diameter log that is stable, well developed rootwad in deep / fast water, or deep, well-defined, functional pools. O UNDERCUT BANKS [1] O POOLS > 70cm [2] O OXBOWS, BACKWATERS [1] MODERATE 25-75% [1] O WORTHANGING VEGETATION [1] ROOTMATS [1] ROOTMATS [1] Comments AMOUNT Check ONE (or 2 & average)
3] CHANVEL MORPHOLOGY Check ONE in each category (Or 2 & average) SINUOSITY DEVELOPMENT CHANNELIZATION STABILITY HIGH [4] EXCELLENT [7] NONE [6] HIGH [3] MODERATE [3] GOOD [5] RECOVERED [4] MODERATE [2] LOW [2] FAIR [3] RECOVERING [3] LOW [1] NONE [1] POOR [1] RECENT OR NO RECOVERY [1] Comments Comments
4] BANK EROSION AND RIPARIAN ZONE Check ONE in each category for EACH BANK (Or 2 per bank & average) River right looking downstream RIPARIAN WIDTH FLOOD PLAIN QUALITY FROSION WIDE > 50m [4] FOREST, SWAMP [3] CONSERVATION TILLAGE [1] NONE / LITTLE [3] MODERATE 10-50m [3] SHRUB OR OLD FIELD [2] URBAN OR INDUSTRIAL [0] MODERATE [2] RESIDENTIAL, PARK, NEW FIELD [1] MINING / CONSTRUCTION [0] HEAVY / SEVERE [1] VERY NARROW < 5m [1] FENCED PASTURE [1] Indicate predominant land use(s) past 100m riparian. Riparian Maximum Maximum 10
MAXIMUM DEPTH Check ONE (ONLY!) Toke Check ONE (ONLY!) Check ONE (Or 2 & average) Check ALL that apply Check
Indicate for functional riffles; Best areas must be large enough to support a population of riffle-obligate species: Check ONE (Or 2 & average). RIFFLE DEPTH RUN DEPTH RIFFLE / RUN SUBSTRATE RIFFLE / RUN EMBEDDEDNESS BEST AREAS > 10cm [2] MAXIMUM > 50cm [2] STABLE (e.g., Cobble, Boulder) [2] MAXIMUM < 50cm [1] MOD. STABLE (e.g., Large Gravel) [1] BEST AREAS < 50cm [2] UNSTABLE (e.g., Fine Gravel, Sand) [0]
[metric=0] Comments [metric=0] EXTENSIVE [-1] Maximum 8
6] GRADIENT (133.0 ft/mi) VERY LOW LOW [2-4]

FINEASUREMENTS Roodprone x2 width bankfull max, depth bankfull X depth X bankfull width entrench. ratio Comment RE: Reach consistency/ Is reach typical of steam?, Recreation/ Observed - Inferred, Other/ Sampling observations, Concerns, Access directions, etc. Legacy Tree: max, depth W/D ratio Tracks RR X depth XWIGHT LOGGING / IRRIGATION / COOLING FALSE BANK / MANURE / LAGOON NATURAL / WETLAND / STAGNANT HARDENED / URBAN / DIRT&GRIME WWTP / CSO / NPDES / INDUSTRY BMPs-CONSTRUCTION-SEDIMENT ATMOSPHERE / DATA PAUCITY WASH H20 / TILE / H20 TABLE ACID / MINE / QUARRY / FLOW PARK / GOLF / LAWN / HOME BANK / EROSION / SURFACE CONTAMINATED / LANDFILL El ISSUES End Circle some & COMMENT FLOOD CONTROL / DRAINAGE PUBLIC / PRIVATE / BOTH / NA ACTIVE / HISTORIC / BOTH / NA MODIFIED / DIPPED OUT / NA MOVING-BEDLOAD-STABLE IMPOUNDED / DESICCATED SPRAY / SNAG / REMOVED YOUNG-SUCCESSION-OLD P001 RELOCATED / CUTOFFS DI MAINTENANCE **ARMOURED / SLUMPS** ISLANDS / SCOURED LEVEED / ONE SIDED -84.401274 8500 h' h8--84.4017 Poor ☐ NUISANCE ALGAE
☐ INVASIVE MACROPHYTES CSOs/SSOs/OUTFALLS **AESTHETICS** 39.135668 39. 3583 EXCESS TURBIDITY SLUDGE DEPOSITS OIL SHEEN
TRASH / LITTER POOL: ->100ft2 ->3ft EXCESS TURBIDIT DISCOLORATION FOAM / SCUM AREA DEPTH 29 13591 CJ RECREATION 3 bee N E ☐ SECCHI DEPTH☐ CHIGH
CNORMAN 1st -sample pass- 2nd]> 70 cm/ CTB --sample pass--CLARITY STAGE Stream Drawing. 20-<40 cm A) SAMPLED REACH 7.40-70 cm ~ 20 cm Check ALL that apply C-10%-CLOSED □ > 85%- OPEN CANOPY 10%-<30% DISTANCE 30%~55% 25%~85% 5+91-0.5 Km 0.2 Km 0.15 Km 0.12 Km 0.15 Km 0.12 Km ☐ BOAT ☐ WADE ☐ IL. LINE METHOD meters Birlse

Creati

Qualitative Habitat Evaluation Index and Use Assessment Field Sheet

Stream & Location	Clough Creek a	di Clough Pike		RM: 32.	Date: 7 21 2020
~ LM95	•		III Name & Affiliation	MAS-MBI	
River Code: -	<u>002STORE</u>	T#:	at./Long. 3 9 - 0932	48 184.36315	3 Office verified location
BEST TYPES BLDR /SLABS [10 BOULDER [9] COBBLE [8] GRAVEL [7] SAND [6] BEDROCK [5] NUMBER OF BEST	X	PE BOXES; present ER TYPES RDPAN [4] TRITUS [3] DCK [2] TIFICIAL [0] core natural substrates; ig	Check ORIGIN LIMESTONE [1] TILLS [1] WETLANDS [0] HARDPAN [0] SANDSTONE [0]	ONE (Or 2 & average	RUALITY AVY [-2] DDERATE [-1] Substra
Comments	Ci o oi ireas [o]		☐ COAL FINES [-2]	والإلعام	NC [1]
quality: 3-Highest quality	e, well developed rootwad in KS [1] CS [1] PEGETATION [1]	ounts, but not of highest	quality or in small amounts	s of highest Check O or, large Check O al pools. DEXTER ERS [1] MODE TES [1] SPARS	AMOUNT NE (Or 2 & average) NSIVE >75% [11] RATE 25-75% [7] SE 5-<25% [3] LY ABSENT <5% [1] Cover Maximum 20
SINUOSITY DE HIGH [4]	EXCELLENT [7] NON GOOD [5] REC FAIR [3] REC	IANNELIZATION	STABILITY HIGH [3] MODERATE [2] LOW [1]		Channel Maximum 20
EROSION NONE / LITTLE [3]	AND RIPARIAN ZONA RIPARIAN WI DIMODERATE 10-5 DIMODERATE 10-5 DIMODERATE 10-5 VERY NARROW NONE [0]	DTH R F P F P P P P P P P	ategory for EACH BANK (CLOOD PLAIN QUAL) T, SWAMP [3] TO OR OLD FIELD [2] ENTIAL, PARK, NEW FIELD D PASTURE [1] PASTURE, ROWCROP [0]	TY CONSERV	/ATION TILLAGE [1] R INDUSTRIAL [0] CONSTRUCTION [0]
5] POOL / GLIDE AN MAXIMUM DEPTH Check ONE (ONLY!) > 1m [6] 0.7~1m [4] > 0.4~0.7m [2] 0.2~0.4m [1] < 0.2m [0] Comments	CHANNEL W Check ONE (Or 2 & POOL WIDTH > RIFFLI POOL WIDTH < RIFFLI POOL WIDTH < RIFFLI	IDTH C average) EWIDTH [2] TORR EWIDTH [1] VERY EWIDTH [0] FAST	Check ALL that apply ENTIAL [-1] SLOW [1] FAST [1] INTERSTI [1] INTERMIT RATE [1] DEDDIES [1] ate for reach - pools and ri	TIAL [-1] TENT [-2]	ation Potential pary Contact and comment on back) Pool/ Current Maximum
Indicate for function of riffle-obligate RIFFLE DEPTH BEST AREAS > 10cm [2 BEST AREAS 5-10cm [1 BEST AREAS < 5cm [metric=0]	RUN DEPTH MAXIMUM > 50cm [MAXIMUM < 50cm [Check ONE (Or 2 & RIFFLE / RUN 2] ☐ STABLE (e.g., Co 1] ☑ MOD. STABLE (e.g.	average). I SUBSTRATE RIF	a population FLE / RUN EMBE □ NONE [2] □ LOW [1] Ø MODERATI □ EXTENSIVE	NO RIFFLE [metric=0] DDEDNESS
6] GRADIENT (85,4 DRAINAGE AREA (1.95	MODERATE [6-10]	%POOL:	%GLIDE: %RIFFLE:	Gradient Maximum

				# WICH SUREMENTS # width # depth max. depth Bankfull # depth WID ratto bankfull max. depth floodprone # width entrench. ratio Legacy Tree:	a End
Comment RE: Reach consistency/ Is reach typical of steam?, Recreation/ Observed - Intelled, Other Sampling Sections,				WWTP / CSO / NPDES / INDUSTRY HARDENED / URBAN / DIRT&GRIME CONTAMINATED / LANDFILL BMPS-CONSTRUCTION-SEDIMENT LOGGING / IRRIGATION / COOLING BANK / EROSION / SURFACE FALSE BANK / MANURE / LAGOON WASH H ₂ 0 / TILE / H ₂ 0 TABLE ACID / MINE / QUARRY / FLOW NATURAL / WETLAND / STAGNANT PARK / GOLF / LAWN / HOME ATMOSPHERE / DATA PAUCITY	Pool
Observed - Interred, Other				Circle some & COMMENT	Glide
s reach typical of steam?, Recreation. 36395	-84.363153	84.36224		DJ MAINTENANCE PUBLIC / PRIVATE / BOTH / NA ACTIVE / HISTORIC / BOTH / NA YOUNG-SUCCESSION-OLD SPRAY / SNAG / REMOVED MODIFIED / DIPPED OUT / NA LEVEED / ONE SIDED RELOCATED / CUTOFFS MOVING-BEDLOAD-STABLE ARMOURED / SLUMPS ISLANDS / SCOURED IMPOUNDED / DESICCATED FLOOD CONTROL / DRAINAGE	Stide
omment RE: Reach consistency la bea 39, 09337 - 84	39.693248	39.09309		BJAESTHETICS ANUSANCE ALGAE INVASIVE MACROPHYTES EXCESS TURBIDITY DISCOLORATION TOAM / SCUM OIL SHEEN TRASH / LITTER INUISANCE ODOR SLUGGE DEPOSITS CSOS/SSOS/OUTFALLS 47/ON AREA DEPTH POOL: □>100ft2□>3ft	Bank
AJ SAMPLED REACH Check ALL that apply	۵		CANORMAL	0.5 Km	Stream Drawing: Strange of Stabilization Strange of Stabilization

CTOFFA

22

Qualitative Habitat Evaluation Index and Use Assessment Field Sheet

OHEI Score:	59.5
-------------	------

Stream & Location: Clough Creek Beechmont + Elstim RM: 0 6 Date: 7/21/202	77
LM98 Scorers Full Name & Affiliation: MAS 3 MBI	
River Code: 1 - 002 - STORET#: Lat./Long.: 29 - 106208 184 . 394193 middle location	
1] SUBSTRATE Check ONLY Two substrate TYPE BOXES; estimate % or note every type present Check ONE (Or 2 & average)	
BEST TYPES POOL RIFFLE OTHER TYPES POOL RIFFLE ORIGIN QUALITY	
☐☐ BLDR /SLABS [10] × × ☐☐ HARDPAN [4] ☐☐ ☐☐ HEAVY [-2]	
□ ☑ COBBLE [8] × × □ □ MUCK [2] □ □ WETLANDS [0] SILT ☑ NORMAL [0]	rate
GRAVEL [7]	
BEDROCK [5] (Score natural substrates; ignore RIP/RAP [0] MODERATE [-1] Mexim	
NUMBER OF BEST TYPES: 214 or more [2] stude for positive to the state of the state	
Comments Somess [0] Coal Fines [-2]	
2] ///STREAM COVER Indicate presence 0 to 3: 0-Absent; 1-Very small amounts or if more common of marginal	
quality; 2-Moderate amounts, but not of highest quality or in small amounts of highest quality; 3-Highest quality in moderate or greater amounts (e.g. very large houlders in deep or fast water large. Check ONE (Or 2.& average)	
diameter log that is stable, well developed rootwad in deep / fast water, or deep, well-defined, functional pools.	
OVERHANGING VEGETATION [1] O ROOTWADS [1] O AQUATIC MACROPHYTES [1] SPARSE 5-<25% [3]	
3 SHALLOWS (IN SLOW WATER) [1] 3 BOULDERS [1] O LOGS OR WOODY DEBRIS [1] NEARLY ABSENT <5% [1]	
Comments Cover Maximum 10	
20	
3] CHANNEL MORPHOLOGY Check ONE in each category (Or 2 & average) SINUOSITY DEVELOPMENT CHANNELIZATION STABILITY	
☐ HIGH [4] ☐ EXCELLENT [7] ☐ NONE [6] ☐ HIGH [3]	
☐ MODERATE [3] ☐ GOOD [5] ☐ RECOVERED [4] ☐ MODERATE [2]	
Channel Chan	
Comments Maximum 10	
4] BANK EROSION AND RIPARIAN ZONE Check ONE in each category for EACH BANK (Or 2 per bank & average)	
River right looking downstream RIPARIAN WIDTH FLOOD PLAIN QUALITY	
EROSION WIDE > 50m [4], FOREST, SWAMP [3] CONSERVATION TILLAGE [1] NONE / LITTLE [3] MODERATE 10-50m [3] SHRUB OR OLD FIELD [2] URBAN OR INDUSTRIAL [0]	
MODERATE [2] DINARROW 5-10m [2] DIRESIDENTIAL, PARK, NEW FIELD [1] DIMINING / CONSTRUCTION [0]	
I NONE [0] Indicate predominant land use(s)	
Comments Riparian (
Comments Maximum 10	
Comments Maximum 10 5] POOL / GLIDE AND RIFFLE / RUN QUALITY	
5] POOL / GLIDE AND RIFFLE / RUN QUALITY MAXIMUM DEPTH CHANNEL WIDTH Check ONE (ONLY!) Check ONE (Or 2 & average) Check ALL that apply Riparian	
Comments 5] POOL / GLIDE AND RIFFLE / RUN QUALITY MAXIMUM DEPTH Check ONE (ONLY!) Check ONE (ONLY!) Check ONE (Or 2 & average) Check ALL that apply POOL WIDTH > RIFFLE WIDTH [2] Check ALL that apply POOL WIDTH > RIFFLE WIDTH [2] Check ALL that apply Pool WIDTH > RIFFLE WIDTH [2] Check ALL that apply Pool WIDTH > RIFFLE WIDTH [2] Check ALL that apply Pool WIDTH > RIFFLE WIDTH [2] Check ALL that apply Pool WIDTH > RIFFLE WIDTH [2] Check ALL that apply Pool WIDTH > RIFFLE WIDTH [2] Check ALL that apply Pool WIDTH > RIFFLE WIDTH [2] Check ALL that apply Pool WIDTH > RIFFLE WIDTH [2] Check ALL that apply Pool WIDTH > RIFFLE WIDTH [2] Check ALL that apply Pool WIDTH > RIFFLE WIDTH [2] Check ALL that apply Pool WIDTH > RIFFLE WIDTH [2] Pool WIDTH > RIFFLE WIDTH [3] Pool WIDTH > RIFFLE WIDTH [4] Pool WIDTH > RIFFLE WIDTH RIFFL	
Secondary Contact Pool width Riffle width 10 10 10 10 10 10 10 1	
Comments	
Solution Comments	
Solution	
5] POOL / GLIDE AND RIFFLE / RUN OUALITY MAXIMUM DEPTH Check ONE (ONLY!) Check ONE (ONLY!) Check ONE (Or 2 & average) Check ALL that apply Contact Secondary Cont	
Stable Comments	
Signature Sign	
Solution	
Solution	
Solution	

ess directions, etc.			F) MEASUREMENTS X width X depth max. depth Y bankfull width bankfull X depth WID ratio bankfull max. depth floodprene x² width entrench. ratio Legacy Tree:
of steam?, Recreation/ Observed - Inferred, Other/ Sampling observations, Concerns, Access directions, etc. 470			ETTSSUES WWYTP / CSO / NPDES / INDUSTRY HARDENED / URBAN / DIRT&GRIME CONTAMINATED / LANDFILL BMPS-CONSTRUCTION-SEDIMENT LOGGING / IRRIGATION / COOLING BANK / EROSION / SURFACE FALSE BANK / MANURE / LAGOON WASH H20 / TILE / H20 TABLE ACID / MINE / QUARRY / FLOW NATURAL / WETLAND / STAGNANT PARK / GOLF / LAWN / HOME ATMOSPHERE / DATA PAUCITY
/ Observed - Inferred, <i>Other</i> /			Circle some & COMMENT
reach typical of steam?, Recreation - 8 4、3 9 4 70	-84.394193	-84.39400	DJ MAINTENANCE PUBLIC / PRIVATE / BOTH / NA ACTIVE / HISTORIC / BOTH / NA YOUNG-SUCCESSION-OLD SPRAY / SNAG / REMOVED MODIFIED / DIPPED OUT / NA LEVEED / ONE SIDED RELOCATED / CUTOFFS MOVING-BEDLOAD-STABLE ARMOURED / SLUMPS ISLANDS / SCOURED IMPOUNDED / DESICCATED FLOOD CONTROL / DRAINAGE
Comment RE: Reach consistency/ Is reach typical		end 39, 10683	ARITY ARITY BIAESTHETICS See pass-2nd NUISANCE ALGAE m
AJ SAMPLED REACH Choole All that analy	METHOD STAGE	WADE CHIGH	OTHER

Stream Drawing:

Appendix D

Little Miami River 2022 Primary Headwater Habitat Data D-1: PHWH Evaluation

Site ID	RM	Year	Rive	r					Lo	cation:			
LM54	2.40	2022	(11086) Uni	named Trib (1.	82) to Trib	to Sycamo	re		Gleno	ver Dr. a	nd Raiders Rui	n	
HHEI Info:	HHEI Score	81.0	Substrate	: 36.0	Pool:	15.0	Bankful	30	0.0	Channe	el: Recovered	Flow:	Interm.
	QHEI Score	:	Substrate	e:	Pool:		Max Z.:			Chann	 el	Flow:	
Drainage Size:	1.60	Rif	fle:	Ripar:		Cover:			PH	W Clas	ss: PHW3		
FISH Info:	IBI Score:	Dry	Species:	1.0 Sensitiv	e Sp.:	0.0 % F	Pioneer:	0.00	Head	 lwater \$	Sp. 0.00		
MACRO In	fo: ICI Score	: (QUAL EPT:	0 Cold	water Ta	xa.: 0	Intols:	S	ens.	0	Toler:	V. To	 l.
Salamande	ers: X Adu	Its: L	.arvae: 7	Eurycea ciri	rigera						Alternate S	Site ID:	
LM71	6.10	2022	(11004) Du	ck Creek					Norwo	od/Harris	s Ave.		
HHEI Info:	HHEI Score	61.0	Substrate	e: 21.0	Pool:	20.0	Bankful	30	0.0	Channe	el: Natural	Flow:	Flowing
	QHEI Score	26.0	Substrate	9: 0.5	Pool:	4.0	Max Z.:	20-40) cm	Channe	el 6.5	Flow:	Flowing
Drainage Size:	2.24	Rif	fle: 0.0	Ripar:	3.0	Cover:	8.0		PH	W Clas	ss: LRW		
FISH Info:	IBI Score:	No Fish	Species:	0.0 Sensitiv	e Sp.:	0.0 % F	Pioneer:	0.00	Head	lwater s	Sp. 0.00		
MACRO In	fo: ICI Score	: (QUAL EPT:	0 Cold	water Ta	xa.: 0	Intols:	S	ens.	0	Toler:	V. To	 l.
Salamande	ers: Adu	lts: L	.arvae:	None Captu	ıred						Alternate S	Site ID:	
LM80	0.10	2022	(11075) Uni	named Tributa	y to Duck	Creek at R	M 4.		Kenne	dy Ave.			
HHEI Info:	HHEI Score	69.0	Substrate	e: 24.0	Pool:	20.0	Bankful	25	5.0	Channe	el: Natural	Flow:	Flowing
	QHEI Score	34.5	Substrate	e: 6.5	Pool:	2.0	Max Z.:	< 20) cm	Chann	el 7.0	Flow:	Flowing
Drainage Size:	1.42	Riff	fle: 2.0	Ripar:	4.0	Cover:	9.0		PH	W Clas	ss: LRW		
FISH Info:	IBI Score:	No Fish	Species:	Sensitiv	e Sp.:	% F	Pioneer:		Head	lwater \$	 Sp.		
MACRO In	fo: ICI Score	: (QUAL EPT:	2 Cold	water Ta	xa.: 0	Intols:	S	ens.	0	Toler:	V. To	 I.
Salamande	ers: Adu	lts: L	arvae:	None Captu	ıred						Alternate S	Site ID:	
LM81	2.30	2022	(11051) Eas	st Fork Duck C	reek				end of	Tamwor	th Dr.		
HHEI Info:	HHEI Score	51.0	Substrate	e: 36.0	Pool:		Bankful	1 15	5.0	Channe	el: Recoverin g	Flow:	Ephem.
	QHEI Score):	Substrate	— — — D:	Pool:		Max Z.:			Chann	 el	Flow:	
Drainage Size:	0.50	Riff	fle:	Ripar:		Cover:			PH	W Clas	ss: PHW2		
FISH Info:	IBI Score:	Dry	Species:	1.0 Sensitiv	e Sp.:	0.0 % F	Pioneer:	0.00	Head	water s	Sp. 0.00		
MACRO In	fo: ICI Score	: (QUAL EPT:	0 Cold	water Ta	xa.: 0	Intols:	S	ens.	0	Toler:	V. To	 I.
Salamande	ers: Adu	ts: L	arvae:	None Captu	ıred						Alternate S	Site ID:	

Site ID	RM	Year	Rive	<u>r</u>				Lo	ocation:			
LM82	0.20	2022	(11077) Unr	named Tributa	ry to Little [Duck Creek	ка	at ba	aseball field			
HHEI Info:	HHEI Score:	93.0	Substrate	33.0	Pool:	30.0	Bankfull	30.0	Channel: R	Recovering	Flow:	Flowing
	QHEI Score:	50.5	Substrate	16.5	Pool:	5.0	Max Z.:	40-70 cm	Channel	9.0	Flow:	Flowing
Drainage Size:	0.59	Rif	fle: 2.5	Ripar:	5.5	Cover:	8.0	P	HW Class: F	PHW3A		
FISH Info:	IBI Score:	28	Species:	2.0 Sensitiv	ve Sp.:	0.0 % F	Pioneer: 26	6.06 Hea	adwater Sp.	1.00		
MACRO Inf	o: ICI Score:		QUAL EPT:	4 Cold	lwater Ta	xa.: 1	Intols:	Sens	. 3 Tole	er:	V. Tol	
Salamande	ers: X Adult	ts: l	 ∟arvae: 2	Eurycea cir	rigera				AI	lternate S	ite ID:	
LM83	0.80	2022	(11075) Unr	named Tributa	ry to Duck	Creek at R	M 4.	behi	nd Home Depo	ot		
HHEI Info:	HHEI Score:	37.0	Substrate	: 7.0	Pool:		Bankfull	30.0	Channel: F	Recovering	Flow:	Interm.
	QHEI Score:	:	Substrate	— — —):	Pool:		Max Z.:		Channel		Flow:	
Drainage Size:	1.20	Rif	fle:	Ripar:		Cover:		P	HW Class: F	PHW2		
FISH Info:	IBI Score:	Dry	Species:	1.0 Sensiti	ve Sp.:	0.0 % F	Pioneer: (— — 0.00 Hea	dwater Sp.	0.00		
MACRO Inf	o: ICI Score:		QUAL EPT:	0 Cold	water Ta	xa.: 0	Intols:	Sens	. 0 Tole	er:	V. Tol	
Salamande	ers: Adul	ts: I	 _arvae:	None Capti	ured				AI	lternate S	ite ID:	
LM86	2.40	2022	(11076) Littl	e Duck Creek				adj.	Camargo Rd.			
HHEI Info:	HHEI Score:	89.0	Substrate	29.0	Pool:	30.0	Bankfull	30.0	Channel: F	Recovered	Flow:	Flowing
	QHEI Score:	56.5	Substrate	: 18.0	Pool:	4.0	Max Z.:	20-40 cm	Channel 1	10.0	Flow:	Flowing
Drainage Size:	0.22	Rif	fle: 3.5	Ripar:	4.0	Cover:	13.0	Р	HW Class: V	WH		
FISH Info:	IBI Score:	32	Species:	3.0 Sensitiv	ve Sp.:	0.0 % F	Pioneer: 21	1.16 Hea	adwater Sp.	1.00		
MACRO Inf	o: ICI Score:		QUAL EPT:	7 Cold	lwater Ta	xa.: 0	Intols:	Sens	. 3 Tole	er:	V. Tol	
Salamande	ers: X Adul	ts: 1 l	_arvae: 4	Eurycea cir	rigera				AI	Iternate S	ite ID:	
LM87	1.90	2022	(11076) Littl	e Duck Creek				adj.	Plainville Rd.			
HHEI Info:	HHEI Score:	84.0	Substrate	: 29.0	Pool:	25.0	Bankfull	30.0	Channel:	Recovering	Flow:	Flowing
	QHEI Score:	61.0	Substrate	19.5	Pool:	4.0	Max Z.:	20-40 cm	Channel 1	11.5	Flow:	Flowing
Drainage Size:	0.45	Rif	fle: 4.0	Ripar:	4.0	Cover:	14.0	Р	HW Class: V	WWH		
FISH Info:	IBI Score:	32	Species:	4.0 Sensiti	ve Sp.:	0.0 % F	Pioneer: 39	9.41 Hea	adwater Sp.	1.00		
MACRO Inf	o: ICI Score:		QUAL EPT:	9 Cold	lwater Ta	xa.: 2	Intols:	Sens	. 4 Tole	er:	V. Tol	
Salamande	ers: X Adul	ts: 1 l	_arvae: 3	Eurycea cir	rigera				AI	Iternate S	ite ID:	

Appendix D1. Primary Headwater Aquatic Life Use information for the small Little Miami River tributaries during 2022.

Site ID	RM	Year	ear River Location:													
LM90	1.00	2022	(11076) Little	6) Little Duck Creek			Settle St.									
HHEI Info:	HHEI Score:	89.0	Substrate:	29.0	Pool:	30.0	Bankfull	30.0	Channel:	Recovering	Flow:	Flowing				
	QHEI Score:	61.0	Substrate:	18.0	Pool:	5.0	Max Z.:	40-70 cm	Channel	10.5	Flow:	Flowing				
Drainage Size:	⁹ 0.55	Riff	le: 4.5	Ripar:	6.0	Cover:	13.0	PH	HW Class:	WWH						
FISH Info:	IBI Score:	32	Species: 4	1.0Sensitiv	e Sp.:	0.0 % F	Pioneer: 44	.99 Head	dwater Sp	o. 1.00						
MACRO In	fo: ICI Score:		QUAL EPT:	8 Coldy	vater Ta	xa.: 0	Intols:	Sens.	4 To	oler:	V. Tol					
Salamande	ers: X Adult	s: La	arvae: 4	Eurycea cirr	igera					Alternate S	ite ID:					

Appendix E

Little Miami River 2022 Chemical Water Quality Data

E-1: 2017 Sampling Sites

E-2: Raw Chemical Data

(Contact Laura Boyd, MSDGC at Laura.Boyd@cincinnati-oh.gov for Excel files)

									Drain.	Geo-											Benthic		
									Area	metric		Macro-		Field					Supple-	Data-		Sediment	t Sediment
Site ID	Basin	Stream	River_Stream Name	Lat	Long	RM	Location Description	CSO/SSO/PSO/WWTP	(mi.²)	Level	Fish	inverts.	Habitat	Chem.	Demand	Nutrients	Metals	Organics	mental	Sonde	phyll a	Metals	Organics
LM01	11	001	Little Miami River	39.318200	-84.252000	27.90	Dst. U.S. Rt. 22/St. Rt. 3 - L. Miami State Park	WWTPs	1140	1	Α	HD	QHEI	6X	6X	6X	6X	3X	Bact (6X)	Х	Χ	X	X
LM02	11	001	Little Miami River (RF06)	39.271300	-84.259400	24.10	Ust. O'Bannon Cr.		1145	1	Α	HD	QHEI	6X	6X	6X	6X	3X	Bact (6X)	Х	Χ	Χ	X
LM03	11	001	Little Miami River	39.253100	-84.280800	22.30	Ust. Polk Run WWTP	WWTP	1150	1	Α	HD	QHEI	6X	6X	6X	6X	3X	Bact (6X)	Х	Χ	Х	X
LM05	11	001	Little Miami River	39.246900	-84.294700	21.50	Hopewell Rd. (Bridge Street)	WWTP	1160	1	Α	HD	QHEI	6X	6X	6X	6X	3X	Bact (6X)	Х	Χ	Х	X
LM07	11	001	Little Miami River	39.213100	-84.313600	18.50	Camargo Rd.	WWTP	1187	1	Α	HD	QHEI	6X	6X	6X	6X	3X	Bact (6X)	Х	Χ	Х	X
LM08	11	001	Little Miami River	39.208600	-84.306900	17.70	Canoe access dst. St. Rt. 126		1190	1	Α	HD	QHEI	6X	6X	6X	6X	3X	Bact (6X)	Х	Χ	Χ	X
LM09	11	001	Little Miami River	39.172500	-84.298600	13.10	Wooster Pike - Milford		1203	1	Α	HD	QHEI	6X	6X	6X	6X	3X	Bact (6X)	Х	Χ	Х	X
LM11	11	001	Little Miami River	39.150000	-84.313300	10.90	Intersection of Mt. Carmel & Round Bottom Rd.	WWTP (via E. Fork)	1707	1	Α	HD	QHEI	6X	6X	6X	6X	3X	Bact (6X)	Х	Χ	Х	X
LM12	11	001	Little Miami River	39.136700	-84.351900	8.10	Newtown Rd.		1710	1	Α	HD	QHEI	6X	6X	6X	6X	3X	Bact (6X)	Х	Χ	Χ	X
LM13	11	001	Little Miami River	39.138960	-84.374780	6.83	R.R. Trestle/Mariemont		1720	1	Α	HD	QHEI	6X	6X	6X	6X	3X	Bact (6X)	Х	Χ	Χ	X
LM15	11	001	Little Miami River	39.118340	-84.399626	4.10	Ust. Duck Creek		1740	1	Α	HD	QHEI	6X	6X	6X	6X	3X	Bact (6X)	Х	Χ	Χ	X
LM16A	11	001	Little Miami River	39.109430	-84.401780	3.70	Dst. Duck Creek/Ust. Beechmont Ave.	Duck Cr. CSOs	1752	1	Α	HD	QHEI	6X	6X	6X	6X	3X	Bact (6X)	Х	Χ	Χ	X
LM16	11	001	Little Miami River	39.108900	-84.401700	3.50	Beechmont Ave. dst. Duck Cr., ust. Clough Cr.	CSO 476, 470,471	1752	1	Α	HD	QHEI	6X	6X	6X	6X	3X	Bact (6X)	Х	Χ	Х	X
LM17	11	001	Little Miami River	39.085300	-84.419700	1.60	Kellog Ave.	CSO 476, 470,471	1754	1	Α	na	QHEI	6X	6X	6X	6X	3X	Bact (6X)	Х	Χ	Х	X
LM50	11	007	Sycamore Creek	39.217300	-84.331600	1.10	Loveland Rd.	SSO 1008,579	12.5	5	Е	HD	QHEI	4X	4X	4X	4X	4X	Bact (4X)	Х	Χ	Х	X
LM51	11	007	Sycamore Creek	39.223300	-84.326400	0.50	Dst. N. Fork	SSO 1008,579	24.0	4	D,E	HD	QHEI	4X	4X	4X	4X	4X	Bact (4X)	Х	Χ	Х	X
LM52	11	007	Sycamore Creek	39.225800	-84.322500	0.10	Dst. Sycamore Cr. WWTP	WWTP, SSO 1008,579	24.0	4	D,E	HD	QHEI	4X	4X	4X	4X	4X	Bact (4X)	Х	Χ	X	X
LM54	11	086	U.T. @1.82 to U.T. Sycamore Cr. @1.12	39.215640	-84.365430	0.40	Behind house on Pepperell Rd.		1.58	8	F	QL/PH	QHEI/HHEI	4X	4X	4X	4X	4X	Bact (2X)				
LM55	11	049	Un. Trib to Sycamore Cr. @1.12	39.215580	-84.349070	1.20	Upstream Blome Rd bridge	SSO 705,647	4.22	7	E	QL	QHEI	4X	4X	4X	4X	4X	Bact (2X)				
LM56	11	049	Un. Trib to Sycamore Cr. @1.12	39.216220	-84.336150	0.20	Nearest 8174 Loveland Maderia Dr	SSO 705,647	5.61	6	E	HD,QL	QHEI	4X	4X	4X	4X	4X	Bact (2X)				
LM71	11	004	Duck Creek	39.161670	-84.437870	6.10	Norwood/Harris Ave	CSO 170,500,501	0.29	9	F	QL/PH	QHEI/HHEI	4X	4X	4X	4X	2X	Bact (4X)	X	Χ	Х	X
LM72	11	004	Duck Creek	39.165278	-84.418056	5.14	Duck Creek Road	CSO 43,671,553	1.80	8	E,F	QL/PH	QHEI/HHEI	4X	4X	4X	4X	2X	Bact (4X)	X	Χ	X	X
LM73	11	004	Duck Creek	39.160370	-84.416680	4.58	Steel Place	CSO 188,61,43	1.91	8	E,F	QL/PH	QHEI/HHEI	4X	4X	4X	4X	1X	Bact (4X)	X	Χ	X	X
LM74	11	004	Duck Creek	39.156330	-84.407720	3.90	Dst. E. Fork Duck Creek	CSO 68,66,556	9.56	6	Е	HD	QHEI	4X	4X	4X	4X	1X	Bact (4X)	X	Χ	Х	X
LM75	11	004	Duck Creek	39.149308	-84.407592	3.40	Erie Avenue	CSO 136,80,205	10.20	5	E	HD	QHEI	4X	4X	4X	4X	2X	Bact (4X)	X	Χ	Χ	X
LM76	11	004	Duck Creek	39.143300	-84.404700	2.80	Red Bank Rd. and Fair Ln.	CSO 84,83,199	11.60	5	Е	HD	QHEI	4X	4X	4X	4X	2X	Bact (4X)	X	Χ	Χ	X
LM77	11	004	Duck Creek	39.132778	-84.404722	2.00	Wooster Rd.	CSO 84,83,199	14.40	5	E	HD	QHEI	4X	4X	4X	4X	2X	Bact (4X)	X	Χ	Χ	X
LM79	11	004	Duck Creek	39.121700	-84.410800	0.90	Ust. Wooster Rd.	CSO 86,85,84	14.70	8	E	QL/PH	QHEI/HHEI	4X	4X	4X	4X	4X	Bact (4X)			Χ	X
LM80	11	075	Un. Trib. to Duck Cr. @4.80	39.167100	-84.419725	0.10	Kennedy Avenue	CSO 556,554,555	1.40	8	F	QL/PH	QHEI/HHEI	2X	4X	4X	4X	4X	Bact (2X)			Χ	X
LM83	11	075	Un. Trib. to Duck Cr.k @4.80	39.174040	-84.423555	0.80	Behind Home Depot	CSO 556,554,555	1.20	8	F	QL/PH	QHEI/HHEI	2X	4X	4X	4X	4X	Bact (2X)			Χ	X
LM82	11	077	Un. Trib. to L. Duck Cr. @4.42	39.183260	-84.370000	0.20	At baseball field	CSO 556,554,555	1.40	9	F	QL/PH	QHEI/HHEI	2X	4X	4X	4X	4X	Bact (2X)			X	X
LM81	11	004	East Fork Duck Creek	39.182490	-84.398990	2.30	End of Tamworth Dr.		0.29	8	F	QL/PH	QHEI/HHEI	2X	4X	4X	4X	4X	Bact (2X)	X	Χ	Χ	X
LM84	11	051	East Fork Duck Creek	39.164718	-84.400937	0.70	Behind John P. Parker School		2.20	8	E,F	QL/PH	QHEI/HHEI	4X	4X	4X	4X	4X	Bact (4X)			Χ	X
LM85	11	051	East Fork Duck Creek	39.179440	-84.396040	2.00	Stewart Ave.	CSO 556,554,555	1.30	8	F	QL/PH	QHEI/HHEI	4X	4X	4X	4X	4X	Bact (4X)			Χ	X
LM86	11	076	Little Duck Creek	39.159890	-84.380880	2.40	Camargo Road	SSO 1014,1057	0.22	9	F	QL/PH	QHEI/HHEI	2X	4X	4X	4X	4X	Bact (2X)			Χ	X
LM87	11	076	Little Duck Creek	39.158333	-84.381389	1.90	Plainville Road	SSO 1014,1057	0.50	9	F	QL/PH	QHEI/HHEI	2X	4X	4X	4X	4X	Bact (2X)			Χ	X
LM90	11	076	Little Duck Creek	39.156350	-84.385094	1.00	Settle Street	CSO 69,72,71	0.55	9	F	QL/PH	QHEI/HHEI	2X	4X	4X	4X	4X	Bact (2X)			Χ	X
LM92	11	076	Little Duck Creek	39.136111	-84.400000	0.49	Wooster Rd. @Red Bank		14.50	5	E	HD	QHEI	4X	4X	4X	4X	2X	Bact (4X)	X	Χ	X	X
LM40	11	009	Polk Run	39.250800	-84.298900	0.30	East Kemper Rd.		10.80	5	E	HD	QHEI	4X	4X	4X	4X	2X	Bact (4X)	Х	Χ	X	X
LM95	11	002	Clough Creek		-84.365000		Clough Pike and Bridges Rd.		2.10	8	E,F	QL/PH	QHEI/HHEI	2X	4X	4X	4X	4X	Bact (2X)				
LM98	11	002	Clough Creek	39.106300	-84.397200	0.40	St. Rt. 125	CSO 182,476;SSO 588,589	7.97	6	E	QL	QHEI	2X	4X	4X	4X	4X	Bact (2X)	Х	Χ	Χ	X
										41	41	41	41							28	28	37	37
	Level 1	(>300 mi ²)	: 14							Fis	sh:	E	Bugs:				Chemic	al Paramt	ers by Grou	p			
	Level 2	(164 mi ²):	0							A (2X	() - 14	Н	D - 22	Temp.	BOD5	NH3-N	Cd	BNAs	E. coli			Cd	BNAs
	Level 3	(82 mi ²): 0									2X) - 8	(QL - 4	Conductivity	Chloride	NO3-N	Cu	VOCs				Cu	VOCs
		(42 mi ²): 2									() - 4		PH - 15		Sulfate	TKN	Pb	PAHs				Pb	PAHs
		(21 mi ²): 6								<u> </u>	.X) - 9		tal: 41	pH	TDS	Total P	Zn	Pesticides				Zn	Pesticides
		(10 mi ²): 3								F (1)		1	··-	P.,		Seston. Chl a	Fe					Fe	PCBs
												Ch	m WO:		Cond.	Benth. Chl a							FCBS
		(5.0 mi ²): :								Tota	II. 41		em WQ:			ьепип. Спі а	Ca					Ca	+
		(2.5 mi ²): :										+	X: 14		pН		Mg					Mg	
		(1.0 mi ²): !											X: 27				As					As	
	Total S	ites: 41									<u> </u>	То	tal: 41										

Appendix F

F-1: Ohio EPA Stream Nutrient Assessment Procedure (SNAP) Matrix and Flow Chart

	Proposed Stream Nutrient	Assessment Procedure (SNAP	; Ohio EPA 2015b)		
STEP 1	STEP 2	STEP 3	STEP 4		
Biological Criteria	Diel D.O. Swing ²	Benthic Chlorophyll ³	Preliminary Assessment Trophic Condition Status of Evaluated Segment o Waterbody	s	
	Normal or low swings	Low to moderate (≤320 mg/m²)	Attaining use / Not threate	ned	
All indices attaining or in non-significant	(≤6.5 mg/l)	High (>320 mg/m ²)			
departure ¹		Low (≤182 mg/m ²)	Attaining use, but may be threatened	See Flow Chart A	
	Wide swings (>6.5 mg/l)	Moderate to high (>182 mg/m ²)	tilleatelleu	Chart	
	Normal or low swings	Low to moderate (≤320 mg/m²)	Impaired, but cause(s) other than nutrients	See Flow Chart B	
Non-attaining (one or more indices below	(≤6.5 mg/l)	High (>320 mg/m ²)	Impaired; likely nutrients over-		
nonsignificant departure)		Low (≤182 mg/m ²)	enrichment	See Flow Chart C	
	Wide swings (>6.5 mg/l)	Moderate to high (>182 mg/m ²)	Impaired; Nutrients over- enrichment	CHUILC	

¹ Non-significant departure from biocriteria values accounts for background variability in measurements for biological indices. In accordance with "Biological Criteria for the Protection of Aquatic Life: Volume II: Users Manual for Biological Field Assessment of Ohio Surface Waters", Ohio EPA (1987, updated 2015b), non-significant departure is 4 points for IBI and ICI, and 0.5 point for Mlwb.

² Threshold value for 24-hour DO swing based upon a change point of 6.5 mg/l between DO swing and minimum DO. "Low to normal" DO swing is ≤6.5 mg/l. "Wide" DO swing is >6.5 mg/l. Data used for analysis from Technical Support Document for Nutrient Water Quality Standards for Ohio Rivers and Streams, Ohio EPA (2011).

³ Threshold values for benthic chlorophyll a are based upon change points between benthic chlorophyll a and DO swings or Invertebrate Community Index (ICI). "Low" chlorophyll a is ≤182 mg/m2. "Moderate" chlorophyll a is >182 and ≤320 mg/m2. "High" chlorophyll a is >320 mg/m2. Data used for analysis from Technical Support Document for Nutrient Water Quality Standards for Ohio Rivers and Streams, Ohio EPA (2011).

FLOW CHART A. – DECISION TREE FOR DETERMINING WHEN BIOLOGICALLY ATTAINING CONDITION STATUS IS THREATENED BY NUTRIENTS

For application when biological criteria are attaining, but one or both nutrient response indicators (DO swing or benthic chlorophyll) are elevated.

² The geographic scope or length of evaluated stream segments are defined in approved study plans.

³ For a given location, a decrease of 5 or more IBI or ICI points, or 0.6 or more MIWb points between sampling years represents a significant change. Trends for waterbodies are formally evaluated in Biological and Water Quality Technical Support Documents.

⁴ As recommended by US EPA in its integrated reporting guidance (Guidance for 2006 Assessment, Listing and Reporting Requirements Pursuant to Sections 303(d), 305(b) and 314 of the Clean Water Act), "threatened" waters are currently attaining WQSs but are expected to not meet WQSs by the next listing cycle (every two years). For example, a declining trend may indicate threatened status, whereas a stable or improving trend would not.